IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 23,2019, accepted September 24, 2019, date of publication September 27,2019, date of current version October 11,2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944238

A Method to Construct Task Scheduling
Algorithms for Heterogeneous
Multi-Core Systems

SUNG IL KIM™ AND JONG-KOOK KIM, (Senior Member, IEEE)

School of Electrical Engineering, Korea University, Seoul 02473, South Korea

Corresponding author: Jong-Kook Kim (jongkook @korea.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) through the Basic Science Research

Program funded by the Ministry of Education under Grant 2014R1A1A2059527, and in part by the Information Technology Research
Center (ITRC), Ministry of Science and ICT (MSIT), South Korea, through a Support Program under Grant II'TP-2018-0-01433,
supervised by the Institute for Information and Communications Technology Promotion (IITP).

ABSTRACT The use of heterogeneous multicore processors (HMP) is spreading rapidly from data centers
to large-scale deployment in smartphones because they give greater flexibility to adapt to power constraints
and performance needs. In this study, we show that an intelligent task scheduler is critical for improving
the performance and energy efficiency in an HMP environment. We assume that the tasks are independent
in the environment, with hard real-time constraints and multicore systems, where the processors can be
manipulated to change the clock cycle speed and power levels. Tasks are assumed to arrive aperiodically
where the tasks are applications from the SPEC CPU 2006 benchmark suite. In the evaluation, we used a
real system comprising of two multicore processors, which supported on-the-fly dynamic voltage/frequency
scaling. We extracted several important components from previously proposed algorithms and combined
them to construct algorithms with better performance. Our results showed that some of the best combinations
reduced the energy consumption and achieved a better completion rate in the environment. In addition,
a method is proposed for calculating the upper-bound of the task completion rate and energy consumption
so that there is a guide as to how near the results are to the optimal performance.

INDEX TERMS Task scheduling, energy-aware scheduling, heterogeneous multi-core, real-time scheduling,

dynamic voltage/frequency scaling.

I. INTRODUCTION
Constructing a processor using multiple simple cores rather
than a single complex core is now a mainstream prac-
tice because processors with multiple cores have a higher
throughput and better power efficiency. These multicore pro-
cessors are used in data centers on a large scale to reduce
power consumption because a large proportion of the cost
incurred while maintaining a data center is attributable to util-
ity costs. In addition, mobile phone vendors now manufacture
smartphones with multicore processors because their energy
efficiency can reduce power usage to prolong the device’s use
before recharging.

A better solution may be a heterogeneous multicore
processor (HMP), which allows opportunities for saving
power and using computational resources effectively. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh

142640

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

heterogeneity can be found in all parts of a system and
difference in the processor includes the core architecture,
cache capacity, clock cycle frequency, and the amount of
memory for each core. An HMP may enhance the through-
put and power efficiency when applied to targeted hardware
design [2]. For an HMP system, the assignment of tasks
(or jobs) to appropriate cores is a critical issue for main-
taining high throughput and energy efficiency. Tasks may be
time-critical in terms of their response time, user experience,
or completion time.

There are two different types of scheduling: static and
dynamic. Static scheduling is performed when the applica-
tions/tasks are mapped in an off-line planning phase (Their
arrivals and information about the applications/tasks are
known before the scheduling). As the time constraint to
determine a “good” scheduling for a off-line planning phase
or analyzing phase is not strict, schemes that may run for
a long time to produce a good scheduling can be used.

VOLUME 7, 2019

https://orcid.org/0000-0002-7856-6747
https://orcid.org/0000-0003-4746-3179

S. I. Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

IEEE Access

Static scheduling algorithms are usually based on meta-
heuristic algorithms such as generic algorithm (GA), ant
colony optimization (ACO), and bee colony algorithm. (e.g.,
[30], [31] [32], [34]) Job shop scheduling (e.g., [18]-[21]) is
an active area of task scheduling research, where the schedule
for a set of production jobs is planned before the produc-
tion and this scheduling can be done with static schedul-
ing schemes. Dynamic scheduling is performed when the
applications are mapped in an on-line fashion, (e.g., when
tasks’ arrival are unpredictable) and are mapped as they
arrive (the workload is not known a priori). In both cases,
the scheduling problem has been shown, in general, to be
NP-complete [34]-[36]. Thus, the development of heuristic
techniques to find near-optimal solutions for the schedul-
ing problem is important for the efficient use of computing
resource.

In this study, we designed and analyzed dynamic
scheduling algorithms for an example hard real-time HMP
system. The HMP system is comprised of two quad-core
processors, where the clock cycle speed and energy usage
could be changed using dynamic voltage/frequency scal-
ing (DVES) [4]. DVFS is employed widely to reduce the
power consumption of processors by lowering the supply
voltage and/or the clock cycle speed. However, there is a
trade-off between the speed of execution and the energy
being saved, so the task scheduler must intelligently allocate
resources to tasks while using the appropriate voltage or
speed level. The HMP system considered in this study pro-
vides per processor on-the-fly (during runtime) DVFES such
that frequency scaling and task scheduling can be performed
dynamically. Using a threshold, one processor operates at
the lower frequency levels while the other processor operates
at the higher frequency levels. Thus, the heterogeneity of
the system is made by clock frequency. The task requests
arrive to the system aperiodically and the application that
needs to be executed (i.e., the task) is selected randomly
from the 29 applications in the SPEC CPU 2006 benchmark
suite [12]. In this study, we assumed that the task requests
are independent, non-preemptive, and they have hard real-
time constraints (deadline or response time). A task is con-
sidered to be completed when the task is completed by its
deadline, whereas task is failed when the task is completed
past its deadline, and the task can be dropped when execution
is not attempted and the task is no longer considered for
execution. This research assumes an oversubscribed system
where tasks may be dropped because tasks may not meet the
deadline. Therefore, for each task, it is determined whether
it can be completed before its deadline before its execution.
If the task cannot meet its deadline, the task will be dropped.
In this environment, using a naive method may incur a lot
of tasks to be dropped. Thus, using an intelligent method for
task scheduling is needed to minimize task drops. In many
systems, there is no gain for the completion of tasks that does
not satisfy their deadline.

There are many existing works in the literature of hetero-
geneous platforms. However, the environment we assumed

VOLUME 7, 2019

is different from previous ones and we wanted to test our
method for constructing scheduling schemes in an actual
environment that is setup using commodity server. The main
contributions of this study are that we analyzed the algo-
rithms used in our previous work [9] as well as other basic
scheduling methods to determine the components that are
important for task scheduling, and we used these components
to construct various scheduling algorithms. This method for
determining the important components of task scheduling in
a particular environment and the best combination of com-
ponents for building a “good” task scheduling algorithm has
not been described previously to the best of our knowledge.
These various combinations of components are tested and
we finally determined the best algorithm for the proposed
environment.

The remainder of this paper is organized as fol-
lows. Related research is discussed in the next section.
In Section III, the system models are presented. Section 4
describes the detailed task scheduling algorithms. The eval-
uation results and their analysis are presented in Section V.
In Section VI, we give our conclusions.

Il. RELATED WORK
Many studies have addressed task scheduling for HMP
under real-time constraints. Enhancing the performance of
non-real-time tasks in the presence of a real-time work-
load was considered by Calandrino et al. [15] to allow the
scheduling of periodic soft real-time tasks. For periodic task,
Moulik et al. [23] proposed a heterogeneous energy-aware
real-time scheduler which has three level of hierarchical
resource allocation. The scheduler first computes a set of
fragments of the execution and schedules each task in order
to allow their appropriate execution share, and configure the
operating frequencies in each core to minimize energy con-
sumption. They devised an improved algorithm [24] taking
system-wide energy consumption into consideration with
better optimal frequency selection method. Chwa et al. [26]
designed fully-migrative approach to two-type heteroge-
neous multicore scheduling called Hetero-Fair. Moulik
et al. extended Hetero-Fair algorithm to be applicable
to generic heterogeneous platforms and enables it with a
low-overhead [27], [28]

Tang et al. [16] introduced a task scheduling algorithm for
a combination of hard periodic and soft aperiodic real-time
tasks. The periodic tasks are scheduled by an offline scheme
and the aperiodic tasks are scheduled dynamically using the
remaining slack time information for each resource. Lin et al.
proposed a processor mapping algorithm based on the integer
linear programming (ILP) model for real-time streaming sys-
tems [17]. To facilitate global optimization of the throughput,
latency, and processor cost, a global ILP model was proposed
and appropriate solutions were found using a version of
genetic algorithm. By contrast, our method considers the real-
time characteristics of the system as well as its energy char-
acteristics and the randomness of task requests or arrivals.
We use DVES to reduce energy usage and tested scheduling

142641

IEEE Access

S. . Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

algorithms on a real system using benchmark applications
as tasks. Task scheduling algorithms that consider energy
have been proposed for many heterogeneous multicore sys-
tems. Energy minimizing processor allocation for periodic
real-time tasks was proposed by Chen et al. [13], where the
solution to the ILP model is derived by a greedy approach to
minimize the energy consumption. Wenjing and Lisheng [14]
designed a task scheduling algorithm that considers both the
execution time for tasks and energy consumption in an ILP
model. A task is modeled as graphs and it is assigned the
highest priority level when it has the shortest execution time
and the lowest energy consumption. Scheduling is performed
in order of priority. Yu et al. [10] designed an ILP-based
static resource allocation algorithm, where the voltage lev-
els of processing elements are considered as a parame-
ter in the ILP problem formulation for energy reduction.
Zhang et al. [1] implemented the shuffled frog leaping algo-
rithm (SFLA) for real-time periodic task scheduling, where
the objective is minimizing the energy consumption while
satisfying the task deadline. Hing et al. [11] describes an
energy-efficient scheduling algorithm for a dynamic voltage
scaling (DVS) system and a non-DVS processing element,
where the objectives are minimizing energy consumption and
maximizing energy savings. Power consumption is modeled
by two different cases, where the non-DVS processing unit
is either workload-dependent or not workload-dependent.
The proposed algorithms are approximation algorithms based
on ILP. Also, Baruah et al. [22] proposed ILP formulation
based partitioning approach for constrained-deadline tasks
on heterogeneous processors. Awan et al. [29] addressed
task allocation on DVFS enabled heterogeneous multicore
platforms which minimize overall energy consumption of the
system taking leakage energy and dynamic energy into con-
sideration. They provide a task-to-core mapping algorithm
and determine sleep states and operating frequency-level of
each core for a given set of independent sporadic tasks.
Lin et al. [3] proposed an energy-efficient task scheduling
method that operates under two execution modes: batch mode
and online mode. In the batch mode, a greedy based method
is used to minimize the total cost, where the cost comprises
the time and energy consumption, processing rate (or clock
frequency level), the cost of energy, and the amount paid
for waiting by users. In the online mode, a new task is
generated continuously and introduced to the system. The
tasks belong to two types in the online mode: interactive
and non-interactive tasks. Interactive tasks demand a short
response time, whereas non-interactive tasks do not focus
on the response time (or makespan in this case). Therefore,
an algorithm for the online mode is used to complete inter-
active tasks with a short response time and to minimize the
non-interactive task completion time.

In contratst, we use DVFS to reduce the energy usage
and tested scheduling algorithms an intelligent scheduling
method to complete as many tasks as possible. We assume
that all tasks arrive randomly, with hard deadlines, and they
are non-periodic.

142642

CPU CPU CPU CPU CPU CPU CPU CPU

| i [K= | | |

Shared Cache

Shared Cache

DRAM DRAM

task fasg .
enerator o
9 maf/bn scheduling
decision
signal scheduler proposed
system
g signal &
N status
timer 89
(b) Scheduling process

FIGURE 1. Architecture of the environment and the scheduling process.

IlIl. SYSTEM MODEL

A. SYSTEM ARCHITECTURE

The HMP system considered in this study uses two quad-
core processors with per processor DVFS enabled. The fre-
quency level of the processors can be determined by the user,
or dynamically by the system. The processors are connected
by an off-chip interconnection and there is main memory per
processor. In terms of memory access, this environment is a
non-uniform memory access (NUMA) architecture. Fig. la
illustrates the architecture of the hardware used in this study.

Our system assumes a fast/slow processor architecture,
where both processors are identical except for their clock
frequency level. The fast processor has high frequency range
and the slow processor has low frequency range.

Fig. 1b shows the overall scheduling process for the pro-
posed heterogeneous multicore system. The timer sends a
signal to the task generator and the scheduler, which follows
a Poisson distribution with a mean value of m. At each signal,
the task generator generates tasks. The scheduler receives
this signal as a task arrival signal and it is ready to receive
information for newly arrived tasks from the task generator.
When the task is received by the scheduler, the appropriate
frequency level and core assignment is determined for the
task using information related to the runtime environment,
such as the core and queue status. After the assignment is
complete, the assigned tasks are inserted into the private
queue on each core. The tasks in the queue can be moved
freely to other queue position, including their own queue
or other queues. After the task has been completed, a task
execution completion signal is sent to the scheduler, and thus
another scheduling event occurs after task completion. These
signals used are implemented by system calls in linux.

B. TASK
The task model is the same as the one used in our previous
study [9]. The task requests are selected randomly from

VOLUME 7, 2019

S. I. Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

IEEE Access

TABLE 1. Notation.

Notation Description

task; taski
task; ; taskioncore]
d; deadline of task i
ET;; expected execution time for task i on core j

Ready; remaining time for executing the task on core j
CT;,; expected completion time for task i on core j
CTy
ET,
Ready, Slack;;
| |
I A A A A I
task; arrival tasky, ; finish task; ; finish deadline;
(reference task; ; start

point)

FIGURE 2. Terms for real-time task scheduling.

29 applications in the SPEC CPU 2006 benchmark suite. The
SPEC CPU benchmark is the most popular benchmark suite
for measuring the performance of various CPU architectures.
The suite comprises a set of 29 computationally intensive
applications for measuring the performance in integer and
floating point calculations. The mean time interval between
the tasks is set to 6 seconds using a Poisson distribution
for this environment. The mean time interval is empirically
determined to maintain a system that is oversubscribed while
the Linux scheduler could complete around 27% of the total
number of tasks. The mean inter-task arrival time is not
known in advance. Therefore, the arrival time for the task
requests is not known to the system. All tasks have a hard
deadline, which is two times longer than the estimated exe-
cution time (EET, which is the average actual execution time)
using the slowest frequency level to give tasks the opportunity
of being completed successfully before their deadlines. The
EET is an empirically predetermined average value when a
single application is executed on the system 10 times. The
group of tasks is assumed to be known (29 applications
from the benchmark suite), therefore the tasks are executed
using all frequency levels and the information is used by
the system. However, this information does not consider
the concurrent execution of different or same multiple task
combinations.

Fig. 2 shows the timeline for the execution of task; on
core; when task; first arrives in the system. (The notations and
definitions are shown in Table 1. We assume that core; is the
only available core for task assignment. When task; arrives,
the expected execution time for task; at each frequency level
is announced. If no task exists in the queue except for task;,
task; must wait for the completion of task;. This waiting time
is defined as the ready to execute time (Ready;). The expected
completion time of task; on core; (CT; ;) is the sum of Ready;
and ET; ;. ET; ; is known when task; arrives, and thus CT; ; is
also known at the arrival time for task;.

VOLUME 7, 2019

In the evaluations, a task is considered to be completed
when the task has finished execution by its deadline, whereas
a task is failed when it is completed past its deadline. Tasks
that were not executed at all are considered to be dropped.
In this research, the task completion percentage, total energy
consumption and energy consumption per task completion
are used as performance metrics.

C. ENERGY MODEL

The energy model focuses on the energy consumption
by the processor. Using the power model described by
Winter et al. [6], the equation for dynamic power consump-
tion by the processor can be denoted as

denamic = CV2f (D

where C, V, and f denote the capacitance of the processor,
the supply voltage, and the clock frequency of the processor,
respectively. To simplify the problem, it is assumed that a
linear increase in the clock frequency leads to a linear increase
in the supply voltage, and vice versa. If this notion is applied
to Equation 1, then it results in the following.

Paynamic X v2 (2)

The energy consumption during task execution is equal to the
execution time multiplied by the power consumption.

Energyexecution = Paynamic % execution time 3)

When the processor is in the idle state, the processor con-
sumes less power than that in the operating state. According
to Kim et al. [9], when it is in the idle state, an Intel Xeon
E5620 processor consumes about half the operating power
consumed during task execution. Thus, the energy consump-
tion by an idle processor is as follows.

Energyigie = Pigie X idle time (4)

The total energy consumption is determined as the sum of the
task execution energy and the idle processor energy consump-
tion.

IV. SCHEDULING ALGORITHMS

A. OVERVIEW

In this section, we introduce various components of the task
scheduling algorithms investigated and extracted from a pre-
vious study [9]. A scheduling algorithm can be designed
by choosing different options from each of the scheduling
components. The private queues described will automatically
drop tasks that have exceeded their deadlines while waiting
in the queue. In addition, the task at the front of the queue
is checked before its execution to determine whether the task
can be executed by the deadline or not. If it is determined
that the task cannot be completed before the deadline, then
the task is dropped immediately before its execution.

142643

IEEE Access

S. . Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

B. SCHEDULING COMPONENTS

1) TASK CLASSIFICATION

The aim of a heterogeneous architecture is exploiting hetero-
geneity via the intelligent assignment of tasks and processing
elements; therefore, task classification may be important. The
environment considered in this study assumes a fast/slow
processor architecture, and the tasks are classified as short
and long tasks. The task classification component employ
three options: average, average of the tasks in the queue,
and accumulated average. The threshold that divides short
and long tasks can be predetermined before the simulation
or determined during runtime.

Average: A simple solution is to determine the average
task execution time of all tasks and use it as the threshold.
If the execution time is known for all tasks, then the average
execution time that determines short/long tasks can be prede-
termined.

Average of tasks in the queue: If the execution times of
all tasks are not known in advance, the classification method
must determine the threshold dynamically from information
given through the runtime environment. The average of the
tasks in the queue is determined based on the average execu-
tion time of all the tasks currently in all of the queues.

Accumulated average: The accumulated average option
uses the execution time of all tasks that have arrived
(i.e., execution time of tasks that have completed are also
used).

2) PROCESSOR ASSIGNMENT

The tasks are divided into two categories, therefore the pro-
cessor assignment process also has two options. After the task
has been assigned to a fast or slow processor, core assignment
is performed using the minimum completion time method.
The task completion time is calculated as the sum of the
ready-to-execute time and the expected execution time for
the task. (CT;; = Ready;j + ET;;) The minimum completion
time method assigns a task to the core that minimizes its
completion time.

SFLS: “Short task to the fast processor, long task to the
slow processor.” The rationale behind assigning a short task
to the fast processor is based on performance, whereas a long
task is assigned to the slow processor for low energy con-
sumption. The disadvantage of SFLS is that a slow processor
may suffer from bottlenecks due to an excessive number of
long tasks.

SSLF: “Short task to the slow processor, long task to
the fast processor.”” SSLF has an advantage for completing
long tasks because executing long tasks on a fast processor
significantly reduces the execution time for long tasks.

3) QUEUE ORDERING
The execution order is also important. We evaluated two
widely used ordering methods in this study.

EDF: Earliest deadline first. The task with the nearest
deadline is sent to the front of the queue.

142644

TABLE 2. Benchmark execution time (in seconds) at highest frequency.

Application Execution time Application Execution time
perlbench 29.25 povray 9.64
bzip2 57.37 calculix 1.70
gcc 1.11 hmmer 59.05
bwaves 220.39 sjeng 148.18
gamess 158.54 GemsFDTD 60.95
mcf 19.66 libquantum 2.23
milc 18.85 h264ref 106.27
zeusmp 45.50 tonto 284.35
gromacs 164.65 lbm 42.65
cactusADM 34.03 omnetpp 63.99
leslie3d 151.92 astar 126.67
namd 17.16 wrf 196.43
gobmk 118.99 sphinx3 10.70
dealll 35.16 xalancbmk 71.32
soplex 4.05

SRF: Shortest remaining time first. The tasks in the queue
are sorted by execution time in increasing order, so the
shortest task is executed first.

4) TASK MIGRATION

In this paper, task migration means the movement of a cur-
rently executing task to another processor. To maintain the
load balance in the system, we only permit migration from
a high load processor to a low load processor which has
an idle core(s). Thus task migration does not violate non-
preemptive assumption of this research. The processor load
denotes the total execution time for the tasks on the processor,
which includes the remaining execution time for the currently
executing tasks and the overall task execution time for the
processor queue. In our previous study, task migration was
not considered, and thus this is a new component for this
paper.

SRFP: Shortest remaining time task to a fast processor.
Task migration to a fast processor is allowed. If an idle core
exists on a fast processor, the task on a slow processor with
the shortest remaining time is migrated to the idle core on the
fast processor.

LRFP: Longest remaining time task to a fast processor.
This migration option is the same as SRFP, but the longest
task is selected for migration for a task running on a slow
processor.

SRSP: Shortest remaining time task to a slow processor.
SRSP only allows task migration to a slow processor. The task
with the shortest remaining time is selected for migration.

LRSP: Longest remaining time task to a slow processor.
The task with the longest remaining time on a fast processor
migrates to a slow processor.

5) DVFS

Seven frequency levels are available in this environment for
DVES. In this paper, we use Westmere CPU family for eval-
uation. According to [25], the maximum frequency transition
latency of Westmere CPU is 65.48 us. This latency is negli-
gible compared to the execution time of applications. Table 2
shows execution time of benchmark at highest frequency

VOLUME 7, 2019

S. I. Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

IEEE Access

level. We evaluated execution time of applications at each
level and exploited them to estimate execution time of the
application at designated frequency level.

Step: The step option moves the clock frequency up one
level to achieve a better performance. The clock frequency
can be downgraded by one level to reduce the energy con-
sumption. CTPR uses this option for frequency scaling.

Leap: Leap controls the clock frequency according to two
levels: the highest and lowest frequency levels which are
different for different processors. The aim of the leap option
is to try to obtain greater energy savings if the task can be
completed by its deadline even when the lowest frequency
level is applied.

6) TASK STEALING

If the algorithm assigns short tasks to fast processor, one or
more of its cores may become idle after the rapid execution
of a short task. When a fast core is idle and its queue is
empty, the fast core steals a task with the minimum execution
time among all the queues in the system. The task stealing
option employed in this study follows this method but it is not
restricted to fast core processors. Thus, if an idle core exists
and its queue is empty, task stealing occurs. It is expected
that task stealing will increase core utilization by resolving
the task starvation problem. In addition, the smallest task is
selected for execution to prevent a long waiting time for a task
that arrive during the execution of the selected task.

C. UPPER BOUND AND ENERGY BOUND

The upper bound is calculated for the task completion perfor-
mance. The dynamic upper bound [8] assumes the task arrival
information is not known a priori. We modified the dynamic
version to a static version assuming the task arrival informa-
tion is known in advance. Same as dynamic upper bound,
the concept of the total aggregate computational time (TACT)
is used for the static upper bound. The method employs the
time interval between the arrival of tasks, TACT is determined
by multiplying the inter-arrival times of the task, and the
number of processing cores, where the task is executed based
on the TACT. In other words, if the interarrival time of con-
secutive tasks (task; and task;,) is k seconds and the number
of processing cores is n, TACT is k x n. That is, the system
has TACT amount of time to execute the tasks in the system.
The task execution time may be different among cores, but
the lowest execution time (execution time using the lowest
clock frequency level) is selected for calculation.

First, calculate TACT from each task arrival, which we
denote as TACT slots. Select the task with the lowest execu-
tion time. Execute the selected task by deducting TACT, and
if there is still time remaining, the following TACT slots may
be used. If the task cannot be completed until the last TACT
slot, the task is assumed to be dropped and not executed at
all. Thus, the remaining TACT will be returned. In addition,
this method is applied to calculate the lower bound for energy
consumption. As executing no tasks is the absolute lower
bound, the energy bound can be calculated only when the task

VOLUME 7, 2019

Algorithm 1 Algorithm for Energy Bound

Required: task arrival time, task execution time on slow
cores, execution energy of cores, idle energy of cores,
target task completion ratio

1: Determine the total aggregate computation time (TACT)
for every slot by multiplying each time interval between
task arrivals and the number of processing cores, where
the i slot is denoted by TACT(i).

2: Using the global information for tasks, make a task list
by sorting the tasks by execution time (ascending order),
where the k” task on the task list is denoted by task(j, k)
(j denotes for j* arriving task).

3: Initialize rETC(j, k) (remaining execution time to com-
plete task(j, k)) for all tasks based on the maximum
execution time over all cores.

4: Select the task(j, k) with the shortest execution time from
the task list, where i = j.

5: if TACT(i) < rETC(j,k) then

6: store i and value of rETC(j,k) (prepare task drop case)

7. 1ETC(, j) =rETC(, j) - TACT(i)

8

9

TACT(1) =0
. if next TACT slot exists then
10: move to next TACT slot i=1+ 1)
11: repeat step 5
12: else
13: drop task(j, k)
14: during the evaluation of task(j, k), the value of

rETC(, k) and TACT(, i > j) are reduced. Recover
rETC(j, k) and TACT(, i > j) with stored values.
15: end if
16: else
17. TACT(@) = TACT() - rETC(, j)
18: rETCG,j)=0
19: add execution energy of task(j, k) to total execution
energy
20: remove task(j, k) from task list
21: get current task completion ratio
22: end if
23: Repeat steps 4—5 until no task exists on the task list
OR current task completion ratio reaches the target task
completion ratio.
24: Set j as the largest value of the arrival order based on
completed tasks.
25: Calculate idle energy from TACT(,i=1) toi=j.
26: Evaluate total energy consumption. (= idle energy + exe-
cution energy)

completion rate is fixed. That is, when there is a target task
completion rate is determined, the energy bound for that rate
is calculated.

V. EVALUATION

A. EVALUATION METHOD

The hardware shown in Table 3 was used for the evaluation.
The Intel Xeon E5620 supports simultaneous multithreading

142645

IEEE Access

S. . Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

TABLE 3. Hardware configuration.

CPU - Intel Xeon E5620

Core count 4 %2
Clock speed 1.6Ghz to 2.4Ghz (seven frequency levels)
Cache 12MB Shared cache x2

Mainboard - Supermicro X8DTi

Chipset Intel 5520 (Tylersburg)

RAM - Samsung DDR3 4G PC3-10600 ECC/REG
Clock speed 1333Mhz

(hyperthreading [7]) but we disabled multithreading to ensure
that one task executes on a core. The processor also sup-
ports Enhanced Intel Speedstep Technology [5], so the pro-
cessor can have seven distinct frequency levels and the
clock frequency is controlled on a per processor basis.
The environment assumes that the fast processor uses the
upper 3 frequency levels, whereas the slow processor utilizes
the lower 4 levels. The 29 applications in the SPEC CPU
2006 benchmark suite are used as tasks and 64-bit Linux was
used as the system OS. Without core assignment, the task
floats among cores while running in linux. Therefore, we used
the taskset command in linux to make a task execute on
the designated core. The system and algorithms were imple-
mented using C/C++ and bash shell script. In order to obtain
the estimated execution time, experiments were conducted to
measure the execution times for all the applications at each
frequency level using the same system. The execution time
was measured 10 times and the average value was recorded
for use by the system. The execution time of the applications
varied from 1.62 seconds to 292 seconds. The task arrival
time was determined using a Poisson distribution with a
mean interval time of 6 seconds. Each of the scheduling
methods were run five times and the results were averaged.
The evaluation time of the systems was 2 hours and this
generated around 1200 tasks in the system for one trial of the
simulation. To calculate the energy consumption, a baseline
power unit was defined with respect to the power consump-
tion of the lowest frequency level (1.6 GHz), which was set
as 1 unit per second. The power consumption by the other
levels was determined assuming that the increase was linear.
The energy consumption was calculated by multiplying the
power consumption of a core by the execution time on that
core. The scheduling algorithms employed in the evaluation
comprised combinations of scheduling component, with a
total of 540 combinations. Evaluating all 540 scheduling
algorithms multiple times would have been too time consum-
ing, therefore each combination of the scheduling compo-
nents are tested once and excluded the options with very low
performance. The names of the algorithms are constructed
using the options shown in Table 4. Instead of providing a
long list of the scheduling components and their options,
we simply used the initial of each component and the index of
the option. For example, using the average for task classifica-
tion, SFLS for processor assignment, SRF for queue ordering,

142646

TABLE 4. Algorithm naming.

Task classification(C) Processor assignment(P)
Option Index Option Index
Average 1 SFLS 1
Average(queue) 2 SSLF 2
Acc. average 3
Queue ordering(Q) DVFS(F)
Option Index Option Index
EDF 1 Step 1
SRF 2 Leap 2
Task migration(M) Task stealing(S)
Option Index Option Index
SRFP 1 Stealing 1
LRFP 2
SRSP 3
LRSP 4

SRFP for task migration, leap for DVFS, and task stealing
is simply named as C1P1Q2MI1F2S1. When there was no
option, we eliminated the initial of the scheduling component.
For example, if the algorithm does not use task migration
component, then there is no ‘M’ character in its name. This
method of naming of the scheduling option is used throughout
the paper and on the graphs as well.

B. EVALUATION

540 combinations are evaluated and analyzed, not all of the
results are shown due to space limitations. We compared our
best combinations with previous algorithms. Energy bound is
also presented.

1) TASK CLASSIFICATION

Fig. 3 shows the performance of each option of task clas-
sification components based on the P1 scheduling combi-
nation. The average achieved the best performance and the
performance of the accumulated average was slightly lower.
The reason is that the task execution time was unstable in
the queue, which changed the task classification threshold
drastically. In our experiments, the execution time of the
accumulated average converged in the latter part of each
trial. Task-in-the-queue-based options exhibited significantly
lower performance.

2) PROCESSOR ASSIGNMENT

The tasks were classified before being assigned to the pro-
cessor. We evaluated the two processor assignment methods
described in Section IV. Fig. 4 shows the task completion
rate for the processor assignment methods (selected combina-
tions). SFLS performed better in most cases, which indicates
that the fast execution of short tasks (SFLS) is more profitable
than shortening the execution time for long tasks (SSLF). The
numbers of completed tasks are shown in Fig. 5. Cores 0-3 are
slow cores, and cores 4-7 are fast cores. SSLF assigns short
task to slow cores, which makes slow cores complete many

VOLUME 7, 2019

S. I. Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

IEEE Access

100 T T T

60 *

40 -

Task completion rate(%)

20 B

Average Acc.Average Average(queue)

FIGURE 3. Performance of task classification method P1.

100

SSLF ——
SFLS ===
—~ 80 i
>
T
® M —
c 60 B
o
k]
[=%
g 40 + 4
o
4
[}
(O
F o2t 4
0
C1 CimM2 C1s C1Q2 C1Q2F2

FIGURE 4. Processor assignment method.

160

SSLF
140 |FSFLS C—1

120 —
100 [~
80 -
60

40 |-

|]

core Ocore 1core 2core 3 core 4 core5 core 6 core 7
Slow cores Fast cores

Number of task completed

FIGURE 5. Number of task completed on cores.

short tasks. SFLS completed a higher number of short tasks
(cores 4-7) than SSLF (cores 0-3). Due to the higher number
of short tasks completed, SFLS performed better, although
the number of long tasks completed was lower than that of
using SSLF. In some cases, SSLF performed better than SFLS
such as the CIM2 and C1Q2F2 combination.

3) QUEUE ORDERING

Three options were compared, including no option. EDF was
better than no option, but SRF achieved the best performance,
as shown in Fig. 6. SRF used less energy with a higher
task completion rate. The deadline of a task is determined
by its execution time (or correlated), so EDF and SRF are
similar options. However, the difference can be explained by

VOLUME 7, 2019

Completion rate ——
Energy consumption ——

0.5 *

Number of task completed
T

No scheme EDF SRF

FIGURE 6. Performance of queue ordering on C1P2.

task task ¢
. 4 a8k deadline
time deadline _____.
------ task b
deadline
N
NOW prmmmmmmmmmmmmde=d o poeees
' task ¢
1
i
1
exeution '
time task b
1
1
i
1
v <— taska arrival
task a

FIGURE 7. Example to show difference between EDF and SRF.

an example. Fig. 7 illustrates the sequential arrival of task a,
task b, and task c. Let’s assume that task ¢ has just arrived
and the core has become idle. EDF orders the tasks according
to their deadline, so the order is task b, task a, and task c.
In contrast, for SRF, the order of tasks is task ¢, task b, and
task a. In this case, either task b or task ¢ can be completed,
whereas the other task will be dropped due to the deadline.
EDF will execute task b, whereas SRF will select task ¢ for
execution. As shown by the results, SRF performed better
because it selects a shorter task for execution. According to
the example, the completion time of executing task ¢ was
earlier than that for executing task b.

4) TASK MIGRATION

The task migration methods differed in performance accord-
ing to the processor assignment method. SFLS assigns a short
task to a fast processor and a long task to a slow processor, and
it performed better with SRSP or LRSP as shown in. Fig. 8.
SSLF assigns a short task to a slow processor and a long
task to a fast processor, and it performed better with SRFP or
LRFP as shown in Fig. 8. SRSP and LRSP migrate short tasks
or long tasks onto the fast processor or the slow processor

142647

IEEE Access

S. . Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

100

C1P1
o R —
~ 80 i
X
T
©
S 60t B
]
o)
g
£ 40 B
4
B
F o2t 4
0
None SRSP SRFP LRSP LRFP

FIGURE 8. Task completion rate for C1P1 and C1P2 with various
migration methods.

100

SSLF [
SFLS

60 EERIREL B

Task completion rate(%)

20 *

No DVFS Step Leap

FIGURE 9. Performance of processor assignment and DVFS component on
C1P1Q2.

respectively. In SFLS, the tasks running on a fast processor
have a short execution time. The shortest task (SRFP) or
longest task (LRSP) among those running on a fast processor
is selected for migration to the slow cores. At the time of
migration, the target core will be idle with no tasks in the
queue. Usually, a short task is migrated from to a slow core
and the migrated task may not hinder the execution of a
new task when it arrives onto the target core. More tasks
can be completed due to the higher core utilization. The
LRSP migration method performed slightly better than the no
migration method. SSLF obtained the opposite results when
combined with SRSP and LRSP. Long tasks running on a
fast processor are migrated to a slow processor, which may
lead to a longer queueing time for short tasks when they
arrive. The newly arrived short task has an imminent deadline,
so the task will be dropped while waiting for execution.
The overheads of task migration in this environment are not
critical because chip migration does not occur. If the system
has high migration overheads (e.g., a distant migration target
in a data center), then the option may be reconsidered or
redesigned.

5) DVFS

A higher clock frequency level means greater performance
by the processor, the processing of more tasks, and high
power consumption. Fig. 9 shows the performance of the

142648

100

w/o task stealing 1
Task stealing C—

60 *

Task completion rate(%)

20 B

SSLF SFLS
FIGURE 10. Task stealing on C1P1 and C1P2.

50
Source 1
Destination [|

40 —
30+

20

il I

core 0core 1core 2 core 3 core 4 core5 core 6 core 7
Slow cores Fast cores

Number of tasks

10

o

FIGURE 11. Number of task stealing on cores (C1P1S1).

DVFS components on C1P1Q2. The step option had a 56.1%
higher task completion rate with 23.13% more energy con-
sumption compared with the no DVFS method. The leap
option consumed slightly less energy than the step option
and it enhanced the task completion rate slightly more. This
result demonstrates that radical changes in the clock fre-
quency to match the current situation is more effective than
gradual changes. The DVFS component affects the processor
assignment component. Using DVFS, SSLF outperformed
SFLS. The task completion rates with SSLF and SFLS using
different DVFS methods are shown in Fig. 9. According
to the results, slow cores operated at the lowest frequency
and fast cores operated at the highest frequency, where slow
cores had the ability to operate at the highest frequency with
DVFS. Using SSLF, short tasks are assigned to slow cores and
more short tasks can be completed with a higher frequency.
SFLS assigns long tasks to slow cores but the task cannot be
shortened drastically even if slow cores start to run at a higher
frequency.

6) TASK STEALING

The task completion rates of C1P1 and C1P2 with the task
stealing component are shown in Fig. 10. Idle cores with
no tasks in the queue have the opportunity to steal a task
and as a general rule, it is expected that the task com-
pletion rate will be enhanced by reducing the idle time
and achieving better core utilization. However, the task

VOLUME 7, 2019

S. I. Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

IEEE Access

40
Source 1
35 |- Destination C—
30
25 -

20

| L ool

core 0 core 1core 2core 3 core 4 core5 core 6 core7
Slow cores Fast cores

Number of tasks

FIGURE 12. Number of task stealing on cores (C1P2S1).

100 T T T T T 200000 — T T T T
T w0 [l
G L i
< S 150000 - 8
© = M
©
c 60 4 £
S]
g § 100000 4
g 40 9 >
50000 4
[4] w
S 20 H 4
0 F 25 & © <© F 2% o O O
NP \(\'850 \\Q@@('%@vo‘\c Rt 6@‘\:@6‘\;\ &
O o
o & O S
%Q, %Q,

FIGURE 13. Task completion rate and energy consumption.

stealing method had a harmful effect on every combination,
where task completion rate actually decreased. Fig. 11 and
Fig. 12 show the source and destination for task stealing
with SFLS and SSLEF, respectively. Using SFLS, task stealing
occurred mostly from fast cores to fast cores, although a few
tasks came from slow cores with long tasks. This stealing of
long tasks made the destination core busy for a long period
and incoming tasks could not tolerate the queueing time. The
same issue occurred with SSLF, where the only difference
was the processor affected.

7) BEST COMBINATION

Overall task completion rate and energy consumption are
shown in Fig. 13. The best combination (C1P2Q2M2F2)
achieved the task completion rate of 65.66% and the energy
consumption of 174856 energy units. The best combina-
tion method classifies the tasks by the average method, and
has SSLF processor assignment, SRF queue ordering, LRFP
migration method, and the Leap DVFS method. Compared
with the task completion rate by the best algorithm (TaSLS)
from previous study [9], the best combination had a 46.1%
higher task completion rate. The energy consumption rate
was also higher than the previous method, but the best com-
bination consumed only 24.2% more energy. Energy con-
sumption per task completion (ECTC) is shown in Fig. 13 to
evaluate energy efficiency. The best combination was 13.5%
better than TaSLS. According to the result, SSLF was better

VOLUME 7, 2019

600 - T T T T
500 4
400 4

300 - q

A0,

+
\;\Q\) ,‘@(9

Energy consumption per task

FIGURE 14. Energy consumption per task.

TABLE 5. Performance difference of TaSLS and proposed best
combination using Mann-Whitney test.

Performance metric Significance p-value ~ Result
Task completion rate 0.009 Accept Hy
Energy consumption per task 0.028 Accpet Hy

when DVFS method is applied, and task stealing affected
performance loss. The task classification method of TaSLS
is SFLS and DVFS method is connected by load status. The
best combination supported the previous analysis of each
component. In summary, the completion time of a short task
determined the performance. Thus, a newly arrived short
task should be executed as soon as possible to satisfy its
deadline; otherwise, the task will be dropped. For statisti-
cal significance, the performance between TaSLS and pro-
posed best combination were evaluated using non-parametric
Mann-Whitney test to make a decision to accept or reject a
hypothesis. The Mann-Whitney test is used to evaluate two
different algorithms.

o Mann-Whitney test for Table 5:

- Hy: Performance difference not exists between
TaSLS and proposed best combination.

- Hj: Performance difference exists between TaSLS
and proposed best combination.

The results of Mann-Whitney test for 95% significance
level (p < 0.05) are shown in Table 5, which confirms that we
can reject Hy (p-values are below 0.05). This means proposed
algorithm outperformed in terms of both task completion rate
and energy consumption per task.

8) UPPER BOUND AND ENERGY BOUND

The dynamic and proposed upper bound method are com-
pared in Fig. 13. The static method had a higher comple-
tion rate and it made great energy savings. The dynamic
method can be used without prior knowledge of each task’s
arrival time. It is possible to obtain a tighter upper bound
for the task completion rate using the dynamic method.
However, the dynamic method does not consider energy
consumption. If prior knowledge of every task’s arrival time
is available, then the energy bound can be obtained by the

142649

IEEE Access

S. . Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems

proposed method. Fig. 13 shows the energy consumption by
the combined best method and the energy bound determined
by the proposed method. The energy bound consumed 47.2%
of the energy by the combined best algorithm, i.e., the energy
consumption was improved greatly.

VI. CONCLUSION

In this study, we analyzed previous algorithms and the envi-
ronment to extract important components in an attempt to
construct the best task scheduling method for an example sys-
tem. The components include task classification, processor
assignment, queue ordering, task migration, DVFS, and task
stealing. Various combinations of the components using dif-
ferent options are analyzed and the best combination is found.
The best combination (C1P2Q2M2F2) achieved a 13.5%
higher energy efficiency (energy consumption per completed
task) than previous best task scheduling method. Our study
of identifying important components and combining those
components to construct an intelligent task scheduler can
enhance the overall performance (time and energy-wise) of
an example system. This research will be a stepping stone to
similar research and may be applied to various systems for
performance enhancement. For example, this methodology
can be applied to systems with different core architectures.
In addition, we proposed a energy bound estimation that
determines the lower bound for energy consumption under
a given task completion rate.

REFERENCES

[1] W. Zhang, E. Bai, H. He, and A. M. K. Cheng, “Solving energy-aware
real-time tasks scheduling problem with shuffled frog leaping algorithm
on heterogeneous platforms,” Sensors, vol. 15, no. 6, pp. 13778-13804,
2015.

[2] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, ‘“‘Hetero-
geneous chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32-38,
2005.

[3] C.-C. Lin, Y.-C. Syu, C.-J. Chang, J.-J. Wu, P. Liu, P.-W. Cheng, and
W.-T. Hsu, “Energy-efficient task scheduling for multi-core platforms
with per-core DVFS,” J. Parallel Distrib. Comput., vol. 86, pp. 71-81,
Dec. 2015.

[4] T.D.Burd and R. W. Brodersen, “‘Energy efficient CMOS microprocessor
design,” in Proc. 28th Annu. Hawaii Int. Conf. Syst. Sci., vol. 1, Jan. 1995,
pp. 288-297.

[5] Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor—
White Paper, Intel, Santa Clara, CA, USA, 2004.

[6] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, ‘“‘Scalable thread
scheduling and global power management for heterogeneous many-core
architectures,” in Proc. 19th Int. Conf. Parallel Archit. Compilation Techn.,
Sep. 2010, pp. 29-39.

[7]1 D.T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton, “Hyper-threading technology architecture and microarchi-
tecture,” Intel Technol. J., vol. 6, no. 1, pp. 1-12, 2002.

[8] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul,
A. Sharma, S. Sripada, P. Vangari, and S. S. Yellampalli, “Dynami-
cally mapping tasks with priorities and multiple deadlines in a heteroge-
neous environment,” J. Parallel Distrib. Comput., vol. 67, pp. 154-169,
Feb. 2007.

[9] S.I. Kim, H. T. Kim, G. S. Kang, and J.-K. Kim, “Using DVFS and task
scheduling algorithms for a hard real-time heterogeneous multicore pro-
cessor environment,” in Proc. Workshop Energy Efficient High Perform.
Farallel Distrib. Comput., 2013, pp. 23-30.

[10] Y. Yu and V. K. Prasanna, ‘‘Power-aware resource allocation for indepen-
dent tasks in heterogeneous real-time systems,” in Proc. IEEE 9th Int.
Conf. Parallel Distrib. Syst., Dec. 2002, pp. 341-348.

142650

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

C.-M. Hung, J.-J. Chen, and T.-W. Kuo, “Energy-efficient real-time task
scheduling for a DVS system with a non-DVS processing element,” in
Proc. IEEE Real-Time Syst. Symp., Dec. 2006, pp. 303-312.

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1-17,
2006.

J.-J. Chen, A. Schranzhofer, and L. Thiele, ‘“Energy minimization for
periodic real-time tasks on heterogeneous processing units,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., May 2009, pp. 1-12.

L. Wenjing and W. Lisheng, “Energy-considered scheduling algo-
rithm based on heterogeneous multi-core processor,” in Proc. Int.
Conf. Mechatronic Sci., Electr. Eng. Comput. (MEC), Aug. 2011,
pp. 1151-1154.

J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. H. Anderson, ““Soft
real-time scheduling on performance asymmetric multicore platforms,” in
Proc. 13th IEEE Real Time Embedded Technol. Appl. Symp., Apr. 2007,
pp. 101-112.

H.-K. Tang, P. Ramanathan, and K. Compton, “Combining hard peri-
odic and soft aperiodic real-time task scheduling on heterogeneous
compute resources,” in Proc. Int. Conf. Parallel Process., Sep. 2011,
pp. 753-762.

J. Lin, A. Srivatsa, A. Gerstlauer, and B. L. Evans, “Heterogeneous
multiprocessor mapping for real-time streaming systems,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2011,
pp. 1605-1608.

J.-Q. Li, S.-C. Bai, P-Y. Duan, H.-Y. Sang, Y.-Y. Han, and Z.-X. Zheng,
“An improved artificial bee colony algorithm for addressing distributed
flow shop with distance coefficient in a prefabricated system,” Int. J. Prod.
Res., Feb. 2019. doi: 10.1080/00207543.2019.1571687.

Y. Han, J.-Q. Li, D. Gong, and H. Sang, “Multi-objective migrating birds
optimization algorithm for stochastic lot-streaming flow shop scheduling
with blocking,” IEEE Access, vol. 7, pp. 5946-5962, 2019.

Y. Han, D. Gong, Y. Jin, and Q. Pan, “Evolutionary multiobjective blocking
lot-streaming flow shop scheduling with machine breakdowns,” IEEE
Trans. Cybern., vol. 49, no. 1, pp. 184-197, Jan. 2019.

Z.-X. Zheng, J.-Q. Li, and P.-Y. Duan, “Optimal chiller loading by
improved artificial fish swarm algorithm for energy saving,” Math. Com-
put. Simul., vol. 155, pp. 227-243, Jan. 2019.

S. K. Baruah, V. Bonifaci, R. Bruni, and A. Marchetti-Spaccamela,
“ILP models for the allocation of recurrent workloads upon hetero-
geneous multiprocessors,” J. Scheduling, vol. 22, no. 2, pp. 195-209,
2019.

S. Moulik, R. Devaraj, and A. Sarkar, “HEART: A heterogeneous energy-
aware real-time scheduler,” in Proc. 32nd Int. Conf. VLSI Design 18th Int.
Conf. Embedded Syst. (VLSID), Jan. 2019, pp. 476-481.

S. Moulik, R. Devaraj, and A. Sarkar, “HEALERS: A heterogeneous
energy-aware low-overhead real-time scheduler,” IET Comput. Digit.
Techn., Jun. 2019. doi: 10.1049/iet-cdt.2019.0023.

A.Mazouz, A. Laurent, B. Pradelle, and W. Jalby, ““Evaluation of CPU fre-
quency transition latency,” Comput. Sci.-Res. Develop., vol. 29, nos. 3—4,
pp. 187-195, 2014.

H. S. Chwa, J. Seo, J. Lee, and I. Shin, “Optimal real-time scheduling on
two-type heterogeneous multicore platforms,” in Proc. IEEE Real-Time
Syst. Symp., Dec. 2015, pp. 119-129.

S. Moulik, R. Devaraj, and A. Sarkar, “HETERO-SCHED: A low-
overhead heterogeneous multi-core scheduler for real-time periodic
tasks,” in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun.,
IEEE 16th Int. Conf. Smart City, IEEE 4th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Jun. 2018, pp. 659-666.

S. Moulik, R. Devaraj, and A. Sarkar, “COST: A cluster-oriented schedul-
ing technique for heterogeneous multi-cores,” in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Oct. 2018, pp. 1951-1957.

M. A. Awan, P. M. Yomsi, G. Nelissen, and S. M. Petters, ‘“Energy-aware
task mapping onto heterogeneous platforms using DVFS and sleep states,”
Real-Time Syst., vol. 52, no. 4, pp. 450485, 2016.

R. Ayari, I. Hafnaoui, G. Beltrame, and G. Nicolescu, “ImGA:
An improved genetic algorithm for partitioned scheduling on hetero-
geneous multi-core systems,” Des. Automat. Embedded Syst., vol. 22,
nos. 1-2, pp. 183-197, 2018.

R.-M. Chen, Y.-M. Shen, and C.-T. Wang, “Ant colony optimization

inspired swarm optimization for grid task scheduling,” in
Proc. Int. Symp. Comput., Consum. Control (IS3C), Jul. 2016,
pp. 461-464.

VOLUME 7, 2019

http://dx.doi.org/10.1080/00207543.2019.1571687
http://dx.doi.org/10.1049/iet-cdt.2019.0023

S. I. Kim, J.-K. Kim: Method to Construct Task Scheduling Algorithms for Heterogeneous Multi-Core Systems IEEEACCGSS

[32]

[33]

[34]

[35]

[36]

A. Abdi and H. R. Zarandi, ‘A meta heuristic-based task scheduling and
mapping method to optimize main design challenges of heterogeneous
multiprocessor embedded systems,” in Microelectron. J., vol. 87, pp. 1-11,
May 2019.

T. Zhang, X. Li, and G. Liu, “An improved artificial bee colony algo-
rithm for the task assignment in heterogeneous multicore architectures,”
in Proc. Int. Conf. Swarm Intell. Cham, Switzerland: Springer, 2018,
pp. 179-187.

E. G. Coffman, Computer and Job-Shop Scheduling Theory. New York,
NY, USA: Wiley, 1976.

D. Fernandez-Baca, “Allocating modules to processors in a distributed
system,” IEEE Trans. Softw. Eng., vol. 15, no. 11, pp. 1427-1436,
Nov. 1989.

O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling inde-
pendent tasks on nonidentical processors,” J. ACM, vol. 24, no. 2,
pp. 280-289, Apr. 1977.

SUNG IL KIM received the B.S. degree in elec-
trical engineering from Korea University, in 2011,
where he is currently pursuing the Ph.D. degree
in computer engineering. His research inter-
ests include heterogeneous distributed computing,
real-time scheduling, evolutionary algorithms, and
machine learning.

VOLUME 7, 2019

JONG-KOOK KIM received the B.S. degree
in electronic engineering from Korea Univer-
sity, Seoul, South Korea, in 1998, and the M.S.
and Ph.D. degrees from the School of Electri-
cal and Computer Engineering, Purdue University,
in 2000 and 2004, respectively. He is currently a
Professor with the School of Electrical Engineer-
ing, Korea University, where he joined, in 2007.
He was with the Samsung SDS’s IT Research
and Development Center, from 2005 to 2007. His
research interests include heterogeneous distributed computing, energy-
aware computing, resource management, evolutionary heuristics, distributed
mobile computing, artificial neural networks, deep learning and distributed
robot systems. He is a Senior Member of the ACM.

142651

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	SYSTEM ARCHITECTURE
	TASK
	ENERGY MODEL

	SCHEDULING ALGORITHMS
	OVERVIEW
	SCHEDULING COMPONENTS
	TASK CLASSIFICATION
	PROCESSOR ASSIGNMENT
	QUEUE ORDERING
	TASK MIGRATION
	DVFS
	TASK STEALING

	UPPER BOUND AND ENERGY BOUND

	EVALUATION
	EVALUATION METHOD
	EVALUATION
	TASK CLASSIFICATION
	PROCESSOR ASSIGNMENT
	QUEUE ORDERING
	TASK MIGRATION
	DVFS
	TASK STEALING
	BEST COMBINATION
	UPPER BOUND AND ENERGY BOUND

	CONCLUSION
	REFERENCES
	Biographies
	SUNG IL KIM
	JONG-KOOK KIM

