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ABSTRACT This paper presents a novel two-robot collaboration method for precise 2D self-localization
using relatively simple sensors. The main advantage of this method lies in its ability to precisely measure
the orientations of the robots, therefore reducing cumulative errors. Each robot is fitted with a rotating turret
carrying a camera to track themoving robot and calculate the relative distance and position, and an encoder to
provide the orientation of the turret. At each step, a single robot advances while the other remains stationary
and measures the position of the moving robot (continuously or at the end of the step), using the angular
orientation of the turret and the distance measured using the camera. The orientation of the moving robot
is obtained by turning its own turret towards the static robot and measuring its turret orientation. By fusing
the data from the two robots, the precise location and orientation of the moving robot are obtained. We also
present an analytical model of the position of the robots as a function of the sensor data and then proceed
to present a statistical estimate using Monte Carlo simulations of the location of the robots while assuming
that the sensor data includes random errors. Additionally, lab experiments are presented and compared to
simulation results.

INDEX TERMS Localization, multi-robot systems.

I. INTRODUCTION
Many robotic applications such as search and rescue, surveil-
lance and others require simultaneous localization and map-
ping (SLAM) of unknown unstructured locations. SLAM
techniques become more crucial where GPS and other local-
ization techniques are unavailable such as indoors, inside
caves or in tunnels. Many solutions for self-localization rely
on measuring the relative position of the robot with respect
to known features in space, also known as landmarks. How-
ever, the complexity grows in cases where there is no prior
knowledge of the explored area. In 1994, Kurazume et al. first
suggested cooperative positioning for multi-robot systems
as a solution to the SLAM problem [1]. By advancing the
robots in alternating steps, such that at each point in time
some robots remain stationary and the others travel to new
positions, the stationary robots whose absolute locations are
known serve as landmarks for the traveling robots.

This cooperative positioning method has been further
developed by other groups [2]–[6] to suggest the use of
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different kinds of sensors to determine relative positioning
with different advancing algorithms. The advantage of this
method is that a unified map of the robots’ trajectories is
created using all available relative measurements. However,
to implement this method, a centralized communication sys-
tem is required. Centralized approaches, though theoretically
effective, require ideal communication and high computa-
tional cost, thus making them vulnerable to single-point fail-
ures especially as the number of robots increases.

The main challenge in using relative measurements is
determining the absolute locations of the robots, since the
locations are obtained with regard to a local coordinate sys-
tem. Some solutions address this issue by combining both
external measurements such as GPS [7] or an affixed IR range
detector [8], which return inaccurate yet absolute locations
and relative measurements between the robots to enhance
accuracy and obtain the orientation of the robots as well. The
practicality of these methods is limited since they require
either GPS reception which is not available in many cases
such as indoor or underground areas or prior placing of sens-
ing tools. Similarly, many solutions use filtering techniques,
most commonly the Extended Kalman Filter (EKF) [9]–[12],

154044 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0201-3521
https://orcid.org/0000-0003-3106-1861
https://orcid.org/0000-0002-2532-1674


D. Erez et al.: Novel Simple Two-Robot Precise Self-Localization Method

FIGURE 1. The mobile robot and its sensors. Each robot incorporates a
camera fitted on a rotating turret and a bearing sensor.

where the robots’ locations are predicted by odometry
data (such as linear and angular velocities) and cor-
rected by relative measurements between neighboring robots.
Recently, the use of Ultra-Wideband (UWB) range-sensors
has become popular for relative distance measurements
in multi-robot systems, because they make it possible to
perform the localization process in a fully decentralized
manner [13]–[15].

While the relative locations of a multi-robot system can
be calculated by using any of the aforementioned methods,
obtaining the accurate relative orientation of the robots is
much more challenging. Besides visual methods [16]–[18],
many attempts to find the orientation of the robots have been
made using range-only measurements [6], [13]–[15], [19]
and angle-only measurements [11] or a combination of
both [10], [20]–[22]. The accuracy of the orientation remains
however very challenging at long distances.

Our goal in this work is to provide a simple low-cost high
accuracy localization and orientation method for a multi-
robot system, suitable for indoor areas where GPS signals
are unavailable, and visibility is relatively low. We consider
two robots each of which is equipped with one camera and
one rotation/bearing sensor mounted on a rotating turret.
The localization algorithm is described in Section II and
the error evaluation using an analytical exact method and
first order approximation method is presented in Section III.
The two methods are used to statistically evaluate the loca-
tion and orientation errors using Monte Carlo simulations
in Section IV and lab experiments are described in Section V.
Finally, conclusions and future work are discussed in
Section VI.

II. LOCALIZATION METHOD
In this section, we present our robotic setup, its sensors and
two localization methods. The first method is based on a
two-point measurement approach to calculate the orientation,
whereas the second method, which is our newly developed
method, fuses the distance and relative orientation to yield
more accurate results.

FIGURE 2. Distance measurement errors when estimating the orientation
of a vehicle. In black: real position of vehicle, in grey: estimated position.

A. ROBOTIC SYSTEM
Consider a robot fitted with a rotating turret which carries
a camera (see Fig. 1). The orientation of the turret relative
to the robot is measured with a bearing sensor. The camera
is used to detect the target and to aim the turret towards
it. The distance is measured using the camera whereas the
bearing sensor measures its angular coordinates. The polar
coordinates can then be transformed into the real Cartesian
location coordinates (xr , yr ) using:

xr = r cos (α)
yr = r sin (α) ,

(1)

where r is the distance of the target and α is the orientation
of the turret. Practically speaking, each of the sensor mea-
surements contains a small error. We denote by 1r and 1α,
respectively the distance and orientation errors. Then the
coordinates (xm, ym) based on the sensor measurement
become:

xm = (r +1r) cos (α +1α)
ym = (r +1r) sin (α +1α) .

(2)

The distance error range is often (according to many laser
sensor catalogs and visual based sensing) proportional to the
measured distance, whereas the angular error is dependent
on the resolution of the camera and encoders and is con-
stant for a long range of distances (as long as the target is
detected by multiple camera pixels). Assuming small mea-
surement errors 1r , 1α and using a first order Taylor series
approximation:

cos (α +1α) = cos (α)− sin (α)1α
sin (α +1α) = sin (α)+ cos (α)1α,

(3)

neglecting the product of 1r times 1α, Eq. (2) becomes:

xm ≈ (r +1r) cos (α)− r sin (α)1α
ym ≈ (r +1r) sin (α)+ r cos (α)1α.

(4)
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B. TWO POINT MEASUREMENT APPROACH
A straightforward approach is to estimate the orientation of
the robot by measuring the position of two specific points
on its side. Assuming that the measured distance and relative
orientation of two points 1 and 2 are respectively r1, α1, r2
and α2 (see Fig. 2), the position of the center of the robot (x, y)
and its orientation θ can be calculated as follows:

x =
r1 cosα1 + r2 cosα2

2

y =
r1 sinα1 + r2 sinα2

2
,

(5)

and

θ = − arctan
(
r2 cosα2 − r1 cosα1
r2 sinα2 − r1 sinα1

)
. (6)

This method results in a relatively large error in the robot’s
orientation if the errors 1r1, 1r2 become significantly large
relative to the distance L between the two measured points.
Omitting the angle measurement errors, the maximal orienta-
tion error of the robot:

1θ ≈
|1r1| + |1r2|
L cos (α − θ)

. (7)

For example, assume a robot with a length of L = 0.5 m
is measured from a distance of r = 10 m by a distance
measurement with a resolution of 0.2%; hence 1r = 2 cm.
Given α = 45 ◦ and θ = 30◦, the orientation error according
to Eq. (7) is 1θ ≈ 4.8 ◦. Note that this orientation error
for each single step is very large especially since the error
is cumulative.

C. RELATIVE ORIENTATION METHOD
(SUGGESTED METHOD)
Our method is based on the approach of two vehicles which
advance in alternating steps. At any given time, one vehi-
cle whose position xi,s, yi,s and orientation θi,s are known
remains stationary, while the other vehicle advances. The
index i indicates the step number and ′s′ stands for stationary.
At the end of each step, the distance and bearing of the two
vehicles are measured (ri, αis, αit ); These measurements are
used to estimate the traveling vehicle’s position xi,t , yi,t and
orientation θi,t (where ′t ′ stands for traveling).

The traveling vehicle’s location and orientation at each step
is determined with respect to the observing vehicle’s position.
The general form of the Cartesian location and orientation of
the traveling vehicle at step i is:

Xi,t = Xi,s + F
(
θi,s, ri, αis, αit

)
, (8)

where the vector Xi includes both the position and orientation
of the vehicle: Xi =

[
xi yi θi

]T . For example, in step 1,
assume that vehicle 1 is stationary and its position x1,1, y1,1
and orientation θ1,1 are known and vehicle 2 traveled to a
new position. The measured distance between the vehicles is
r1 and the measured bearing angles are α11 and α12, where
the first index refers to the step number and the second

index refers to the measuring vehicle (see Fig. 3, left). There-
fore, the Cartesian position and orientation of vehicle 2 with
respect to vehicle 1 is:

x1,2 = r1 cosα11
y1,2 = r1 sinα11
θ1,2 = α11 + 180◦ − α12.

(9)

By setting the initial position and orientation of vehicle 1 as
the origin of the global coordinate system, meaning x1,1 = 0,
y1,1 = 0 and θ1,1 = 0, Eq. (9) represents the global position
of vehicle 2 at the end of the first step.

Note that the orientation θ is determined solely by bearing
measurements and is hardly influenced at all by the distance
measurement, unlike in the two-point approach, where the
orientation accuracy is decreased by the distance. This is one
of the key advantages of ourmethod since distance errors tend
to increase together with the distance while angle measure-
ments remain almost unchanged.

In step 2, vehicle 1 travels to its next target point while
vehicle 2 is stationary and its position is known (x2,2 = x1,2,
y2,2 = y1,2 and θ2,2 = θ1,2). At the end of the step, the dis-
tance and angle measurements are r2, α22 and α21 (see Fig. 3,
center). It should be noted that the measurements are obtained
with respect to vehicle’s 2 current position and its local
coordinate system. In order to obtain the position of vehicle
1 in the global coordinate system, a transformation is needed.

D. MULTISTEP REPRESENTATION USING HOMOGENEOUS
COORDINATES
The local transformation matrix at step n from the traveling
vehicle’s coordinate system (n) to the stationary vehicle’s
coordinate system (n-1) is:

Ann−1 =

 cosψn − sinψn rn cosαns
sinψn cosψn rn sinαns
0 0 1

 , (10)

where ψn is the relative angle between the two coordinate
systems, hence ψn = αns+180◦−αnt (see Fig. 3). Obtaining
the position of the traveling vehicle in the global coordinate
system (0), can be achieved recursively as follows:

An0 = An−10 · Ann−1, (11)

where An−10 is the overall transformation matrix obtained in
the last step (n-1), and Ann−1 is the n step’s local transforma-
tion matrix as shown in Eq. (10).

Since the transformation matrix is composed of a rotation
matrix and a shifting vector, the first two expressions of the
third column of the matrix An0 are the Cartesian location of the
traveling vehicle in the global coordinate system at step n, and
the angle of the rotation matrix is the vehicle’s orientation in
the global coordinate system.

III. ERROR EVALUATION
Since all sensor measurements contain precision errors, this
section presents a statistical analysis to evaluate the influence
of the cumulative errors on the overall location of the robot
after a large number of steps.
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FIGURE 3. The first three steps and their measurements. At each step, one robot is static and tracks the motion of the advancing robot.

A. EXACT METHOD
The measured location of the traveling vehicle at step n is
expressed as a function of measured distances r1, r2, . . ., rn
and angles α11, α12, . . ., αn1, αn2 in the global coordinate sys-
tem f (r1, . . ., rn, α11, . . . , αn2); thus the real location includ-
ing distance and bearing measurement errors,1r1,1r2, . . . ,
1rn and1α11,1α12, . . .,1αn1,1αn2 respectively, is f (r1+
1r1, . . ., rn +1rn, α11 +1α11, . . ., αn2 +1αn2).
For example, if during the first step the distance and bear-

ing were measured with an error of 1r1, 1α11 and 1α12
respectively, the measured location of vehicle 2:

xm1,2 = (r1 +1r1) cos (α11 +1α11)
ym1,2 = (r1 +1r1) sin (α11 +1α11)
θm1,2 = α11 +1α11 + 180◦ − (α12 +1α12) .

(12)

This method uses the presented localization method
directly (see Section II-C and II-D), and hence requires multi-
ple matrix multiplications and a large number of trigonomet-
ric calculations which result in high numerical complexity.

B. FIRST ORDER APPROXIMATED METHOD
An approximated, yet computationally simpler method to
evaluate the measured locations of the vehicles uses: xmym

θm

 ≈
 xryr
θ r

+ [J ][1], (13)

where the index ′r ′ refers to the real location, [1] is the
measurement errors vector and [J ] stands for the Jacobian
matrix:

Jij =
∂gi
∂qj

, (14)

where gi are the functions of Cartesian location and orienta-
tion and qj are the variables of these functions, hence r1, α11,
α12, . . ., rj, αj1, αj2. For example, the estimated position of

vehicle 2 after the first step is: xm1,2ym1,2
θm1,2

 ≈
 r1 cosα11

r1 sinα11
α11 + 180◦ − α12


+

 cosα11 −r1 sinα11 0
sinα11 r1 cosα11 0

0 1 −1

 1r1
1α11
1α12

 . (15)

At the next step, the location is determined by 6 measure-
ments; thus, the Jacobian becomes a 3 × 6 matrix and the
measurement error is a 6 × 1 vector. At step n, the Jacobian
is a 3× 3nmatrix and themeasurement error is a 3n×1 vector.
A general form of the location error for step n is:

En= [J ][1]n=En−1

+

−rn sin (θn−1+αn,s) · ε+1rn cos (θn−1+αn,s)rn cos
(
θn−1+αn,s

)
· ε+1rn sin

(
θn−1+αn,s

)
1αn,s−1αn,t

 ,
(16)

where:

ε =
∑n

i=1
1αi,s −

∑n−1

j=1
1αj,t . (17)

IV. MONTE CARLO SIMULATION
AMonte Carlo Simulation (MCS) was used in order to simu-
late a real-life scenario where the input of the sensors contains
statistical errors. A natural random statistical error with a
given standard deviation was inserted to the ‘‘measured val-
ues’’ and the statistical distribution of the position of the vehi-
cles was calculated (using 10,000 simulations for each step).
This section first presents a comparison between the first
order statistical approximation to the exact method (IV-A),
the statistical distribution along the path (IV-B), the influence
of the sensor error on the accuracy of the measured loca-
tion (IV-C) and finally a comparison between different
paths and advancing (parallel, alternating and following)
methods (IV-D).
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FIGURE 4. A 25 step straight line path. This simple path was chosen for
our numerical MCS.

A. COMPARING THE FIRST ORDER APPROXIMATED
METHOD TO THE EXACT METHOD
The MCS was first performed throughout a simple path com-
posed of two straight lines as seen in Fig. 4. At each step, the
traveling vehicle advances by 8 m and the final distance from
the stationary vehicle is 10m; i.e. the system overall advances
200 m throughout 25 steps.

The distance and angle measurement errors were simu-
lated as normally distributed sets of N samples each (for
each step), with zero mean. The standard deviation of the
distance measurement error was set to σd · ri, where σd is the
distance measurement resolution and ri is the current step’s
measured relative distance. The standard deviation of the
angle measurement error was set to σα , the bearing sensor’s
resolution.

The MCS comparison was performed using the exact
method (III-A) and the approximated method (III-B). In both
cases, N = 10,000; i.e., each step of the path was evalu-
ated 10,000 times, for a set of 10,000 samples of random
measurement errors, resulting in 10,000 possible locations
for each step. Fig. 5 presents the relative difference between
the final locations calculated by both methods, relative to the
total traveled distance. Fig. 5 (top) shows that for σα ≤0.5◦ (a
reasonable assumption for a standard bearing sensor), the dif-
ference between the exact and approximated methods is less
than 0.1% of the traveled distance (200 meters in 25 steps).
The error increases to 1.5% for σα = 2◦. Fig. 5 (bottom)
which presents the difference between the two methods as a
function of distance standard deviation σd shows that the error
is dominated by the angle error. In terms of computation time,
the approximated method was found to be nearly 200 times
faster than the exact method computation time. Therefore,
the approximated method was used in the following MCS.

B. STATISTICAL DISTRIBUTION
This section presents a statistical analysis of the MCS loca-
tion errors using σd = 2% and σα = 0.5◦. The distribu-
tion of possible locations for each step is presented as a

FIGURE 5. Relative difference between the last step’s locations,
calculated using the exact and approximated methods, relative to total
distance traveled (200 m), as a function of bearing sensor’s resolution
(top), and as a function of range measurement’s resolution (bottom).
Each point is the average of 10,000 simulations.

FIGURE 6. Histogram distribution of the measured locations using the
MCS with 10,000 paths with σd = 2% and σα = 0.5◦ for steps 1, 2, 8, 14,
20, and 25 with the confidence distribution 68% (σ ) and 95% (2σ ).

two-dimensional histogram (see Fig. 6). The size and shape
of the distribution can be described by three standard
deviation values. The first is the total standard deviation
according to the distance between the centroid and the
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FIGURE 7. Standard deviations as a function of the number of steps for a
200 m straight path using σd = 2% and σα = 0.5◦.

different simulation results:

σ =

(
1

N − 1

N∑
i=1

(xi − µx)2 + (yi − µy)2
)0.5

, (18)

where (µx , µy) are the coordinates of the approximated
method’s centroid and (xi, yi) are the coordinates of all pos-
sible locations, i = 1, . . . ,N .
Since the distribution pattern of possible locations tends to

yield an ellipse, two other standard deviations were calculated
according to the ellipse’s axes. These values were obtained
by calculating the covariance matrix of the N Cartesian
locations:

cov

 x1 y1
...

...

xN yN

 , (19)

resulting in a 2 × 2 covariance matrix, with two 2 × 1
eigenvectors {V1, V2} and two corresponding eigenvalues
{λ1, λ2}. The eigenvectors of the covariance matrix represent
the direction of the ellipse’s axes, and the square root of their
corresponding eigenvalues represent the standard deviations
in their direction. Assuming λ1 > λ2, the two standard
deviations values are:

σ1 = λ
0.5
1 , σ2 = λ

0.5
2 , (20)

where σ1 is the standard deviation in the direction of the main
axis of the ellipse and σ2 is the standard deviation in the
perpendicular direction. The angle between the ellipse’s main
axis and the global x positive axis (see Fig. 6 top left) is:

β = arctan
V1 (y)
V1 (x)

. (21)

Although the error distribution of the first step seemed
to be affected mostly by the distance measurement’s error,
the error distribution of the next steps had a circular pattern.
The pattern became elliptical in the next steps with σ1 becom-
ing larger relative to σ2 (see Fig. 6 and Fig. 7). The overall
standard deviation of the error σ grew almost linearly with the
number of steps and distance traveled. The ratio of σ divided

FIGURE 8. Relative error between the measured position of the robot and
the real position for a travelled distance of 200 m, as a function of
bearing sensor’s resolution (top), and as a function of range sensor’s
resolution (bottom). Each point is the average of 10,000 simulations.

by the traveled distance is 0.036 which is in the same order
of magnitude as the sensors’ relative error.

Using Eq. (16) the standard deviation of the orientation of
the vehicle at step n can be evaluated directly as follows:

σθ =
√
2n · σα, (22)

implying that the orientation error depends solely on the
number of steps and the bearing sensor’s accuracy.

Additionally, the standard deviations in the ’x’ and ’y’
axes directions can be analytically derived from Eq. (16) (see
Appendix):

σx =

[
n∑
i=1

r2i cos
2 (θi−1 + αi,s)σ 2

d

+

n∑
j=1

�(j)

 n∑
i=j

ri sin
(
θi−1 + αi,s

)2

σ 2
α


0.5

, (23)

σy =

[
n∑
i=1

r2i sin
2 (θi−1 + αi,s) σ 2

d

+

n∑
j=1

�(j)

 n∑
i=j

ri cos
(
θi−1 + αi,s

)2

σ 2
α


0.5

, (24)

where:

�(j) =

{
1, j = 1
2, j > 1.

(25)
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FIGURE 9. Nine scenarios of three different paths and three different advancing methods. From top to bottom: straight path, ’S’ path and square path.
From left to right: parallel advancing, alternating advancing and following advancing. Lighter colors present 30 optional locations due to random
sensors errors with σd = 2% and σα = 0.5◦.

C. COMPARING THE INFLUENCE OF THE SENSOR ERROR
ON THE ACCURACY OF THE MEASURED LOCATION
Fig. 8 (top) presents the relative error between the measured
position of the robot and the real position as a function of
the standard deviation of the bearing measurement error σα ,
while Fig. 8 (bottom) presents the same error as a function of
the standard deviation of the distance measurement error σd .
For each case, we ran 10,000 simulations, each composed
of 25 steps and the total net advancement is 200 meters. The
results presented in this figure show that the relative error is
governed by the bearing error measurements.

D. PATH COMPARISON
In this section, MCS are used to statistically calculate the
influence of the sensor accuracy on the location error for three
different paths (straight, ’S’ shape, and square) using three
advancing methods (parallel, alternating and following).

TABLE 1. Values of sensor variables used in the simulation.

In total, nine scenarios were examined for four different
combinations of sensor errors (see Table 1).

Fig. 9 A-C presents the path distribution of 30 simulations
in a straight path using three different advancing methods:
A) parallel, B) alternating and C) following. Figure 9 D-F,
and G-I present the same different advancing methods for ’S’
shape and square paths respectively. We used σd = 2% and
σα = 0.5◦.
The resulting total standard deviation, and its compo-

nents along the direction of motion and in the vertical
direction are summarized in Table 2 (a,b,c). Note that
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TABLE 2. (a) 200 meters Straight path standard deviation values for different sensors resolution (using 10,000 simulations). (b) 200 meters ’S’ path
standard deviation values for different sensors resolution (using 10,000 simulations). (c) 200 meters Square path standard deviation values for different
sensors resolution (using 10,000 simulations).

the standard deviation values were calculated twice; once
using MCS (10,000 simulations) and then using the ana-
lytical expressions developed in the Appendix. The relative
difference between both methods is always smaller than 1%
(see Appendix).

For the straight path, (a), the overall standard deviation is
the largest compared to the other paths and is nearly unaf-
fected by the advancing method. However, for the other two
paths (’S’ shape (b) and square (c)), the parallel advancing
method mostly generated smaller location errors, where the
square path resulted with the smallest errors.

For the straight path, the standard deviation in the vertical
direction is substantially larger than the standard deviation in
the direction of motion. The square path on the other hand,
resulted in nearly equal standard deviations both in the paral-
lel and perpendicular direction, due to equal advancement in
both directions.

Overall, the three different advancing methods (parallel,
alternating and following) do not result in significant
differences in the standard deviation values within a spe-
cific path. The size and the distribution pattern of the
errors are influenced mainly by the overall advancing
direction of the system and almost unaffected by
the relative position of the vehicles within each step.

FIGURE 10. The robotic system used in the experiments.

V. EXPERIMENTS
This section presents an experimental system that was used to
validate our algorithm, experimental results and comparison
to the previously presented Monte Carlo simulation.

A. EXPERIMENTAL SYSTEM
To validate our algorithm and simulations, we built a two-
robot experimental system fitted with rotating turrets and
cameras (see Fig. 10). Each turret is equipped with a smart-
phone’s video camera (1080× 1920 pixels at 30fps). A green
6.5 cm tennis ball was placed at the top of the turret for
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TABLE 3. Standard deviation and mean error values of experiments’ last step result.

FIGURE 11. Top view of the robotics system. The turrets rotate in steps
of 45 degrees.

visual identification. The turret is connected to a servo motor
controlled by an Arduino microcontroller programmed to
continuously rotate the turret by steps of 45 degrees, from
zero till 180 and returning. At each stop, the turret pauses for
one second (see Fig. 11). Given the camera’s field of view
in the horizontal direction γx is 40 degrees, the total field of
view of each robot is 220 degrees.

We ran four different experiments in lab conditions that
were each repeated five times. In each experiment, the robots
(controlled by a human operator) advance in alternating steps
while the turret rotates as the camera continuously records
video. The localization of the robots is performed off-line
at the end of the experiment. Each step is represented by
two images (1080 × 1920), one from each camera and the
orientation of the turrets αturret .
The bearing angle α of each robot is the sum of the orienta-

tion of the turret αturret plus the angular position of the tennis
ball in the picture αimage:

α = αturret + αimage. (26)

The angular position in the image is calculated using:

αimage = atan
(

Cx
Nx/2

tan
(γx
2

))
, (27)

whereCx is the x coordinate of the center of the ball in pixels,
with respect to the center of the frame (see Fig. 12, top right).

The distance r between the robots (see Fig. 12, bottom
right) is calculated using:

r =
L

tan−1 (αL)
, (28)

FIGURE 12. Schematic diagram of distance (bottom right) and bearing
(top right) calculation from frame. Top left: original frame, bottom left:
frame after image filtering, center of ball and top and bottom of turret
detected.

where L is the length of the turret (21 cm) and αL is the view
angle of the height of the turret in the frame, calculated from
the image:

αL =
NL
Ny
· γy, (29)

whereNL is the size of the turret in pixels andNy is the overall
size of the image in the y direction. The camera’s field of view
γy in the vertical direction is 70 degrees. The distance r at
each step is calculated from the average of both images (one
from each robot).

B. RESULTS
The results of the experiments are presented in Fig. 13 and
Table 3. All three experiments show high repeatability with a
relatively small average error (1.1%, 0.14% and 3.4% respec-
tively for the straight, square and ’S’ experiments). The total
standard deviation is also relatively small with respectively
1%, 0.63% and 3.0%. We believe that the most significant
error in our experimental system is a systematic error in the
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FIGURE 13. Experiment results of three different paths; from left to right: straight path, square path and ’S’ path. Darker colors present real locations
and lighter colors present calculated locations from five experiment results.

TABLE 4. Standard deviation values of simulations’ last step with σd =
1% and σα = 0.3◦.

bearing measurements. As previously discussed, the bearing
sensor’s error has a high impact on the localization error.

C. COMPARISON TO SIMULATION
The system’s repeatability error was evaluated by repeating
the same measurement at least 10 times. The standard devi-
ation of the calculated distances and bearing angles were
σd = 1% (with respect to the real distance) and σα = 0.3◦.
The values of the standard deviation were implemented in
the MCS in order to compare the simulation to the experi-
ments. The simulation results presented in Table 4 show that
the experimental results are of the same order as expected
by the simulation. Note that since the MCS uses normally
distributed random errors, the mean error for each step is
zero.

For the first two experiments, straight and square paths, the
standard deviation is very similar to the simulation. In the ’S’
shape path, the standard deviation of the experiment is of the
same order as the simulation but is slightly more than 3 times
larger.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented a simple, low cost method for
precise multi-robot self-localization that relies on distance
and bearing measurements. The system can be deployed
in indoor areas where GPS signals are unavailable, and
visibility is relatively low. The key advantage of this method
is that it reduces the errors resulting from the inaccuracies of
evaluating the orientation of the robots.We developed an ana-
lytical solution for the position of the robots and a numerical
simulation to account for the statistical sensors’ errors. We

show that the total relative error (cumulative error divided by
travelled distance) is on the same order of magnitude as the
sensors’ relative errors (error divided by distance), and that
the angular error has a larger impact on the location errors
than the distance error, thus making it important to use a
relatively accurate bearing sensor.

Given that the sensor measurement contains statistical
errors, we ran a Monte Carlo Simulation (MCS) and deter-
mined the spatial distribution of the measured/estimated loca-
tion of the robot with the given sensors’ random errors
(10,000 simulations for each case). To reduce the MCS
computation time, we developed an approximated error
evaluation method based on first order linear approxima-
tion. This method was 200 times faster than the direct
method.

We then used the MCS to compare between different paths
and advancing methods. We found that the chosen path gov-
erned the size of the location error, whereas the different
advancing methods had little influence on the total error. For
a given equal number of steps and total travelled distance,
the smallest error is in the square path, followed by the ’S’
shaped path and the largest error is with the straight path.
Overall, using our localization algorithm, it is best to increase
the size of the steps and decrease their number in order to
reduce the bearing errors and increase the accuracy of the
localization.

Next we present a two-robot experimental system used to
further validate our algorithm. We performed experiments in
three different paths, calculated the standard deviation and
mean error values and compared the results to the Monte
Carlo simulation. The results show that the method is very
accurate with errors of about 1-3% of the total distance
travelled.

Besides its advantages, the method presented in this paper
does require a line of sight between the two cooperating
robots and that one of the robots must remain fully static
during each step. Another limitation is that the method is
currently limited to 2D localization. However, we expect that
it can be generalized to 3D problems.

Our future work will include further development of
our experimental system using off-the-shelf sensors to
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TABLE 5. Total standard deviation values using 10,000 simulations, analytic calculation and relative difference, 200 meters ‘S’ path.

verify the extent to which this system is implementable
on some of our previously developed crawling and fly-
ing robots [23],[24]. On the theoretical level, we plan
to expand our algorithm to a multi-robot system (three
or more robots) and develop path planning strategies to
increase accuracy, control the shape of the error distribu-
tion pattern and adapt the system to more complex dynamic
environments.

APPENDIX
In this appendix we develop an analytical approximation of
the standard deviation of the location error as a function of the
standard deviations of the sensor accuracy. The approximated
location and orientation of the vehicles is cumulative, mean-
ing that it is affected by all the previous error measurements
of the distance and bearing. The measurement error of the
first step (see Eq. (15)) is:

E1 =

 cosα11 −r1 sinα11 0
sinα11 r1 cosα11 0

0 1 −1

11. (30)

At the second step it becomes:

E2 = E1

+

 0 −r2 sin
(
θ1 + α2,s

)
r2 sin

(
θ1 + α2,s

)
0 r2 cos

(
θ1 + α2,s

)
−r2 cos

(
θ1 + α2,s

)
0 0 0

11

+

 cos
(
θ1 + α2,s

)
−r2 sin

(
θ1 + α2,s

)
0

sin
(
θ1 + α2,s

)
r2 cos

(
θ1 + α2,s

)
0

0 1 −1

12.

(31)

And at the third step:

E3 = E2

+

 0 −r3 sin
(
θ2 + α3,s

)
r3 sin

(
θ2 + α3,s

)
0 r3 cos

(
θ2 + α3,s

)
−r3 cos

(
θ2 + α3,s

)
0 0 0

11

+

 0 −r3 sin
(
θ2 + α3,s

)
r3 sin

(
θ2 + α3,s

)
0 r3 cos

(
θ2 + α3,s

)
−r3 cos

(
θ2 + α3,s

)
0 0 0

12

+

 cos
(
θ2 + α3,s

)
−r3 sin

(
θ2 + α3,s

)
0

sin
(
θ2 + α3,s

)
r3 cos

(
θ2 + α3,s

)
0

0 1 −1

13.

(32)

Generalizing the total error at step n, the error En in the
directions x, y and the orientation θ is:

En =

ExEy
Eθ


n

=

n∑
i=1

Bi_n1i, (33)

where the sensor error 1i at step i is:

1i =
[
1ri 1αi,s 1αi,t

]T
, (34)

and the matrix Bi_n is calculated using:

Bi_n = Bi +
n∑

j=i+1

Cj, (35)

where:

Bi =

 cos
(
θi−1 + αi,s

)
−ri sin

(
θi−1 + αi,s

)
0

sin
(
θi−1 + αi,s

)
ri cos

(
θi−1 + αi,s

)
0

0 1 −1

 ,
(36)

and:

Cj =

 0 −rj sin
(
θj−1 + αj,s

)
rj sin

(
θj−1 + αj,s

)
0 rj cos

(
θj−1 + αj,s

)
−rj cos

(
θj−1 + αj,s

)
0 0 0

 .
(37)

Using Eq. (33), and under the assumption of random uncor-
related sensor measurement errors 1i (i.e. covariance of any
two measurements is zero),

var (1i) =

 var (1ri)
var

(
1αi,s

)
var

(
1αi,t

)
 =

 r2i σ 2
d

σ 2
α

σ 2
α

 , (38)

the variance of the total measurement error is:

var (En) =
n∑
i=1

var
(
Bi_n1i

)
. (39)

The standard deviation in the x and y directions, respec-
tively σx and σy are (Eq. (23)-(25)):

σx =

[
n∑
i=1

r2i cos
2
(
θi−1 + αi,s

)
σ 2
d

+

n∑
j=1
�(j)

(
n∑
i=j
ri sin

(
θi−1 + αi,s

))2

σ 2
α

0.5

,

(40)

σy =

[
n∑
i=1

r2i sin
2 (θi−1 + αi,s) σ 2

d

+

n∑
j=1
�(j)

(
n∑
i=j
ri cos

(
θi−1 + αi,s

))2

σ 2
α

0.5

,

(41)
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where:

�(j) =

{
1, j = 1
2, j > 1.

(42)

And the standard deviation of the orientation σθ is (Eq. (22)):

σθ =
√
2n · σα, (43)

The validation of Eq. (40)-(42) is performed in Table 5 where
a comparison is made between the total standard deviation
values σ calculated using the MCS (10,000 simulations) and
the analytical expression. The results show that the largest
relative difference between the two methods is 0.79%.
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