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ABSTRACT Electroencephalography (EEG) signals can reflect activities of the human brain and represent
different emotional states. However, recognizing emotions based on full-channel EEG signals will lead to
redundant data and hardware complexity, thus it is not suitable for designing wearable devices for daily-life
emotion recognition. This paper proposes a channel selection method to select an optimal subset of EEG
channels by using normalized mutual information (NMI). Compared with other methods, the proposed
method solves the problem of obtaining a higher recognition rate while reducing EEG channels sharply. First,
EEG signals are sliced into fixed-length pieces with a sliding window, and short-time Fourier transform is
adopted to capture EEG spectrogram. Then inter-channel connection matrix is calculated based on NMI, and
channel reduction is conducted by using thresholding and connection matrix analysis. The experiments are
based on thewidely-used emotion recognition databaseDEAP. It can be derived from the experimental results
that the proposedmethod can select optimal EEG channel subsets to a certain number while maintaining high
accuracy of 74.41% for valence and 73.64% for arousal with support vector machines. Further analysis also
reveals that the distribution of the selected channels is consistent with cortical areas for general emotion
tasks.

INDEX TERMS Channel selection, electroencephalography, emotion recognition, normalized mutual
information, support vector machine.

I. INTRODUCTION
Emotion is the most important component of human, and
plays a significant role in people’s daily communication [1].
Basically, emotion can be expressed verbally like speech or
non-verbally like the facial expression and physiological sig-
nals [2]. However, voice and facial expression are not reliable
indicators of emotion because they are usually subjective
and indirectly reflect the brain activities. Compared with the
nonverbally or verbal behaviors, physiological signals are
bioelectrical signals that are controlled by the autonomic
nervous system of humans and they are not affected by
humans’ subjective factors, and thus they can objectively
and truly reflect the emotional states of people stimulated
by the external environment. Generally, physiological signals
include Electroencephalography (EEG), Electrocardiogram
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(ECG), Electromyography (EMG), Galvanic Skin Response
(GSR), Blood Volume Pressure, and Skin Temperature [3]
etc. EEG signals are directly recorded from human’s brain
cortex and hence they could be more reliable and objectively
in reflecting the inner physiological states of the brain, and
they have been widely applied into some fields such as emo-
tion recognition [4], [5], brain-computer interface [6], [7], and
epilepsy detection [8], [9]. Therefore, it is feasible to use EEG
signals for emotion recognition.

In general, the obtained EEG signals are basically of
multi-channel nature. To classify these signals, for exam-
ple, we have two strategies: one is to work on a subset of
channels selected based on certain standards, and the other
is to work on all channels [10]. Using full-channel signals
of EEG not only initiates many complex features, but also
introduces interference information from irrelevant channels,
and reduces the system robustness. Therefore, efficient chan-
nel selection algorithm is needed to reduce the computation
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complexity and reduce the over-fitting problem that may be
caused by the irrelevant channels, to improve the performance
of the system [11]. In addition, there are certain areas in the
brain that are concerned with emotions.

Mutual information is an information entropy based on
information theory, which can describe the interaction of
different brain regions from the perspective of information
transmission. Over the decades, mutual information has been
widely applied for image registration based on the marginal
and joint entropies [12]. Moreover, its implementation has
been applied to the field of data mining and grouping similar
data recorders [13]. Recently, normalized mutual informa-
tion (NMI) has been proposed for feature selection with
the advantage of reduced complexity of features, and it has
achieved excellent results [14]. The implementation of NMI
algorithm in EEG signal processing provide us with a method
tomeasure the relationship between features in EEG channels
and their corresponding emotions [15].

In this paper, a new channel selection method to clas-
sify valence and arousal emotions using normalized mutual
information to select the optimal subset of the EEG chan-
nels is presented. Specifically, the EEG signals expressed
in time-frequency domain are more meaningful than time
domain [16]. In our model, we first slice the EEG signals
into fixed-length piece with a sliding window, and adopt
short-time Fourier transform (STFT) as the preprocessing
step to capture the time-frequency information, denoted as
EEG spectrogram. Then inter-channel connection matrix is
calculated based on NMI, and channel reduction are con-
ducted by using thresholding and connection matrix analysis.
The effect of channel selection on the classification results
with support vector machine (SVM) algorithm is also dis-
cussed together with the channel location related to valence
and arousal emotions. In summary, our contributions are as
follows:

1) We develop the EEG spectrogram representationmodel
as preprocessing, which contains the emotion informa-
tion between time and frequency domain. The gener-
ated 2-D time-frequency-based fragments are suitable
for latent feature extraction.

2) We propose the EEG channel selection procedure
which use an NMI-based method to determine the crit-
ical channels. It can guide wearable devices configu-
ration and improve data processing for daily-life EEG
emotion recognition.

3) We construct the connectionmatrix byNMI, and finally
the optimal channels are obtained. The results show
that the proposed model can reduce the EEG channels
sharply and maintain a relatively high accuracy com-
pared with other methods.

The remainder of this paper is organized as follows.
In section II, we give a brief overview for the related work
of EEG channel selection methods. In section III, we propose
our method for EEG channel selection and emotion recogni-
tion. Experimental results are shown in Section IV. Finally,
the whole paper is concluded in Section V.

II. RELATED WORK
EEG channel selection can be treated as a feature selection
problem. However, unlike usual feature selection, it is essen-
tial to treat all features coming from a channel together [17],
because each EEG channel may contain more than one fea-
ture. Some related methods for evaluating channels such as
the wrapper, filter, embedded and hybrid are introduced in
the published literature [11]. In wrapper approaches, using
a classification algorithm to assess the candidate channel
subsets generated by a search algorithm [11]. For instance,
feature selection combined with classification algorithms
such as SVM classifiers [18]. Hoverer, it also tends to be
more computationally expensive and leads to the overfitting
problem. An independent evaluation standard is used to the
filtering techniques, and the evaluation standard includes dis-
tance measure, information measure, dependency measure,
and consistency measure etc. [11]. Filtering techniques have
some advantages of the high speed, independence from the
classifier, and scalability [19], but they suffer from low accu-
racy, because it takes into account the fusion of different
channels [11]. In the embedded techniques, the selection
process is included in the construction of the classifier, and
the criteria is used to select the channel [20] in the classifier
learning process. Embedded techniques acquire an interac-
tion between the channel selection and the classification.
A hybrid approach is fusion of a filtering and a wrapper
attempting to take advantage of the two models to avoid
the pre-specification of a stopping criterion [11]. In general,
independent measure and mining algorithm are used to the
hybrid approach, which can evaluate the available channel
subsets [19].

In EEG emotion recognition, EEG channel selection has
been proved to be the main factor affecting the performance
of emotion recognition with the deepening of research [21].
The main task of EEG channel selection is to select a part
of electrodes from all electrodes to reduce the computational
cost and improve the accuracy rate of emotion recogni-
tion [22]. In the past few years, some EEG channel selection
algorithms have been presented by many researchers. For
instance, Rizon et al [23] proposed an asymmetric ratio (AR)
based channel selection method for human emotion recog-
nition from EEG signals. The results show their method
can reduce channels and classify the emotions effectively.
Lin et al [24] adopted the F-score index based on the ratio
of between-class and within-class variances to find a set
of optimal EEG channels for EEG-based emotion recogni-
tion. He et al [25] presented a Rayleigh coefficient (RC)
maximization-based genetic algorithm (GA) for channel
selection in motor-imagery BCI system, and achieve the
optimal subset of all channels. J Zhang et al [26] adopted
the ReliefF-based method to obtain the EEG channel that
has the closest relationship with the emotion, and sharply
reduce the number of EEG channels without sacrificing the
recognition rate. Zheng et al [22] proposed a method based
on deep neural networks to learn the average absolute weight
distribution to select the optimal EEG channels, and obtain
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FIGURE 1. Flowchart of the overall approach.

preferable experimental results. In recent years, new methods
are proposed. Gupta et al [27] proposed a flexible analytic
wavelet transform (FAWT) based on six known channels for
emotion recognition. The results have shown better perfor-
mance for emotion classification as compared to the existing
method. Bajaj et al [28] proposed multiwavelets decomposi-
tion based features for EEG emotion classification, and the
result is performed well. Bajaj et al [29] proposed a new
method for emotion recognition using multiwavelet trans-
form with multiclass least squares support vector machine
(MC-LS-SVM), and it provided classification accuracy of
84.79% for emotions. The results show the effectiveness of
the proposed method for EEG emotion recognition.

In short, in the previously presented work, researchers
proposed various channel selection methods to select the
optimal channel subsets. Different types of classifiers have
been applied to recognize emotion, and improve the accuracy
of the classification.

III. CHANNEL SELECTION METHOD USING NORMALIZED
MUTUAL INFORMATION
A. METHOD OVERVIEW
the overall approach pipeline of proposed channel selection
withNMI is illustrated in Fig. 1. The proposed process consist
of 4 main steps: ¬ High density EEG data were collected.
 The EEG spectrogram were generated by STFT. ®NMI
connection matrix is computed with spectrogram. ¯ Channel
selection using thresholding.

B. EEG SPECTROGRAM REPRESENTATION
In our model, we use STFT to convert EEG signals into
EEG spectrogram representations in time-frequency domain.
Given EEG fragment x (t) of one single-channel, the STFT
of the signal in a continuous form is defined as [30]:

STFT x (τ, ω) =
∫
+∞

−∞

x (t) ω (t − τ) e−jωtdt, (1)

where ω (t) is the window function centered around zero,
and τ is the time index to obtain time localization by taking
Fourier transform of the windowed signal. The spectrogram
can be further calculated as the magnitude squared of the
STFT to transform the complex values.

spectrogramx (τ, ω)= |STFT x (τ, ω)|
2 , (2)

The generated spectrogram is a matrix that reflect the
energy distribution of the signal at different frequencies.
In this way, by generating the EEG spectrogram representa-
tion, the frequency content of EEG signals can be described
over time, which can be further learned as time-frequency
images by the proposed model.

C. CHANNEL SELECTION WITH NMI
CONNECTION MATRIX
Mutual information (MI) is the measurement of mutual
dependence (amount of information) between two variables.
Given a discrete random variable X has {x1,x2, . . . ,xn}
random states with probability distribution of {px(x1),
px(x2), . . . ,px(xn)}, according to concept of Shannon’s
entropy, the information entropy of random X can be
defined as:

H (X)= −
n∑
i=1

px (xi) log2 px (xi), (3)

Similarly, the information entropy of random Y can be
defined as:

H (Y ) = −
n∑
i=1

py (yi) log2 py (yi), (4)

where px (xi) represents the probability distribution function
of ith random state of X, and py (yi) represents the probability
distribution of ith random state of Y. the joint Shannon’s
entropy of X and Y can be presented as:

H (X ,Y )= −
n∑
i=1

pxy
(
xi,yi

)
log2 pxy (xi,yi) , (5)
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where pxy (xiyi) is the joint probability function of X and Y.
Mutual information of two channel signals can be formulated
as [12]:

MI (X,Y) = H (X)+ H (Y )− H (X ,Y ) , (6)

The NMI is normalized by MI to obtain a value between 0
(independence) and 1 (strong dependence) with the equation
being expressed as:

NMI (X,Y) =
MI (X ,Y )

H (X)+ H (Y )
, (7)

where H (X) and H (Y ) are the marginal entropies, and
H (X ,Y ) is the joint entropy of the two variables X and Y .
The MI has two main properties that distinguish it from

other dependency measure: first, the capacity of measur-
ing any kind of relationship between variables; second, its
invariance under space transformations [31]. If the mutual
information between two random variables in large, it means
two variables are closely related. Indeed, MI is zero if an only
if two random variables are strictly independent.

Generation of NMI connectionmatrices can be represented
as:

Gn =
∫ N

i=1
NMI i(X ,Y ), (8)

where NMI i is the connection matrix of the ith the sample,
N is the number of samples with i = 1,2,. . . ,N, Gn is the
connection matrix sum of all the samples.

Setting an appropriate threshold, channel selection is per-
formed for Gn, and select the optimal channel sets according
to the performance of each channel for the accuracy of emo-
tion recognition.

D. SVM CLASSIFICATION ALGORITHM
SVM [32] is a simple and efficient computation of machine
learning algorithm which is usually applied to classification
and regression, and its aim is to find a classification hyper-
plane to distinguish different types of label. The classification
hyperplane can be defined as:

wT x + b = 0, (9)

where ω is the normal vector and b is the displacement. And
the distance between two different types of support vector and
the hyperplane is defined to be γ , which can be expressed as:

γ =
2

(‖w‖)
, (10)

To realize maximal γ, ω and b should be limited to satisfy
the condition of

min
w,b

1
2
‖ω‖2

s.t. yi
(
wTxi + b

)
≥ 1, i= 1, 2, . . . ,m. (11)

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In our work, NMI is used to construct connection matrix,
and thresholding is employed for EEG channel selection
to improve the performance of emotion classification. The
proposed method is tested based on the DEAP dataset. In the
experiment, we use full channels and the selected channels
for emotion recognition, respectively, and the relationship
between the emotion recognition rate and the selected chan-
nels for emotion recognition, respectively, and the relation-
ship between the emotion recognition rate and the selected
channels is analyzed.

A. EEG DATASET
All the EEG data we used for the experiment are from
the DEAP database [33], which is especially for emotion
analysis using physiological signals. It consists of original
data whose sampling frequency is 512 Hz and preprocessed
data with sampling frequency of 128 Hz collected from 32
healthy participants, including 16males and 16 females. Each
participant watched a one-minute long music video. After
each trial/video, each participant performs self-assessment of
their level of arousal, valence, like/dislike, and dominance.
Therefore, there are 40 trials for each subject and each trial
lasts for 63s, with 3s pretrial included. The DEAP dataset
has 40 channels containing 32 EEG channels and 8 other
peripheral channels, and we just only use 32 EEG channels.
In this paper, we only pay attention to the two dimensions
of emotional valence and arousal, and EEG signals are sliced
into 60s pieces with a sliding window. Each participant’s file
contains two arrays as described in Table 1.

TABLE 1. DEAP arrays of each participant.

B. DEFINITION OF EMOTION STATES
In the experiment, emotion states rated ranging from 1 to 9 on
the level of arousal-valence, and four conditions of emotional
states are defined on the arousal-valence plane (AV plane).
High-Arousal High-Valence (HAHV), High-Arousal Low-
Valence (HALV), Low-Arousal Low Valence (LALV), and
Low-Arousal High-Valence (LAHV). It is shown in Fig. 2.
If the score on the dimension is larger than 5, the emotional
stated is defined as High, otherwise it is defined as Low.

C. EXPERIMENTAL SETUP
1)NMI connectionmatrix: In this work, we calculate theNMI
connection matrix of the four emotional states of HAHV,
LAHV, LALV, and HALV as shown in Table 2. Since the
value of NMI is between 0 and 1, 0 means that the two
electrode signals are completely uncorrelated while 1 means
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FIGURE 2. The distribution on the arousal-valence plane for the four
conditions.

TABLE 2. NMI connection matrix.

completely correlated. In the work, in order to facilitate the
calculation, we have de-diagonalized the NMI connection
matrix.

By analyzing the NMI connection matrix of these four
labels of emotional state, compared with LAHV state, it can
be found that the number of electrodes with NMI values
greater than 0.6 is the least, indicating a low correlation
between channels in LAHV state. Therefore, on the whole,
in HALV state, the range of activated brain regions is wider,
forming a higher degree of intracerebral in formation cor-
relation. In addition, it can be seen from the distribution of
color patches that HAHV and HALV, LALV and LAHV are
different in the arousal dimension. It can be estimated that
arousal is the main factor affecting the correlation between
channels. Similarly, the difference of HAHV and LAHV,
HALV and LALV are significantly different in the valence
dimension, and it can be supposed that the valence dominates
the valence-arousal model, and its emotion classification rate
should be more accurate than the arousal.

2) Implementation Details: We sum four types of NMI
connection matrix and then average the value, the purpose
of which is to highlight the most obvious features and chan-
nels of the four matrices. Moreover, we combine the four

emotional states of HAHV, HALV, LALV and LAHV into
two emotional states, namely, valence and arousal. Specially,
one group is (HAHV, HALV) and (LALV, LAHV), and it
represents the classification of arousal, and another group is
(HAHV, LAHV) and (HALV, LALV), which represents the
classification of valence. We then use the connection matrix
to make emotional recognition of the full channels and the
selected channels for arousal and valence, respectively. In the
experiment, 80% samples of the dataset are used for training
and 20% samples of dataset are used for testing.

D. RESULTS OF CHANNEL SELECTION
We get the mean classification accuracy of valence and
arousal using different number of channels respectively,
as shown in Fig. 3 As shown in Figure 3, when using all chan-
nels (32 channels), that is point B, the average recognition
accuracy for valence reaches the maximum of 75.16% while
8 channels are enough to obtain 74.41% (point A) of classifi-
cation accuracy. Meanwhile, for the arousal dimension, when
using all channels (32 channels), that is point B’, the aver-
age recognition accuracy reaches the maximum of 74.41%
while 10 channels can also obtain 73.64% (point A’) of
classification accuracy. As the number of channels increase,
the average recognition accuracy of arousal and valence
changes little. The result show that we can select 8 channels
for valence and 10 channels for arousal. It means we can
significantly reduce the number of channels used without a
significant decrease in the classification accuracy for recog-
nizing emotions.

FIGURE 3. SVM-based channel number and accuracy rate.

Since we have determined the optimal channel number for
the arousal and valence emotion, we then select the optimal
channels of arousal and valence under different thresholds
from the experiment, and obtain the best recognition rate
under the optimal channels. As is shown in Table 3.

Table 3 summarizes the results of channel selection for
arousal and valence with different thresholds. It is observed
that with different thresholds, different channel set were
obtained. SVM classifier is used to separately obtain the
recognition rate of arousal and valence to evaluate the results
of channel selection procedure. It is observed that the best
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TABLE 3. Channels selected by NMI connection matrix.

FIGURE 4. Location of EEG channels for valence and arousal emotion
recognition after channel selection.

result obtained with threshold = 0.7 for arousal and thresh-
old= 0.75 for valence. Finally, we select the optimal channels
for valence and arousal. Valence emotion applies: FC1, P3,
Pz, Oz, CP2, C4, F4, Fz channels. On the other hand, arousal
emotion uses: AF3, F7, FC5, P7, Pz, O2, P4, Fp2, FC6,
P3 channels.

The location of EEG channels for valence and arousal
emotions after channel selection using the proposed method
is illustrated in Fig. 4. It reveals that recognition of valence
and arousal emotion involves a different combination of EEG
channels. In addition, the location of these channels in the
brain region is in Table 4.

According to Fig. 4 and Table 4, we find that EEG path-
ways related to emotions are mostly distributed in the front

TABLE 4. Selected channels with brain region.

of the frontal lobe, the central lobe, the parietal lobe and the
posterior occipital lobe, these regions are consistent with the
physiological principles of emotional production. Especially,
for valence emotion, which is related to the middle left and
right hemisphere. On the other hand, for arousal emotion,
which coincides with frontal and parietal lobes of the brain.

E. COMPARISONS AND DISCUSSIONS
Based on the same database DEAP, we compare the proposed
channel selection method with the existing method listed
in [34], ReliefF, mRMR (min-Redundancy-Max-Relevance)
and the DE method. The comparison results are shown
in Table 5 and Table 6.

As shown in Table 5 and Table 6, ReliefF, mRMR and DE
require a large number of channels to participate in the emo-
tion recognition. However, by using the proposed channel
selection method, the channel number falls down to 1/3-1/2.
The final 8 or 10 channels can be utilized in daily life scene
for emotion states monitoring. At the same time, our method
obtains a relatively high accuracy of 74.41% for valence and
of 73.64% for arousal with selected channels, respectively.
It is higher than the related work.

Furthermore, comparison results with related work using
EEG signals in DEAP dataset are displayed in Table 7.
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TABLE 5. Valence: Comparison with existing methods.

TABLE 6. Arousal: Comparison with existing methods.

TABLE 7. Comparison with related work using EEG signals in DEAP dataset.

Our research selects 8 channels for valence and
10 channels for arousal to obtain an accuracy which is
higher than other 2-class valence-arousal recognition listed
in Table 7. The experiment results indicate that the pro-
posed method can select the key channels for daily-life

EEG emotion recognition and ensure a relatively high
accuracy.

Computational complexity is also analyzed. From a qual-
itative point of view, each channel has a large amount of
data. After we conducted the channel selection experiment,
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the number of channels reduced sharply, and the overall
data is also greatly reduced. Therefore, the computational
complexity is certainly reduced. On the other hand, from
the perspective of complex network theory, the connection
between electrodes can constitute a brain network. Before the
channel selection, the amount of data is large, and 32 full
channels are connected to each other to form a fully con-
nected brain network, which has a complicated structure.
But after channel selection, only a few channels related to
emotions were retained, and the amount of data is greatly
reduced. Then the connection relationship between channels
is relatively simple and clear, indicating that the proposed
method is indeed efficient and reasonable, and the compu-
tation complexity is also significantly reduced.

Analysis of the classification results of the all 32 channels
and the selected channels is shown in Fig. 5 The figure shows
the valence has higher accuracy (75.16% to 74.41%) than
arousal (74.41% to 73.64%). By using channel selection,
the average accuracy of arousal and valence are slightly lower
than the recognition rate of all channels. However, we don’t
sacrifice too much recognition accuracy, but channel number
falls down to 1/4 of the full channels, and it reduces the com-
putational complexity. Furthermore, the proposedmethod can
be utilized in the daily-life emotion recognition to reduce the
complexity of wearable devices structure and improve the
recognition performance.

FIGURE 5. Comparison of classification valence and arousal emotion
between 32 channels and selected channels.

In other fields, such as epilepsy detection, channel selec-
tion is also very important. Bhattacharyya et al [40] proposed
a method to use mutual information to select 5 channels for
EEG seizure detection. Compared with our method, although
both methods use mutual information, the focus of the two
methods is quite different. In [40], the channel selection step
is to use the least standard deviation (SD) to determine the
first channel, and then to calculate the mutual information
between the remaining channels and the first selected chan-
nel. Take four channels with high mutual information values.
Finally, five channels have been selected. In this process,
the key is to select the first channel by the least standard

deviation, and the mutual information is only used to quan-
titively calculate the similarity or interdependency between
the remaining channels and the first selected channel. In our
method, we compute the mutual information between chan-
nels and normalized it to get the normalized mutual informa-
tion (NMI) connection matrix, and then select the channels
related to emotion states by the thresholds, and the computa-
tion of mutual information is the key step to experiment.

V. CONCLUSION
For daily-life emotion recognition, traditional approaches
based on full-channel EEG signals will lead to redundant data
and hardware complexity. This paper presents a new channel
selection method using NMI to select optimal channels for
EEG emotion recognition. SVM classifier is used to classify
emotion state. The number of EEG channels can be reduced
from 32 to 8 for valence and 32 to 10 for arousal by using the
NMI. In addition, we compared our method with other state-
of-the-art approaches. The results show the proposed method
effectively improves the rate of emotion recognition while
reduces the channels sharply. The thresholds are predefined.
Finally, we also explore brain regions that are related to
emotions, which help us to study the relationship between
specific brain regions and emotions. In a real application,
these values like thresholds are hard to determine in advance
and inappropriate values have a negative effect on the per-
formance of the model. Thus, future directions include the
application of self-adaptive strategy which is able to adjust
the thresholds for multimodal emotion analysis.
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