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ABSTRACT The popularity of smart applications enables the large-scale integration of flexible loads
to power systems, which poses a considerable challenge to system scheduling. Focusing on scheduling
optimization with large-scale flexible loads, this paper proposes the equivalent aggregated method for
flexible loads, which converts a large number of flexible loads into a few equivalent models to participate
in system scheduling. In order to establish the equivalent model, flexible loads are grouped based on their
parameters such that loads with the same or similar parameters are clustered into the same group. Then,
the equivalent model for each group is established, a proof of the equivalence relationship between the
original model and the equivalent model is provided, and the upper bound of equivalence deviations is
estimated. Thewhole equivalent aggregatedmodel is expressed as the sum of equivalent models of all groups.
Afterwards, a new approach of applying the equivalent aggregated model to system scheduling is proposed.
Case studies show that the equivalent aggregated model can effectively schedule large-scale flexible loads to
shave the peak and fill the valley, with small equivalent deviations and fast calculation speed. This validates
the proposed model and demonstrates its promising applications to large-scale load scheduling.

INDEX TERMS Load modeling, optimal scheduling, load management, smart grids.

NOMENCLATURE
SET
� Set of all flexible loads
Pi Set of all feasible power of flexible load i
Pg Set of all feasible power of group g
Pg,e Set of all feasible power of the equivalent model

of group g
Pr Set of all feasible power of the relaxation model
U Set of all flexible loads in the Unclassified Group

INDICES
i, N Index and number of flexible loads
t , T Index and number of time intervals.
g, M Index and number of groups, except the

Unclassified Group
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PARAMETERS
1t The duration of a time interval (h)
ε Small non-negative integer
Pratei Rated power of flexible load i (kW)
Ei Required energy of flexible load i (kW · h)
Ti Necessary work intervals of flexible load i
αi Start time of the schedulable period for

flexible load i
βi End time of the schedulable period for

flexible load i
Prateg Rated power of flexible loads in group g (kW)
αg Start time of the schedulable period for

flexible loads in group g
βg End time of the schedulable period for

flexible loads in group g
Tg Necessary work intervals for flexible loads

in group g

VARIABLES
Pi(t) Power of flexible load i at time t (kW)
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ui(t) Binary variable for the operating state of
ON/OFF flexible load i at time t

Pg(t) Power of group g at time t (kW)
Pg,e(t) Power of the equivalent model of group g at

time t (kW)
P�(t) Power of set � at time t (kW)
Pr (t) Power of the relaxation model at time t (kW)
Pi(·) Power vector composed of Pi(t) at all

times (kW)
Pg(·) Power vector composed of Pg(t) at all

times (kW)
Pg,e(·) Power vector composed of Pg,e(t) at all

times (kW)
P�(·) Power vector composed of P�(t) at all

times (kW)
Pr (·) Power vector composed of Pr (t) at all

times (kW)

I. INTRODUCTION
With the development of the smart grid and the popularity
of smart applications in residential, commercial, and indus-
trial loads, controllable flexible loads have been connected
to power systems in large amounts, bringing flexibility as
well as challenges to power system operations [1]. Based
on market prices or control signals of the system operator,
flexible loads can shift power usage from peak to valley,
thereby reducing the peak load and the operating cost of a
power system [2]. The flexibility of loads also enables power
system operators to integrate more renewable energy [3].

Currently, two types of flexible loads are widely studied:
1) thermostatically controlled loads represented by air con-
ditioners, and 2) interruptible & shiftable loads represented
by electric vehicles. On the one hand, because of the thermal
inertia, the thermostatically controlled load is suitable for
short-term power adjustment. Hence relevant researchmainly
focuses on frequency regulation [4]–[6], reserve services [7],
and so on. On the other hand, the interruptible & shiftable
load is able to flexibly arrange the operating power within a
large period of time [8], cutting the peak load and filling the
valley [9], which makes it more suitable for day-ahead and
intraday scheduling. This paper therefore takes the interrupt-
ible & shiftable load as the research objective for scheduling,
and it is referred to as the flexible load in the rest of this paper.

Centralized scheduling with large flexible loads is hard to
solve in a limited time by conventional algorithms, because
hundreds of millions of variables and constraints are intro-
duced into the scheduling formulation by these loads. There-
fore, it is necessary to seek new models and methods to
solve scheduling optimization with large-scale flexible loads.
Generally, there are two solutions for large-scale problems.
The first one is to apply distributed computation techniques
to solve large-scale problems through distributed models and
algorithms. The second is to apply the aggregated models,
which aggregate a large number of flexible loads into a
smaller number of aggregated load models. By narrowing the

scale of the problem, the model can be solved by conventional
algorithms.

In distributed computing research, distributed control is
widely applied in the scheduling of the micro-gird [10], [11],
and for scheduling with larger-scale flexible loads, the dis-
tributed algorithms based on the alternating direction method
of multipliers and game theory are verified to be effec-
tive. Rivera et al. [12] formulated a versatile and scalable
distributed convex optimization framework, which in simu-
lation scheduled a million flexible loads to fill system val-
leys within 30 minutes. For multiperiod optimal power flow
optimization with flexible loads, Fan et al. [13] developed a
distributed algorithm based on alternating direction method
of multipliers, updating steps by alternating iterations. The
scalability and effectiveness of the algorithm is also tested.
Mohsenian-Rad et al. [14] presented an autonomous and
distributed demand-side energy management system among
users through game theory and proved the optimality and
convergence of the model when the power of the loads is
continuous. De Paola et al. [15] extended the work in [14],
coordinating the continuous or ON/OFF loads operating in
the electricity market with the framework of game the-
ory. A distributed iterative algorithm based on Nash equi-
librium is designed and tested with the large-scale loads.
Kumar et al. [16] proposed an aggregative game for flexible
loads in the day-ahead electricity market, and tested with
100,000 loads; however, the calculation time was not illus-
trated. Chen and Cheng [17] applied game theory to aggre-
gating a large number of users to provide operational reserves
to the power system through load aggregators. In addition,
the impact of communication on distributed computing has
also been studied [18], [19].

In research on aggregatedmodels, the bi-level optimization
model has been widely applied, and the grouping scheduling
method has also been developed. In the upper level of the
bi-level model, a group of flexible loads are aggregated into
a certain model, such as the aggregate battery model [20],
which then participates in the day-ahead scheduling or elec-
tricity market [21]. In the lower level, the individual models
of the flexible loads are used to fit the group power obtained
in the upper level [22]. Li et al. [23] modeled a group of
batteries as an aggregate battery and used it to participate in
the power balance of the micro-grid. Wang et al. [24] applied
an aggregated battery tomodel a group of flexible loads. They
first scheduled the battery power at the time-of-use price to
achieve a minimum cost, and then disaggregated the power
to each individual load. Khan et al. [25] designed the inter-
action process between the distribution system operator and
the aggregators; then the aggregators used a water injection
algorithm in the two-step disaggregation of load power to
reduce the disaggregation deviations. As a special type of
bi-level model, the grouping scheduling method first groups
flexible loads according to their characteristics [26], and then
establishes an aggregation model for each group to partici-
pate in the scheduling of the upper model. Shi et al. [27]
applied charging time and arrival time as grouping criteria.
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The electric vehicles with similar parameters were clustered
in a group, and then participated in the scheduling of the
micro-grid. Huang et al. [28] used schedulable time period
and charging time to group the loads, and interval optimiza-
tion was applied to build the upper model. Pan et al. [29]
extended the work in [28], distributing the power of flexible
loads in a group in proportion to their required electric-
ity. However, this distribution method cannot be used for
ON/OFF loads.

In the above research, although the distributed algorithms
can solve scheduling with large-scale flexible loads, the cur-
rent fast-distributed algorithms also need tens of minutes
to complete the optimization [12], [15]. In addition, there
may be certain communication problems. For the bi-level
scheduling model, although the flexible loads are expressed
as an aggregated model in the upper level, since the estab-
lished aggregated model is not an equivalent model, it is
necessary to use the lower level to fit the power of the
aggregatedmodel. Although the grouping scheduling thought
is proposed, the equivalence of the group model has not been
proved [26]–[29], and the disaggregation deviations cannot
be estimated in advance. Furthermore, there is a lack of
adaptive analysis for large-scale load scheduling. To address
this deficiency, this paper 1) proposes an equivalent aggre-
gated model of flexible loads based on grouping equivalence,
2) proves the equivalence of the aggregated model and the
upper bound of the equivalence deviations, and 3) establishes
a corresponding scheduling method for large-scale flexible
loads. The main contributions of this paper are as follows:
• Based on grouping equivalence, an equivalent aggre-
gated method for large-scale flexible loads is proposed.
Due to the diversity of the parameters of flexible loads,
it is difficult to directly establish an equivalent model
for all flexible loads. Hence, this paper clusters flexible
loads with the same or similar parameters into a group
and establishes an equivalent model for each group.
Then the whole equivalent aggregated model can be
expressed as the sum of equivalent models of all groups.

• The equivalent model for a single group of flexible loads
with the same or similar parameters is proposed. For
continuous flexible loads and ON/OFF flexible loads,
their linear continuous equivalent models are established
respectively, which are approximate to hydropower plant
models. Then the equivalence relationship between the
models is proved and the equivalence deviations are
estimated.

• A method of applying the equivalent aggregated model
to the scheduling process is proposed. For scheduling
with large-scale flexible loads, all the steps of applying
the equivalent aggregated model are discussed in detail,
including the criteria for grouping, the grouping process,
optimization and power disaggregation of the equivalent
model.

The rest of the paper is organized as follows: The mathe-
matical model of individual flexible loads and the classifica-
tion criteria of groups are presented in Section II. Section III

presents the definition of the equivalent model, establishes
the equivalent model for a single group of flexible loads and
estimates the equivalence deviations. Section IV describes the
method of scheduling with the equivalent aggregated model.
Section V presents and discusses a case study of the proposed
model. Section VI follows with conclusions.

II. EQUIVALENCE AGGREGATED METHOD FOR
LARGE-SCALE FLEXIBLE LOADS
In this section, we first present the individual and aggregated
models of the flexible loads, and then propose an equivalence
method to build an equivalent aggregated model based on
grouping.

A. MODEL OF FLEXIBLE LOADS
The flexible load studied in this paper is the load that can
flexibly adjust its power consumption in a certain period of
time, while the total energy consumed is fixed. According
to power adjustment modes, flexible loads can be classified
as continuous loads and ON/OFF loads. The former can
continuously adjust its power consumption, whereas the latter
can only control power through ON/OFF.

In order to schedule flexible loads, a day is divided into T
equal time intervals. As for a flexible load i with Pratei and Ei,
we can calculate Ti by Ti = Ei/(Pratei 1t), and then use Ti
instead of Ei as its parameter.

For a continuous flexible load i with schedulable period
[αi, βi], Pratei and Ti, its individual model is as follows [30]:

0 ≤ Pi(t) ≤ Pratei , ∀t ∈ [αi, βi] (1)

Pi(t) = 0, ∀t /∈ [αi, βi] (2)∑
t∈[αi,βi]

Pi(t) = TiPratei (3)

Pi = {Pi(·) |Pi(t) subject to (1)− (3) } (4)

Equations (1-2) ensure that flexible load i only works
during its schedulable period and its power does not exceed its
rated power. Equation (3) ensures its working time is enough.

If the flexible load i is an ON/OFF load, its individual
model is:

Pi(t) = ui(t)Pratei , ui(t) ∈ {0, 1}, ∀t ∈ [αi, βi] (5)

Pi = {Pi(·) |Pi(t) subject to (2), (3), (5) } (6)

For the ON/OFF load, the Ti needs to be an integer to
ensure Pi 6= ∅. Therefore, we assume that each Ti appearing
in this paper is a positive integer, whether for a continuous
load or an ON/OFF load.

Afterwards, the aggregatedmodel of flexible loads is estab-
lished based on the individual models. For a set � including
millions of flexible loads, its power should be equal to the
sum of the power of all flexible loads in the set:

P� =

{
P�(·)

∣∣∣∣∣P�(·) =∑
i∈�

Pi(·), Pi(·) ∈ Pi

}
(7)

VOLUME 7, 2019 143433



J. Tu et al.: Equivalent Aggregated Model of Large-Scale Flexible Loads for Load Scheduling

FIGURE 1. Process of grouping equivalence.

Then for the power of set �, P�(t), there should be:

P�(t) =
∑
i∈�

Pi(t), ∀t (8)

B. GROUPING EQUIVALENCE
Computational complexity increases rapidly with the size of
the problem, leading to the need for an equivalent model.
As for a set of flexible loads as described by (7), there could
be hundreds of millions of variables and constraints in the
aggregated model, creating problems for load scheduling.
Therefore, we hope to find the equivalent model. However,
due to the diversity of the parameters of flexible loads, it is
difficult to use a simple mathematical model to equate the
aggregated model. Hence, a method of grouping equivalence
is proposed to solve it.

The key to grouping equivalence is clustering flexible loads
of the same or similar parameters into a group, and then
establishing an equivalent model for each group. In this way,
the aggregated model for a set of flexible loads is equivalent
to the sum of the equivalent models of all groups. Fig.1 illus-
trates this process.

The criteria for grouping are the parameters of flexible
loads. According to the individual model, the parameters of
flexible load i are Pratei , αi, βi, and Ti, by which the flexible
loads can be divided into groups. For a set of flexible loads,
some typical values are selected from the distributions of
Pratei , αi, βi, and Ti, as the grouping criteria. These typical
values are used as the ranges of the groups’ parameters.
By combining these typical values in the ranges, a series of
groups with different parameters are generated. Then each
load is sorted into the group whose parameters are closest to
its parameters. After grouping, the loads in each group have
the same or similar parameters. Then the equivalent model
for a group is established, as discussed in the next section.

III. EQUIVALENT MODEL FOR A SINGLE GROUP
This section presents the equivalent model for a group
of flexible loads with the same or similar parameters.
First, the mathematical definition of the equivalent model
is described by set theory. Then the equivalent models
of the groups with continuous loads or ON/OFF loads

are established. Finally, we analyze how to merge groups and
establish the equivalent model for a merged group.

A. DEFINITION OF THE EQUIVALENT MODEL
The equivalent model is established when the loads in a
group are thought of as a whole as far as their total power
is concerned. Then a model that has the same total power
can replace the group; this is the equivalent model. Because
the total power of the group is actually a feasible domain,
the equivalence means the two models have the same feasible
domain of the total power. Therefore, the equivalent model
can be defined by set theory as follows:
Definition 1: For load model A, B of the following form:
Load A:

PA = {PA(·) | HA(PA(·),YA) = 0, GA(PA(·),YA) ≤ 0 } (9)

Load B:

PB = {PB(·) | HB(PB(·),YB) = 0, GB(PB(·),YB) ≤ 0 } (10)

If PB = PA, then load model B is called the equivalent
model of load model A, and load model B is said to be
equivalent to load model A.
where PA(·), PB(·) is the total power vector of load model
A, B; PA, PB is the set of all feasible power vectors PA(·),
PB(·); HA, HB are the equality constraints of load model A,
B, and GA, GB are the inequality constraints; and YA, YB are
the variables in constraints except PA(·), PB(·).

In Definition 1, the equivalence relationship between load
models is symmetrical. If B is equivalent to A, A must be
equivalent to B.

However, the equivalence relationship in Definition 1 is so
strict that it allows for no deviation in equivalence, whichmay
lead to difficulties in establishing the equivalent model. How-
ever, an equivalent model with a small deviation is actually
acceptable. Hence, an equivalence relationship with a certain
deviation is proposed as follows:
Definition 2: Consider load model A, B of the form

in (9-10). Their feasible domains of total power are PA and
PB. If for some ε ≥ 0 the following condition (11-12) is
fulfilled:

∀x ∈ PA, ∃y ∈ PB, ‖y− x‖ ≤ ε (11)

∀y ∈ PB, ∃x ∈ PA, ‖x − y‖ ≤ ε (12)

Then load model B is called the ε-equivalent model of load
model A, and load model B is said to be ε-equivalent to load
model A.

The ε-equivalence relationship is also symmetrical.
If ε = 0, the ε-equivalence will turn into an equivalence rela-
tionship in Definition 1, which indicates that Definition 2 is
an extension of Definition 1. In addition, the ‖ · ‖∞ is used
for Definition 2 in this paper, because it represents the upper
limit of absolute deviations at all times.

B. EQUIVALENT MODEL FOR CONTINUOUS LOADS
For a group of N continuous flexible loads with the same
parameters, the equivalent model is established by the fol-
lowing theorem:
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Theorem 1: For a group ofN continuous flexible loads with
the same parameters of Prateg , αg, βg, and Tg, the model Pg is
in the following form:

Pg =


Pg(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pg(t) =
N∑
i=1

Pi(t), ∀t

0 ≤ Pi(t) ≤ Prateg , ∀i, ∀t
Pi(t) = 0, t /∈ [αg, βg], ∀i∑

t

Pi(t) = TgPrateg , ∀i


(13)

The model Pg could be equivalent to the model Pg,e, whose
form is as follows:

Pg,e =

Pg,e(·)
∣∣∣∣∣∣∣∣
0 ≤ Pg,e(t) ≤ NPrateg , ∀t
Pg,e(t) = 0, t /∈ [αg, βg]∑

t

Pg,e(t) = NTgPrateg

 (14)

Proof: According to Definition 1, Pg is equivalent to the
model Pg,e, meaning:

Pg = Pg,e (15)

Proving (15) is equivalent to proving (16) & (17):

∀Pg(·) ∈ Pg, ∃Pg,e(·) = Pg(·), Pg,e(·) ∈ Pg,e (16)

∀Pg,e(·) ∈ Pg,e, ∃Pg(·) = Pg,e(·), Pg(·) ∈ Pg (17)

¬ To prove (16), we can sum the constraints for Pi(t) in
Pg, and then the constraints for Pg(t) can be obtained.
The constraints for Pg(t) are the same as the constraints
in Pg,e. Hence, for any Pg(·) ∈ Pg, let the Pg,e(·) =
Pg(·), and the Pg,e(·) must fulfill the constraints in Pg,e,
so there is always Pg(·) = Pg,e(·) ∈ Pg,e. Equation (16)
is fulfilled.

 To prove (17), for any Pg,e(t) in Pg,e, we can let every
Pi(t) be equal to Pg,e(t)/N . It’s easy to verify that every
Pi(t) satisfies the constraints in Pg. Therefore, for Pg(·)
that is the sum of these Pi(t), there is Pg(·) ∈ Pg.
Meanwhile, Pg(·) = Pg,e(·). Equation (17) is fulfilled.

Theorem 1 is thereby verified, and establishes an accurate
equivalent model for continuous loads. The model has linear
constraints on energy and power, which makes it approximate
to a hydropower plant model.

C. EQUIVALENT MODEL FOR ON/OFF LOADS
The equivalent model for ON/OFF flexible loads has a wider
range of applications. Loads with continuously adjustable
power usually need to be controlled by electronic power
devices, whereas the ON/OFF loads can be controlled with
cheaper and simpler smart switches. Continuous loads can
also operate in ON/OFF mode, indicating that the equivalent
model for ON/OFF loads can be applied to continuous loads.

1) DISCRETE EQUIVALENT MODEL
For a group of N ON/OFF flexible loads with the same
parameters, a discrete equivalent model is established by the
following theorem:

FIGURE 2. Energy of ON/OFF flexible loads for operation.

Theorem 2: For a group of N ON/OFF flexible loads with
the same parameters of Prateg , αg, βg, and Tg, if its model Pg
is in the following form:

Pg =


Pg(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pg(t) =
N∑
i=1

Pi(t), ∀t

Pi(t) = ui(t)Prateg , ∀t, ∀i
ui(t) ∈ {0, 1}, ∀t,∀i

Pi(t) = 0, t /∈ [αg, βg], ∀i∑
t

Pi(t) = TgPrateg , ∀i


(18)

Then the model Pg could be equivalent to the model Pg,e
with a discrete power range, whose form is as follows:

Pg,e

=

Pg,e(·)
∣∣∣∣∣∣∣∣
Pg,e(t)∈{0,Prateg , 2Prateg , 3Prateg , · · · ,NPrateg }

Pg,e(t)=0, t /∈ [αg, βg]∑
t

Pg,e(t)=NTgPrateg


(19)

Proof: Pg being equivalent to the model Pg,e means (16)
and (17) are fulfilled.

Just like the proof in Theorem 1, Equation (16) is easy to
verify by summing the constraints for Pi(t) in Pg. Therefore,
we focus on the proof of (17).

The key to proving (17) is that for any Pg,e(·) in Pg,e,
if there is an algorithm that can always find a Pg(·) that
belongs to Pg and is equal to Pg,e(·), Equation (17) must be
fulfilled. To find the Pg(·), the main function of the algorithm
is to disaggregate the Pg,e(·) into the sum of the Pi(t) with
their constraints fulfilled. If it is possible, the Pg(·), as the
sum of the Pi(t) must belong to Pg and be equal to Pg,e(·).
Algorithm 1 is thus proposed to disaggregate the Pg,e(·) into
the sum of the Pi(t).
Algorithm 1: PowerDisaggregationAlgorithm for Discrete

Equivalent Model
First, the group of ON/OFF loads and Pg,e(·) ∈ Pg,e are

described. For a group of N ON/OFF loads with the same
parameters of Prateg , αg, βg, and Tg, the energy that the group
of loads need for working is described by Fig.2.

In Theorem 2, N and Tg can be any positive integers, and
in Fig.2, N = 5 and Tg = 4, are used as the example integers
to illustrate Algorithm 1. The horizontal axis represents nec-
essary work intervals for loads in the group, and they are the
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FIGURE 3. A power curve of the discrete equivalent model.

same as Tg. based on conditions of Theorem 2. The vertical
axis represents the power of the group, with the unit of Prateg .
Energy blocks of all loads are shown in Fig.2, and each row
of blocks represents the energy used by one load.

The Pg,e(·) ∈ Pg,e can be described in Fig.3, as an illustra-
tive example of Algorithm 1.

In Fig.3, the horizontal axis represents schedulable time
intervals, and the vertical axis represents the power of the
Pg,e(·). The Pg,e(·) has the same energy as in Fig.2, and its
power is discrete and no more than NPrateg . For clarity, energy
blocks at each time are marked with a unique color.

In order to find the Pg(·) that fulfills (17), the objective of
Algorithm 1 is to allocate energy blocks in Fig.3 to Fig.2 in an
operational way for loads, meaning that the allocation must
fulfill the constraints for the loads. Since the numbers of
energy blocks in Fig.3 and Fig.2 are the same, after allocation,
the number of energy blocks allocated to each load is Tg;
hence (3) is always fulfilled. Since the power of each load
is 0 or Prateg , this requires that energy blocks at a certain time
cannot be allocated to a load with more than one block. If the
allocation is completed, then the Pi(t) for every load can be
found, and the Pg(·) = Pg,e(·) can be found.
Allocation steps in Algorithm 1 are as follows:
¬ Choose the energy blocks of a time that has not been

allocated in Fig.3.
 Start the allocation in Fig.2 from the first unallocated

column of energy blocks on the right side of the figure,
in order from top to bottom. If the column is partly
allocated, start the allocation from the top of the unal-
located energy blocks of the column. If energy blocks
in this column are all allocated during the allocation,
turn to the left column next to this column and continue
allocation from top to bottom.

Repeat steps one and two until all of the energy blocks in
Fig.3 are allocated. Because the numbers of energy blocks in
Fig.2 and Fig.3 are the same, the allocation will be finished
in Fig.2 and Fig.3 at the same time. The result of allocation
is shown in Fig.4. Then Algorithm 1 is finished.

It’s easy to verify that in Algorithm 1, energy blocks at a
certain time are not allocated to a load with more than one
block. In Algorithm 1, allocation is carried out from right
to left and from top to bottom. In this order of allocation,
only when Pg,e(t) is greater than NPrateg , will there be a
load obtaining two energy blocks of Pg,e(t). However in (19)

FIGURE 4. Result of allocation from power curve of the discrete
equivalent model to energy of ON /OFF flexible loads.

Pg,e(t) can never be greater than NPrateg , which ensures a load
will not obtain more than one energy block of Pg,e(t) at a
certain time; therefore the allocation is operational.

Thus, Equation (17) in Theorem 2 is verified by Algo-
rithm 1, and then Theorem 2 is verified.

Theorem 2 establishes an accurate equivalent model for
ON/OFF loads, and hence reveals their flexibility. The The-
orem indicates that even if the flexible loads can only work
in ON/OFF mode, a group of loads with the same parameters
canwork like a hydropower plant model with a discrete power
range, which means the group of ON/OFF loads and the
hydropower plant have similar flexibility.

2) CONTINUOUS EQUIVALENT MODEL
Through the ε-equivalence in Definition 2, a continuous
equivalent model for ON/OFF flexible loads is established by
the following Theorem:
Theorem 3: For a group of N ON/OFF flexible loads with

the same parameters of Prateg , αg, βg, and Tg, if its model Pgis
in the form of (18), there is a model Pg,e that is ε-equivalent
to Pg, and in ε-equivalence, the ‖ · ‖ = ‖ · ‖∞ and ε = Prateg .
The form of Pg,e is (14).

Proof: Pg,e ε-equivalent to the model Pg means:

∀Pg(·) ∈ Pg, ∃Pg,e(·) ∈ Pg,e,
∥∥Pg,e(·)− Pg(·)∥∥∞ ≤ ε

= Prateg (20)

∀Pg,e(·) ∈ Pg,e, ∃Pg(·) ∈ Pg,
∥∥Pg(·)− Pg,e(·)∥∥∞ ≤ ε

= Prateg (21)

For (20), it’s obvious that Pg ⊆ Pg,e, hence:

∀Pg(·) ∈ Pg, ∃Pg,e(·) ∈ Pg,e,

Pg,e(·) = Pg(·) (22)

∴
∥∥Pg,e(·)− Pg(·)∥∥∞ = 0 ≤ ε = Prateg (23)

Therefore, Equation (20) is verified.
The key to proving (21) is the same as in Theorem 2, which

is to propose an algorithm that can always find thePg(·) which
fulfills (21). In order to find the Pg(·), Algorithm 2, as an
extension of Algorithm1, is proposed as follows.
Algorithm 2: Power Disaggregation Algorithm for Contin-

uous Equivalent Model
First the group of ON/OFF loads and thePg,e(·) ∈ Pg,e need

to be described. In Theorem 3, the group of ON/OFF loads is
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FIGURE 5. A power curve of the continuous equivalent model.

FIGURE 6. Allocation and reallocation from power curve of continuous
equivalent model to energy of ON /OFF flexible loads.

the same as that in Theorem 2, so the energy they need is
also described by Fig.2. The Pg,e(·) ∈ Pg,e can be described
in Fig.5. The Pg,e(·) in Fig.5 has the same energy as Fig.2, but
its power range is a continuous interval [0, NPrateg ].
Allocation steps in Algorithm 2 are as follows:
¬ Choose the energy blocks of a certain time that has not

been allocated in Fig.5.
 Start the allocation for Fig.2 from right to left and from

top to bottom. Because Pg,e(t) is a real number, there
will be an energy block in Fig.2 partly occupied by
Pg,e(t). The next allocation starts from an unoccupied
part of this energy block. The results of allocation are
shown in Fig.6.

Some energy blocks in Fig.6 havemore than one color, rep-
resenting the need for loads to operate at different times with
partial power of Prateg , which is inoperable for an ON/OFF
load. Therefore, the next step is to reallocate these energy
blocks to one of the Pg,e(t) that occupy it.

® Reallocate the energy blocks that have more than one
color based on the following rules:
Rule A: If the energy block has two colors, from top to

bottom, record the times corresponding to these two colors as
t1, t2; the energy they occupy in the energy block is recorded
as e(t1), e(t2). If e(t1) ≥ 0.5 Prateg 1t , the energy block is
reallocated to t1, otherwise the energy block is reallocated to
t2. Prateg 1t is the energy of this block.
Rule B: If the energy block has K colors, K ≥ 3, from

top to bottom, record the times corresponding to these K
colors as t1, t2, . . . , tK−1, tK ; and record the energy they
occupy in the energy block as e(t1), e(t2), . . . , e(tK−1), e(tK ).
If e(t1) ≥ 0.5Prateg 1t , the energy block is reallocated to t1.

Otherwise, if e(tK ) > 0.5Prateg 1t , the energy block is
reallocated to tK . If the above two conditions are not sat-
isfied, find the maximum of e(t2), . . . , e(tK−1), and then
reallocate the energy block to the time corresponding to the
maximum.

The reallocating rules are both shown in Fig.6 with two
different examples. After reallocating, the Pi(t) for every load
can be found, and then the Pg(·) is found. Then Algorithm 2
is finished.

After Pg(·) is obtained, the deviation between Pg,e(t) and
Pg(t) in Algorithm 2must be analyzed. The deviation appears
in step three, reallocating. In step three, if Pg,e(t) at a certain
time appears in at least two energy blocks, it will have two
part deviations, separately at the start and end of Pg,e(t).
According to Rule A and Rule B, the deviation of each part
is no more than 0.5Prateg , so the total deviation for Pg,e(t) is
no more than Prateg . For Pg,e(t) appearing in only one energy
block, there must be Pg,e(t) ≤ Prateg . If the energy block is
reallocated to time t , the deviation is |Prateg - Pg,e(t)| ≤ Prateg ;
otherwise, the deviation is |Pg,e(t) − 0| ≤ Prateg . Therefore,
for any Pg,e(t), the deviation between Pg,e(t) and Pg(t) is no
more than Prateg .

Then the operability ofPg(·) obtained in Algorithm 2 needs
to be verified. Here the counter-evidence method is used for
analysis. If there is a certain time t , two energy blocks ofPg(t)
are allocated to a load i. Then for the Pg,e(t) corresponding
to Pg(t), based on the allocation order in step two, each load
except for load ihas an energy block fully occupied by Pg,e(t),
which means N -1 energy blocks. Meanwhile, for two energy
blocks of Pg(t) that are allocated to load i, in the block of the
left column,Pg,e(t) must occupy no less than half of the block,
and in the block of the right column, Pg,e(t) must occupy
more than half of the block. Add these energy blocks together,
and then the whole Pg,e(t) is larger than NPrateg , which is
against the constraints for Pg,e(t) in (20). Therefore, for any
Pg(t), its energy blocks cannot allocate more than one block
to a load. Pg(·) is operational and Pg(·) ∈ Pg.
Through analysis of deviation and feasibility, a Pg(·) that

fulfills (21) is found by Algorithm 2. Hence, Equation (21)
and Theorem 3 are verified.

Theorem 3 establishes a continuous equivalent model for
ON/OFF loads, which is approximate to a hydropower plant
model. Although there are some deviations in the equiva-
lent model, the deviations would be negligible if N is large
enough. Besides, the equivalent model established is linear
with continuous variables only, which makes it easy to add to
optimization models without increasing their complexity.

D. GROUP MERGER
Throughmerging some of the groupswith similar parameters,
the number of groups is reduced, as well as the number of
variables and constraints. Based on the above proof process,
Prateg has the least impact on the proof. Therefore, the groups
with different Prateg could be merged together into a larger
group, in which the rate powers of loads are diverse. The
equivalent model for continuous loads and ON/OFF loads
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of the merged group is established based on Theorem 4 and
Theorem 5, respectively.
Theorem 4: For a group ofN continuous flexible loads with

same parameters of αg, βg, Tg, and Pratei for any load i is a
positive number as the parameter. If its model Pg is in the
following form:

Pg =


Pg(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pg(t) =
N∑
i=1

Pi(t), ∀t

0 ≤ Pi(t) ≤ Pratei , ∀i, ∀t
Pi(t) = 0, t /∈ [αg, βg], ∀i∑

t

Pi(t) = TgPratei , ∀i


(24)

The model Pg could be equivalent to the model Pg,e, whose
form is as follows:

Pg,e =

Pg,e(·)
∣∣∣∣∣∣∣∣∣∣
0 ≤ Pg,e(t) ≤

∑
i

Pratei , ∀t

Pg,e(t) = 0, t /∈ [αg, βg]∑
t

Pg,e(t) =
∑
i

TgPratei

 (25)

Proof: Pg being equivalent to the model Pg,e means
that (16) and (17) are fulfilled. The proof for (16) is exactly
the same as in Theorem 1. For (17), let every Pi(t) equal to
Pg,e(t)Pratei /

∑
i P

rate
i , and then it can be verified that Equa-

tion (17) is fulfilled. Hence Theorem 4 is verified.
Theorem 5: For a group of N ON/OFF flexible loads,

parameters αg, βg, and Tg are the same, while the Pratei for
load i can be different. If its model Pg is in the following form:

Pg =


Pg(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pg(t) =
N∑
i=1

Pi(t), ∀t

Pi(t) = ui(t)Pratei , ∀t, ∀i
ui(t) ∈ {0, 1}, ∀t, ∀i

Pi(t) = 0, t /∈ [αg, βg], ∀i∑
t

Pi(t) = TgPratei , ∀i


(26)

There is a model Pg,e that is ε-equivalent to Pg, and in the
ε-equivalence, the ‖ · ‖ = ‖ · ‖∞ and ε = max(Pratei ). The
form of Pg,e is as in (25).

Proof: Pg being equivalent to the model Pg,e means that
(20) and (21) are fulfilled. The proof for (20) is the same as
the proof in Theorem 3. To prove (21), for any Pg,e(t) in Pg,e,
apply the proposed Algorithm 2, and then obtain the Pi(t) for
every load, as well as the Pg(·).

After Pg(·) is obtained, deviation analysis between Pg,e(t)
and Pg(t) and operability analysis for Pg(·) are needed. The-
orem 3 proves that if Pg,e(t) appears in at least two energy
blocks, it will have two parts of deviations, and the devia-
tion of each part is no more than 0.5Pratei . Due to Pratei ≤

max(Pratei ) for any load i, the total deviation for Pg,e(t) is
no more than max(Pratei ). For Pg,e(t) appearing in only one
energy block, Theorem 3 proves that the deviation is no more
than the Pratei , therefore the deviation is no more than the
max(Pratei ). Hence, for any Pg,e(t), the deviation between

Pg,e(t) andPg(t) is nomore than themax(Pratei ). The operabil-
ity analysis for Pg(·) is the same as the analysis in Theorem 3.
Theorem 5 is thus verified.
In Theorem 5, as long as the max(Pratei ) is not too large,

the continuous equivalent model can significantly reduce the
number of groups, and ensure a certain limit of equivalence
deviations.

IV. SCHEDULING WITH EQUIVALENT AGGREGATED
MODEL
The key to scheduling with the equivalent aggregated model
is to reasonably group a set of flexible loads. There are
two factors that should be considered for loads grouping,
namely the distributions of load parameters and the schedul-
ing requirements of the power system.
According to the Theorems in Section III, the equivalent

model is established based on a group of loads with the same
or similar parameters. Therefore, the distributions of load
parameters are very important for grouping progress as well
as the parameters of the equivalent model.
The requirements of system scheduling also need to be

taken into account. In general, a flexible load may have a
wide scheduling period, but after system scheduling, the load
will only work in the valley of the system load [31]. Hence,
the schedulable period outside the valley of the system load
has little effect on scheduling of the load. Thus, when building
a group, [αg, βg] of the group can be set in the valley of the
system load, instead of over the whole schedulable period.
A group built in this way will have a smaller schedulable
period, which allows more loads to work in this period, and
to be assigned to this group. Then, as each group becomes
larger, the number of groups becomes smaller. Therefore,
the specific range in which the flexible loads mainly work
needs to be calculated as the Reference Scheduling Period
used for grouping criteria.
In the rest of this Section, the process to calculate the Refer-

ence Scheduling Period is illustrated, along with the method
to group flexible loads based on the Reference Scheduling
Period and load parameters distributions. The approach to
scheduling with the equivalent models of groups is also pre-
sented.

A. REFERENCE SCHEDULING PERIOD
In order to obtain a possible load-operating period as the
Reference Scheduling Period, a relaxation model of the set
of flexible loads is used for preliminary scheduling. Consider
a set � of flexible loads in the form of (5-7), where αi, βi
separately obey a probability distribution. The range of αi is
[αp1, αp2], while the range of βi is [βp1, βp2]. The relaxation
model Pr of the set is described by (27):

Pr =

Pr (·)
∣∣∣∣∣∣∣∣∣∣
0 ≤ Pr (t) ≤

∑
i

Pratei , ∀t

Pr (t) = 0, t /∈ [αp1, βp2]∑
t

Pr (t) =
∑
i

TiPratei

 (27)
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FIGURE 7. Decision grouping criteria based on Reference Scheduling
Period.

Without a loss of generality, it’s assumed that αp1 < αp2,
βp1 < βp2, and αp1 < βp2; and if the domain of αi or βi
includes +∞ or −∞, the quantiles can be used to obtain the
range in which most of the probability is concentrated.

Consider a scheduling optimization with a set� of flexible
loads as described by (28):

min = F(
∑
i∈�

Pi(·),Y ), s.t. Y ∈ Y , Pi(·) ∈ Pi, ∀i (28)

where Y is the vector of other optimization variables in
scheduling, and its feasible domain is Y .
The sum of Pi(·) can be replaced with the relaxation model,

as in (29):

min = F(Pr (·),Y ), s.t. Y ∈ Y , Pr (·) ∈ Pr (29)

The scheduling optimization (29) can be solved by con-
ventional algorithms because the relaxation model is a linear
model, which does not increase complexity. After the Pr (·) is
obtained, the period of Pr (·) > 0 is the best operating time
for flexible loads based on the scheduling. Usually, the period
of Pr (·) > 0 is a continuous interval in the valley of the
system load, and can be used as the Reference Scheduling
Period. However, if the period of Pr (·) > 0 consists of a few
discontinuous intervals, we can find a minimum continuous
interval containing the period of Pr (·) > 0, and then use it as
the Reference Scheduling Period.

B. GROUPING
After obtaining the Reference Scheduling Period, grouping
criteria and the parameters of groups need to be determined,
and then the loads in set � can be grouped.

1) SETTING OF GROUPS
According to Section III, the key parameters for a group are
αg, βg, and Tg. Hence the main goal of groups setting is to
find the ranges of αg, βg, and Tg as the grouping criteria.
The range of Tg is made of the unique Ti values of all

the loads; it consists of some discrete values. The method to
decide the range of αg, βg is shown in Fig.7.
For the range of αg, obtain the value from the start of

the Reference Scheduling Period, then backward at regular
intervals, until αp2, the end of distribution of αi. For the range

of βg, obtain the value from the end of Reference Scheduling
Period, then forward at regular intervals, until βp1, the start of
distribution of βi. With these rules, in Fig.7 the range of αg is
{αg1, αg2}, and the range of βg is {βg1, βg2, βg3}.
The parameters for groups can thus be set with the com-

bination of the values in the ranges of αg, βg, and Tg. After
setting groups, the group whose Tg > βg − αg + 1 needs
to be deleted, because these parameters will cause the inter-
nal loads to have insufficient time to complete their work.
In addition, an Unclassified Group must be established to
accommodate the loads that cannot be assigned to the above
groups.

2) GROUPING LOADS
For each load i with αi, βi, and Ti in set �, if the parameters
of the group it belongs to are αi,g, βi,g, and Ti,g, then the
following steps can be used for grouping:

¬ As for αi,g, it’s the value that fulfills: αi,g ∈ range of
αg, αi,g ≥ αi, and αi,g is as small as possible.

 As for βi,g, it’s the value that fulfills: βi,g ∈ range of
βg, βi,g ≤ βi, and βi,g is as big as possible.

® As for Ti,g, Ti,g = Ti.
¯ If there is no αi,g or βi,g or Ti,g that fulfills the above

conditions, the load i is assigned to the Unclassified
Group. If αi,g, βi,g and Ti,g all exist, find the group
with the parameters of αi,g, βi,g, Ti,g in the groups that
are set in Section IV.B. If the group exists, the load i is
assigned to this group. Otherwise, the load i is assigned
to the Unclassified Group.

αi,g ≥ αi, and βi,g ≤ βi are used to ensure that the [αi,g,
βi,g] is the subinterval of [αi, βi], so the load ican work in
[αi,g, βi,g]. The [αi,g, βi,g] should be as big as possible to
maintain the flexibility of load i, so αi,g should be small
and βi,g should be big. Afterwards, the load is classified
into one of the groups established in Section IV.B based on
αi,g, βi,g and Ti,g, and the ungrouped loads are placed in the
Unclassified Group.

After loads grouping, groups having only a few loads can
be deleted to reduce the number of groups. A threshold can
be set for deleting, and the group whose number of loads is
less than the threshold can be deleted. The loads of deleted
groups are assigned to the Unclassified Group.

C. OPTIMIZATION WITH GROUPS
After grouping, the loads in scheduling optimization can be
replaced by equivalent models of groups. Through replac-
ing, the scheduling optimization in (28) can be described as
follows:

min = F(
M∑
g=1

Pg,e(·)+
∑
i∈U

Pi(·),Y ) (30)

s.t. Y ∈ Y , Pg,e(·) ∈ Pg,e, ∀g, Pi(·) ∈ Pi, ∀i ∈ U

(31)

In order to further simplify the scheduling model, the loads
in the Unclassified Group are scheduled first through a
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TABLE 1. Distributions of flexible loads’ parameters.

heuristic algorithm, and then the scheduling optimization is
solved. Although the loads in the Unclassified Group occupy
a very small part of the total flexible loads, they bring many
more variables and constraints than the other groups, because
these loads are described by individual models. Therefore,
a heuristic algorithm is used to schedule these loads first, and
then scheduling optimization is solved with the equivalent
models of groups. Although the result of the heuristic algo-
rithm may have some deviations from the optimal solution in
the first step, the deviations can be largely eliminated when
scheduling the equivalent models of groups in the next step.
In this way, the heuristic algorithm can reduce the number of
variables and constraints, and the optimality of the solution is
guaranteed by scheduling with equivalent models.

The heuristic algorithm used in this paper places each load
in the valley of the total load, because the electricity cost in
the load valley is generally lower. First, the algorithm obtains
the base load of the system without flexible loads by load
forecast, as the initial total load. Then it takes a load i from
the UnclassifiedGroup, and sets its working time in the valley
of the total load as well as in its schedulable period [αi, βi].
Afterwards, the algorithm updates the total load by adding the
power of load i. Then it takes the next load, set its working
time and updates the total load. Repeat these steps until all
the loads in the Unclassified Group are scheduled.

Afterwards, scheduling optimization with equivalent mod-
els can be solved by conventional algorithms, and the Pg,e(·)
of each group is obtained. Then the Pg,e(·) is disaggregated
to the Pi(·) of each load inside. Then the actual power of the
groupPg (·) is calculated as the sum ofPi(·). Finally the actual
value of objective function is calculatedwith thePi(·) of every
load.

V. SIMULATION RESULTS
In this study, a case of day-ahead scheduling for a power sys-
tem with large-scale flexible loads is analyzed. The schedul-
ing period is set as 24h and the duration of a time interval
1t = is 0.25h. The day-ahead load forecast of base load
comes from historical data of the UK power system [32].
Then 1 × 106 electric vehicles that need to charge at night
are considered as the flexible loads that participate in the
day-ahead scheduling. These flexible loads work in ON/OFF
mode, and make up the set �. The distributions of their
parameters are shown in Table 1.

In Table 1, αi, βi, and Ei follow the Gaussian distribution
and the Pratei follows the Uniform distribution. With parame-
ters of Ei and Pratei , the Ti can be calculated and rounded to
an integer.

FIGURE 8. Total load after scheduling with relaxation model.

TABLE 2. Grouping criteria.

In terms of power supply, a quadratic function is used to
express the total cost of the system’s power supply [33]:

C =
T∑
t=1

(aPtotal(t)2 + bPtotal(t)+ c) (32)

where Ptotal(t) is the total load of the power system (MW),
and a = 2× 10−4 £/MW2, b = 0.3 £/MW, c = 15000 £. The
goal of day-ahead scheduling is to minimize the total cost of
the power supply by scheduling flexible loads. All calcula-
tions are completed in MATLAB 2014a, on a computer with
Intel i7 8750H and 16G RAM.

A. RESULT OF SCHEDULING
This section presents the process of scheduling with the
equivalent aggregated model, and compares its scheduling
result with two other scenarios.

In order to schedule with the equivalent aggregated model,
first the Reference Scheduling Period needs to be calculated.
Since the relaxation model needs to cover almost all of the
loads, its schedulable period is set as [15:30, 10:30], based
on the 3σ criterion. Its upper limit of rate power is the sum of
the Pratei of all flexible loads, and its energy is the sum of the
TiPratei 1t of all the loads. Solve day-ahead scheduling with
the relaxation model, and then a relaxed solution Pr (·) can be
obtained as Fig.8 shows.

The time for Pr (·) > 0 is [23:45, 7:45], which is the Ref-
erence Scheduling Period. Afterwards, the grouping criteria
are established based on the Reference Scheduling Period,
as shown in Table 2.

Because almost every αi ≤ 23:45, the range of αg, as the
start of the schedulable period for all the groups is 23:45.
However, because distribution for βi intersects with the Ref-
erence Scheduling Period, the range of βg, as the end of the
schedulable period for groups, starts from 7:45 and ends at
4:45, for more than 99% βi ≥ 4:45. The time interval in the
range of βg is set as 21t to reduce numbers of groups. The
range of Tg consists of the unique values of Ti.
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TABLE 3. Parameters of some groups.

There are thus 133 groups initially, with an Unclassified
Group, and then the flexible loads are assigned into the
groups. In this case, the threshold for deleting the group
is 0.05% of the number of flexible loads. After grouping,
83 groups are obtained, and they cover 991,029 flexible loads,
leaving 8,971 flexible loads in the Unclassified Group. The
parameters of some groups are listed in Table 3.

After grouping, a heuristic algorithm is applied to loads in
the UnclassifiedGroup, and then conventional algorithms can
solve scheduling with equivalent models of groups. Then the
Pi(·) of each load and the Pg (·) of each group are obtained
based on Theorem 5, and the power of the total load is also
acquired.

The result of scheduling with an equivalent aggregated
model is compared with the following two scenarios:
Scenario 1: Early finish. In this scenario, all the loads will

start working at the start of their schedulable period, and work
continuously until their works are completed. Hence all the
loads finish their work as early as possible.
Scenario 2: Independent scheduling. In this scenario,

the system operator broadcasts an electricity price to all the
flexible loads, and the electricity price is positively related
to the forecast of the base load. Then each load is scheduled
independently to minimize its own electricity costs.

Fig.9 shows the total load of the system in different
scenarios.

Scenario 1 reflects the natural energy demand of the flex-
ible loads. Each load finishes its work as early as possi-
ble, which is most beneficial to the user’s need. However,
the scheduling mode leads the flexible loads to be superim-
posed on the peak period of the base load, and results in an
increase in peak load. The scheduling result will not only
increase the total cost of the power system, but also propose
higher requirements on the generation capacity of the system.

FIGURE 9. Total load in different scenarios of scheduling.

FIGURE 10. Power and deviation of the group with most loads.

Scenario 2 represents the operation of flexible loads under
non-cooperative independent scheduling. Each flexible load
will independently schedule its operation tominimize its cost,
according to the electricity price from the system operator.
All loads would work at the valley of the electricity price,
and as a result, form a load peak at the valley. The problem
is hard to solve by adjusting electricity prices. Regardless
of how the electricity price is set, as long as the prices
received by all flexible loads are the same, their responses
will be similar, and the loads will be concentrated at the valley
of the electricity price, where a peak load will be formed.
The way to solve the problem is coordinated scheduling.
Scheduling with the equivalent aggregated model described
in this paper is an approach to coordinated load scheduling.
In Fig.9, a scheduling model coordinates the flexible loads
well, and the valley of the total load is almost filled into a hor-
izontal line by flexible loads. It illustrates that the proposed
equivalent aggregated model is effective in a scheduling
model.

B. DEVIATIONS OF EQUIVALENCE
This section analyzes the equivalence deviation of each
group. The equivalence deviation is the deviation between
Pg(·) of the original group and Pg,e(·) of its equivalent model.
Theorem 5 draws a conclusion that, for a group of ON/OFF
loads, the deviation between Pg(·) and Pg,e(·) will not exceed
the maximum rated power of the loads at any time. Therefore,
the equivalence deviation of each group is calculated to verify
that conclusion.
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FIGURE 11. Power and deviation of the group with least loads.

FIGURE 12. Maximum absolute deviation of all groups.

Groups with the most loads and the least loads are analyzed
as examples, and their load curves and the absolute deviation
|Pg,e(·)−Pg(·)| are shown in Fig.10 and Fig.11. It can be seen
that the Pg,e(·) of the equivalent model is almost coincident
with the Pg(·) of the original group. This indicates that the
equivalent model and the original group are highly consistent
in the characteristics of the total power. Then, regardless
of the number of loads in the group, the absolute deviation
between Pg,e(·) and Pg(·) does not exceed the maximum rated
power, 12 kW at any time, which verifies the conclusion of
Theorem 5. Considering the total power of a group is in the
range of several MW to hundred MW, the absolute deviation
of 12 kW is almost negligible, which indicates the high
accuracy of the equivalent model. Finally, the deviation of
the groups only occurs when Pg,e(t) 6= 0, which is consistent
with the proving process in Section III. This is because the
Pg,e(t) equal to 0 does not participate in the power disag-
gregation process, so when Pg,e(t) = 0, the corresponding
Pg(t) = 0, and the deviation is thus 0.
In order to display the deviation of all groups, the max-

imum absolute deviation at all times, ‖Pg,e(·) - Pg(·)‖∞,
is calculated and shown in Fig.12. It’s clear that the maxi-
mum absolute deviations of all groups do not exceed 12 kW,
the maximum rated power of the loads. Hence, the result
verifies the conclusion of Theorem 5.

The total power of all groups
∑
Pg(·), the total power

of all equivalent models
∑
Pg,e(·), and their absolute devi-

ation are shown in Fig.13. The
∑
Pg(·) of all equiva-

lent models is almost coincident with the
∑
Pg,e(·) of

all groups, which indicates that the equivalent models are

FIGURE 13. Power and deviation of all groups.

highly accurate. Then, according to Theorem 5, the upper
limit of the total deviation can be estimated. Since the upper
limit of the deviation of each group is max(Pratei ), or 12 kW,
the upper limit of the total deviation is the max(Pratei ) multi-
plied by the number of groups, or 996 kW. However, since the
deviations in disaggregation progress are random, the positive
and negative equivalence deviations from different groups
will cancel each other out, so the actual total deviation of
all groups can be much smaller than 996 kW. In this case,
the actual total deviation is no more than 100 kW, which is
consistent with our estimation. Considering the total power of
all groups is up to several GW, the total deviation of 100 kW
is almost negligible. The Pi(·) of each flexible load has been
verified to meet its constraints, illustrating that the result for
each load is operational.

C. CALCULATION PERFORMANCE
This section analyzes the calculation performance of the
equivalence algorithm, which schedules with the equivalent
aggregated model, and compares it with the distributed algo-
rithm in [15]. The distributed algorithm sequentially sched-
ules the working time of the load, and repeatedly iterates until
the scheduling model converges. Reference [15] applied the
distributed algorithm to large-scale flexible loads scheduling
and carried out a case study; hence it serves as a compar-
ison algorithm for this paper. Flexible loads schedules of
two algorithms are P�,eq(·) and P�,dis(·), and their devia-
tion is measured by maximum absolute deviation, ‖P�,eq(·)-
P�,dis(·)‖∞. The equivalence algorithm and the distributed
algorithm are tested on the same hardware and software plat-
form, and in the step of optimization with equivalent models,
YALMIP/IPOPT is used as the optimization tool. Other steps
are implemented by MATLAB code.

Table 4 displays the calculation time for the two algorithms
to schedule onemillion flexible loads. The calculation time of
each step in the equivalence algorithm is described separately.
Overall, the calculation speed of the equivalence algorithm is
nearly 154 times faster than the distributed algorithm, and its
calculation efficiency increases by more than two-orders of
magnitude. The most time-consuming step of the equivalence
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TABLE 4. Calculation time of two algorithms with one million loads.

TABLE 5. Calculation time and scheduling results of two algorithms
under different scales of loads.

algorithm is grouping, which accounts for 68% of the
time used by the entire algorithm. The reason for the
time-consuming step is that a large number of loop calcu-
lations are required to group each load. However, since the
process of load grouping is independent, the step of grouping
can be accelerated by parallel computing. Afterwards, the key
step of scheduling, optimization with groups is solved in
about one second. The reason that this step can be solved so
quickly is that a large number of loads with discrete variables
are equivalent to the equivalent load models with continuous
variables and linear constraints, which makes it possible to
use conventional algorithms and existing solvers, and hence
the model is solved efficiently. By contrast, the distributed
algorithm needs to repeatedly iterate all the loads in sequence,
and the iterative process for the loads is performed serially,
which results in a relatively slow solving speed.

Table 5 displays the calculation time and scheduling results
of the two algorithms under different scales of loads. Under
different scales of flexible loads, the proposed equivalence
algorithm achieves the same total cost of the system as
the distributed algorithm, and the deviation between flexible
loads schedules is also very small. However, the equivalence
algorithm performs scheduling in just tens of seconds, which
is much faster than the distributed algorithm. The equiva-
lence algorithm’s calculation time is nearly linear with the
numbers of loads, which means that the algorithm has good
scalability for large-scale load scheduling. During the process
of scheduling, the step of grouping often takes up more than
60% of the total calculation time, whereas the other steps

just take a few seconds. The step of grouping can be accel-
erated by parallel computing, so the time consumption of the
equivalence algorithm can be further reduced, which is quite
useful for scheduling with a large number of flexible loads.
In addition, since the equivalent model of the group is linear
and continuous, it can be easily embedded in various schedul-
ing models without increasing their complexity, which is also
difficult for the distributed algorithm to accomplish.

VI. CONCLUSION
With the rapid development of smart grid technology, large-
scale flexible loads are being integrated into the bulk power
system, posing a great challenge for system operation. Focus-
ing on the scheduling of the power system with large-scale
flexible loads, this paper proposes an equivalent aggre-
gated model of flexible loads based on grouping equiva-
lence, proves the equivalence between the models, estimates
the upper bound of equivalent deviations, and establishes a
scheduling model applying the equivalent aggregated model.

The case study indicates that the proposed model can
be effective in the scheduling of large-scale flexible loads,
which makes the loads operate coordinately at the system
valley instead of causing a load peak. The deviation between
the equivalent model and the original group is quite small,
which indicates that the equivalent model is highly accurate.
When compared with the distributed algorithm, the equiva-
lence algorithm based on the equivalent aggregated model
can optimize the scheduling of large-scale flexible loads in
a short time, which is faster by two orders of magnitude than
the distributed algorithm. Overall, the equivalent aggregated
model and the related scheduling method provide an effective
solution for large-scale flexible loads to participate in power
system scheduling. The fast calculation of the equivalent
aggregated model makes it promising for day-ahead, intraday
and real-time scheduling.
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