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ABSTRACT In this paper, we propose a new high-order total variation regularizedmodel with box constraint
for image compressive sensing reconstruction. Because of the separable structure of this model, we can easily
decompose into three subproblems by splitting the augmented Lagrangian function. To effectively solve
the proposed new model, a fast alternating minimization method with accelerated technique is presented.
Moreover, the proposed method applies a linearized strategy for quadratic terms to get the closed-form
solution and reduce the computation cost. Numerical experiments show that our proposed model can get
better performance than several current state-of-the-art methods in terms of signal to noise ratio (SNR) and
visual perception.

INDEX TERMS Compressive sensing, second-order total variation, alternating direction method, image
reconstruction.

I. INTRODUCTION
Recently, compressive sensing as an emerging methodology
in digital signal processing was proposed by Donoho [1],
Candés et al. [2], and Romberg [3] and has drawn extensive
attentions from different research fields. The compressive
sensing theory demonstrates that sparse signal/image recon-
struction can be achieved with only a few or incomplete
measurements. Considering its powerful handling capacity,
compressive sensing theory has come into use for sensing
image processing, magnetic resonance imaging [4]–[7].

In compressive sensing, the sensing procedure for an image
u ∈ Rn

2
can be represented as

f = Au+ η. (1)

where u ∈ Rn
2
is an original n × n image, f ∈ Rm is the

measurement image,A ∈ Rm×n
2
(m� n2) is a sensingmatrix,

η ∈ Rm is an additive noise, In this paper, we consider A is a
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random Gaussian matrix. For problem (1), recovering u from
f is an ill-posed problem. The classical least squares approx-
imation can not be adopted directly. In order to overcome
the ill-condition of the problem, the idea of regularization is
proposed. Among the regularizations, the total variation (TV)
regularization is popular and powerful, which is firstly intro-
duced by Rudin et al. [8]. The most widely studied TV
model for image restoration(in this case A ∈ Rn

2
×n2 ) has the

following form:

min
u

β

2
‖Au− f ‖2 +

n2∑
i=1

‖∇ui‖, (2)

where, ∇ is a gradient operator, ∇ui = (∇xui,∇yui)T (i =
1, 2, . . . , n2). ∇ui refers to the discrete gradient of u at the i
pixel, β > 0 is a parameter.
As well known, TV regularization model can preserve

sharp edges very well. A number of efficient and robust
methods are proposed to solve the TV model. The numer-
ical methods in this literature include such as the Newton
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method, gradient projection method, partial differential equa-
tion (PDE) based method, alternating minimization method,
see for instance, [9]–[16] and references therein. The alter-
nating direction method of multipliers (ADMM) algorithm
has been studied extensively [17]–[19], and has been widely
used in optimization problems that arise in image processing
[20]–[22]. Using the splitting and quadratic penalty tech-
niques,Wang et al. [14] proposed an efficient alternatingmin-
imization method (FTVd) to solve the problem (2). In [14],
the authors show that the FTVd is very efficient. Based on
the split and penalty techniques, Xiao and Yang [16] extend
the FTVd to the case of recovering images from random
projections. Since A is random projection matrix in [16],
the computational burden of using the above method to solve
the problem will be costly. To avoid this situation, the authors
use the linear expansion technique to propose a new alter-
nating minimization algorithm (FTVCS) to solve model (2).
Recently, Xiao and Song [23] propose an inexact alternating
directions method for total variation regularized compressive
sensing problemwith linear constraints, and illustrate that the
proposed method is effective and promising.

Compressed sensing usually recover a sparse signal
by solving an l1-norm minimization problem, such as
Osher et al. [24] extend the Bregman iterative algorithm to
solve an l1 minimization problem in compressed sensing,
Figueiredo et al. [25] transform the l1 minimization prob-
lem into bound-constrained quadratic program, and propose
a gradient projection method to solve compressed sensing
problem. However, recent research shows that the reconstruc-
tion of a medical image from its partial Fourier samples,
nonsmooth regularizations such as the TV regularization is
more powerful choices [26]. Although, TV regularization
can preserves the edges very well, which also gives rise to
some undesired effects and transforms smooth signal into
piecewise constant, the so-called staircase effects. In order to
eliminate the staircase effects while preserving the edges well
in the restored image, some high-order variational models
[27]–[31] are introduced, which include the second order
TV regularization terms. Compared with the first-order total
variation model, the second-order total variation model can
remove the staircase effects and preserve the edges well in
the process of image restoration.

On the other hand, based on physical significance of the
image represents, image value is often non-negative and also
has to lie in a certain dynamic range [p, q]. For example,
for 8 bit images, its pixel range is [p, q] = [0, 255]. If the
pixel values exceed this range, it will affect the recovery
effect of the image. Several studies have shown that imposing
bounded constraints on image values can improve the quality
of restoration results [32], [33]. Therefore, in the process of
image processing, it is necessary to add a constraint to the
image to make the pixel values always within a certain range.

As far as we know, few of works have been done to
constrained high-order TV compressive sensing problem.
Motivated by the above mentions, in this paper, we pro-
pose the following box-constraint high-order total variation

minimization model:

min
u∈�

β

2
‖Au− f ‖2 +

∑
i

‖∇
2ui‖ (3)

where, � = {u ∈ Rn
2
: p ≤ ui ≤ q, i = 1, . . . , n2},

A ∈ Rm×n
2
(m� n2),

∑
i
‖∇

2ui‖ is the second-order TV norm

of u. The definition of the second-order TV norm is similar
to the first-order TV norm. The second-order TV norm can
be defined by

∇
2ui =

(
∇x,xui,∇x,yui,∇y,xui,∇y,yui

)
,

‖∇
2u‖ =

∑
1≤i≤n2

√∣∣∇x,xui∣∣2+∣∣∇x,yui∣∣2 + ∣∣∇y,xui∣∣2 + ∣∣∇y,yui∣∣2,
here, ∇x,xui,∇x,yui,∇y,xui,∇y,yui refers to the second-order
discrete gradient of u at the i pixel. More details about the sec-
ond order difference refers to [29]. In this paper, instead of
solving themodel (3) directly, we first introduce two auxiliary
variables to transform the constrained minimization problem
into the unconstrained problem by using the variable split-
ting method. Secondly, based on linearized and accelerated
strategy, we proposed a fast alternating minimization algo-
rithm to solve the resulting optimization problem. Numerical
results demonstrate the proposed algorithm is efficient. Our
algorithm performs better than several current state-of-the-art
numerical algorithms.

The rest of this paper is organized as follows. In section 2,
based on the linearized and accelerated techniques, we pro-
pose a fast algorithm to solve the constrained high-order
TV compressive sensing problem. In section 3, numerical
comparisons with existing methods are carried out to confirm
the effectiveness of our proposedmethod. Finally, concluding
remarks are given in section 4.

II. THE PROPOSED ACCELERATING LINEARIZED
ALTERNATING MINIMIZATION ALGORITHM
In this section, we describe the proposed fast linearized alter-
nating minimization algorithm for solving the problem (3).
Firstly, introducing two auxiliary variables ω and z, the prob-
lem (3) can be transformed into the following equivalent
constraint problem:

min
z∈�,u

β

2
‖Au− f ‖2 +

∑
i

‖ωi‖

s.t. ωi = ∇2ui, i = 1, . . . , n2,

z = u. (4)

Next, we define the augmented Lagrangian of the problem (4)
as follows:

L(ω, u, z, λ) =
n2∑
i=1

(‖ωi‖+
β1

2
‖ωi −∇

2ui‖2)+
β

2
‖Au− f ‖2

− λT (z− u)+
β2

2
‖z− u‖2, (5)
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where, β1, β2 > 0 is penalty parameters, λ ∈ Rn
2
is Lagrange

multiplier. The above augmented Lagrangian function com-
bines both the quadratic penalty function and Lagrangian
function, which can get more reconstruction accuracy. The
iterative formula is generated by the alternate direction
method as follows:

ωk+1 = argmin
ω
L(ω, uk , zk , λk )

uk+1 = argmin
u
L(ωk+1, u, zk , λk )

zk+1 = argmin
z
L(ωk+1, uk+1, z, λk )

λk+1 = λk − γβ2(zk+1 − uk+1)

In what follows, we solve the abovementioned three subprob-
lems one by one. Firstly, fixed uk , zk , λk , the minimization of
(5) with respect to ω is equivalent to

ωk+1 = argmin
ω
L(ω, uk , zk , λk )

= argmin
ω

n2∑
i=1

(‖ωi‖ +
β1

2
‖ωi −∇

2uki ‖
2). (6)

The minimizer of (6) can be obtained by the following
two-dimensional shrinkage operator

ωk+1i = max
{
‖∇

2uki ‖ −
1
β

} ∇2uki
‖∇2uki ‖

, i = 1, . . . , n2.

Recently, various acceleration techniques of iterative algo-
rithms are proposed [34]–[38]. For this subproblem, in order
to accelerate the convergence of the above mentioned itera-
tion, we employ the acceleration technique in [38] to solve it.
In this method, we let

ω̄k+1i = max
{
‖∇

2uki ‖ −
1
β

} ∇2uki
‖∇2uki ‖

, i = 1, . . . , n2. (7)

Then, ωk+1 is updated again as follows:

ωk+1 = ω̄k+1 + (
tk − 1
tk+1

)(ω̄k+1 − ω̄k ), (8)

where, t0 = 1, tk+1 =
1+
√
1+4t2k
2 , tk−1tk+1

∈ [0, 1] is the step
length.

Secondly, fixed ωk+1, zk , λk , the u subproblem can be
written as

uk+1 = argmin
u

β1

2

n2∑
i=1

‖ωk+1i −∇
2ui‖2 +

β

2
‖Au− f ‖2

+
β2

2
‖zk − (u+

λk

β2
)‖2. (9)

According to the optimal conditions, the minimization prob-
lem (9) can be solved by the following equation:

(βATA+ β1∇2T
∇

2
+ β2I )u = βAT f + β1∇2Tωk+1

− λk + β2zk . (10)

BecauseA is a randomGaussianmatrix,ATA does not have
circulant structure and can’t be diagonalized directly. So, it is

extremely heavy to find the exact solution of (10). In order
to get the closed-form solutions and reduce the computation
cost, we use a linearized strategy for the quadratic term
1
2‖Au− f ‖

2. We linearize 1
2‖Au− f ‖

2 at the current uk , and
the quadratic term can be approximated by

1
2
‖Au− f ‖2 ≈

1
2
‖Auk − f ‖2 + gTk (u− u

k )

+
1
2τ
‖u− uk‖2, (11)

where, gk = AT (Auk − f ) is the gradient of 1
2‖Au − f ‖2

at uk , τ > 0 is a proximal parameter. Using (11) into (9),
then, the formula (9) can be approximately simplified to the
following minimization problem:

uk+1

= argmin
u

β1

2

n2∑
i=1

‖ωk+1i −∇
2ui‖2 + β

(
gTk (u− u

k )

+
1
2τ
‖u− uk‖2

)
− λk

T
(zk − u)+

β2

2
‖zk − u‖2

= argmin
u

β1

2

n2∑
i=1

‖ωk+1i −∇
2ui‖2+

1
βτ
‖u− (uk − τgk )‖2

−
β2

2
‖zk − (u+

λk

β2
)‖2 (12)

By solving the above optimization problem, the closed
form solution for uk+1 can be obtained from the following
equation:(β
τ
I + β1∇2T

∇
2
+ β2I

)
u =

β

τ
(uk − τgk )+ β1∇2Tωk+1

− λk + β2zk . (13)

Under the periodic boundary condition, the coefficient matrix
in (13) can be diagonalized by fast Fourier transforms
(FFTs). So, the solution of (13) can be obtained by the two
FFTs(including one inverse FFT).

Thirdly, for given ωk+1, uk+1, λk , the minimizer zk+1 of
problem (5) with respect to z is given by

zk+1 = argmin
z∈�
−λT (z− uk+1)+

β2

2
‖z− uk+1‖2

= argmin
z∈�
‖z− (uk+1 +

λk

β2
)‖2. (14)

Therefore, we can easily get

zk+1 = P�(uk+1 +
λk

β2
), (15)

where, P�(·) is the projection operator, representing an
orthogonal projection onto �.

Finally, we update the Lagrange multiplier λ as follows:

λk+1 = λk − γβ2(zk+1 − uk+1).

The full steps of proposed algorithm is summarized as
follows:
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Algorithm 1 Proposed Algorithm

1. Input: f , A, γ , β > 0, β1 > 0, β2 > 0, τ > 0 and λ0

2. Initialization:u0 = f , ω0
= O2 u0, t0 = 1, λ = λ0

3.While ‘‘not converged’’, Do
4. Compute ω̄k+1

ω̄k+1i = max
{
‖∇

2uki ‖ −
1
β

} ∇2uki
‖∇2uki ‖

, i = 1, . . . , n2.

5. Compute ωk+1

tk+1 =
1+
√
1+4t2k
2 ,

ωk+1 = ω̄k+1 + ( tk−1tk+1
)(ω̄k+1 − ω̄k );

6. Compute uk+1

uk+1 = (β
τ
I + β1∇2T

∇
2
+ β2I )−1

(
β
τ
(uk − τgk )+ β1∇2Tωk+1 − λk + β2zk

)
;

7. Compute zk+1

zk+1 = P�(uk+1 + λk

β2
);

8. Update λk+1

λk+1 = λk − γβ2(zk+1 − uk+1).
9. End Do
10. Output uk+1

FIGURE 1. Test images.

III. NUMERICAL EXPERIMENTS
In this section, some experimental results are given to
show the performance of our proposed method for image
reconstruction problems. We perform our algorithm on some
different images with Gauss random projection matrix, and
compare it with two state-of-the-art algorithms: FTVCS [16]
and IADPM [22]. All experiments are performed under Win-
dows 7 and MATLAB 2012a running on a desktop with an
core i5 Duo central processing unit at 2.50 GHz and 4 GB
memory.

In the following experiments, we use the similar strategy
in FTVCS [16], a continuation scheme on β1 is carried out
with β1 = (24, 25, 26, 27). The parameters β, β2 and τ in
our proposed method are fixed to be 300, 1.5 and 1.618,
respectively. The parameters in FTVCS [16] and IADPM [22]
have been recommended. Additionally, in what follows, three
different methods were terminated when the relative change
less than 10−3, i.e.,

∥∥uk+1−uk∥∥
‖uk‖

≤ 1× 10−3.

The quality of the rescontructed image is evaluated by the
relative errors (Rerr), the signal to noise ratio (SNR), which
are defined as:

Rerr =
‖u− u0‖
‖u0‖

× 100%,

SNR = 10log10
‖ u0 − ū ‖2

‖ u0 − u ‖2
,

where u0, u are the ideal image and the restored image
respectively, ū is the mean intensity value of u0. Generally,
the larger the SNR values show that the restored images are
better.

A. EXPERIMENT 1
In this experiment, the elements of Gauss random matrix
A ∈ Rm×n

2
are generated from normal distributions N (0, 1)

by randn(m, n2) in MATLAB. The sampling rate of the tested
images is defined as SR = m/n2. Owing to storage limitation,
the size of the tested image is limited to 64 × 64. Besides,
we added a zero-mean Gaussian noise with variance σ 2 to
three tested images, which are shown in Fig 1. We first apply
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FIGURE 2. (a) The original image; (b) The image with SR = 50%, σ = 0.01; (c) Reconstructed image by FTVCS;
(d) Reconstructed image by IADPM; (e) Reconstructed image by our proposed method.

FIGURE 3. (a)The original image; (b) The image with SR = 50%, σ = 0.01; (c) Reconstructed image by FTVCS;
(d) Reconstructed image by IADPM; (e) Reconstructed image by our proposed method.

FTVCS, IADPM and our proposed method to reconstruct
three test images with sample ratios SR = 50% and level
of noise σ = 0.01. The reconstruction results of three test

images are shown in Figs. 2, 3 and 4, respectively. As can
be seen from Figs. 2, 3 and 4, the images reconstructed by
our proposed method are much closer to the original images
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FIGURE 4. (a)The original image; (b) The image with SR = 50%, σ = 0.01; (c) Reconstructed image by FTVCS;
(d) Reconstructed image by IADPM; (e) Reconstructed image by our proposed method.

TABLE 1. The reconstructed results by Our method, FTVCS [16] and
IADPM [22] for Test image 1.

compared with FTVCS and IADPM. These facts indicate that
the proposed method has the competitive performance than
those of the FTVCS and the IADPM for image reconstruc-
tion.

For further show that the benefits of the proposed method,
we compare our proposed method with FTVCS, IADPM to
reconstruct three test images under different levels of sample
ratios SR = 30%, 40%, 50% and different levels of noise
σ = 0.1%, 1%. The correspongding results including SNR,
Rerr and Time are described in Tables 1, 2 and 3, respec-
tively. From the Tables, we can see that, with increasing

TABLE 2. The reconstructed results by Our method, FTVCS [16] and
IADPM [22] for Test image 2.

the sampling rate, the SNR becomes higher and the relative
error becomes lower for each method. Moreover, from Rerr
and SNR of view, the superiority of our proposed method
becomes more obvious. For example, when the level of sam-
ple ratio SR = 50% and the level of noise σ = 0.1%, the SNR
of Test image 1 adopting our proposed method is 26.66dB,
while that produced by FTVCS and IADPM methods is
22.86dB and 23.68dB; the Rerr of Test image 1 obtained
by our proposed mehod is 6.41%, while that produced
by the other methods FTVCS and IADPM is 11.41% and
10.32%.
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FIGURE 5. Test images.

FIGURE 6. Experimental results from different reconstruction algorithms for the three sets of test images.

B. EXPERIMENT 2
In this experiment, we use partial cosine transform (DCT)
matrix as CS encoder. Since the DCT matrix is implicity
stored as fast transforms for matrix vector multi-plication,
this enables us to test much larger images than Gaussian
matrices. In this test, we use Church (256×256), Brain(256×
256), andMonarch (256×256) as the test images. These three
original images are displayed in Fig. 5. We randomly selected

50% DCT coefficients and added Gaussian noise of mean
zero and standard deviation σ = 1%. Experimental results
on the three sets of test images, are shown in Fig. 6. It is clear
from Fig. 6 that the reconstructed images of our method have
more detailed information and are much closer to the original
images as compared with the IADPM, FTVCS algorithms.
For further comparison, two evaluation measures, the SNR
(dB) and Rerr(%), are used to measure the performance of
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FIGURE 7. Relative errors versus CPU time for FTVCS, IADPM and our proposed method on six different test images(with
SR=50%, σ = 1%).

TABLE 3. The reconstructed results by Our method, FTVCS [16] and
IADPM [22] for Test image 3.

our method for the three test images. Table 4 gives the SNR
and Rerr of the reconstructed images resulting from the Our
method, IADPM, and FTVCS methods. In general, these
algorithms provide very good performance. Moreover, our
proposed method outperforms FTVCS and IADPM in terms
of the SNR and Rerr.

C. EXPERIMENT 3
To visibly show that the convergence results of FTVCS,
IADPM and the proposed method for six different images,
we plot six figures to illustrate the convergence performance
of three tested methods from relative errors to CPU time,

TABLE 4. The SNR (dB) and Rerr(%) of three different methods for
Church, Brain and Monarch.

which are given in Fig. 7. As is clearly shown in Fig. 7,
the relative errors of our proposed method is consistently
lower than the other two methods. These facts also indicate
that the proposed method performs better than FTVCS and
IADPM.
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