
Received September 1, 2019, accepted September 23, 2019, date of publication September 26, 2019,
date of current version October 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943922

An Approximate Bufferless Network-on-Chip
LING WANG 1,2, (Student Member, IEEE), XIAOHANG WANG2, (Member, IEEE),
AND YADONG WANG1
1School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2School of Software Engineering, South China University of Technology, Guangzhou 510006, China

Corresponding author: Yadong Wang (ydwang@hit.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFC1202302 and
Grant 2017YFSF090117, in part by the National Natural Science Foundation of China under Grant 61822108, Grant 61571152, and Grant
61971200, in part by the Natural Science Foundation of Guangdong Province under Grant 2018A030313166, in part by the Research Grant
of Guangdong Province under Grant 2017A050501003, in part by the Pearl River S&T Nova Program of Guangzhou under Grant
201806010038, and in part by the Fundamental Research Funds for the Central Universities under Grant 2019MS087.

ABSTRACT Bufferless network-on-chip (NoC) designs have drawn research attention in massively par-
allel multicore systems via their significant benefits in power and area savings. However, it shows poor
throughput and low bandwidth in current bufferless designs due to complex bufferless routing and arbitration.
Especially in the NACK-based bufferless network, the network performance will be affected significantly
as the network conflicts increased caused by packet retransmissions. To this end, we proposed a novel
approximate bufferless network, ABNoC. ABNoC lessens network conflicts and packet retransmissions
via an approximate allocation mechanism (AAM) and a packet approximation method. We show that,
compared with SCARAB, ABNoC improved the bandwidth up to 1.92 times and achieved 1.2 times faster
in runtime. Besides, ABNoC accomplished 83.6% retransmission reduction and 46.7% latency reduction,
while maintaining low application error.

INDEX TERMS Network-on-chip, bufferless NoC, approximate allocation, packet approximation.

I. INTRODUCTION
Over the last few decades, chip multiprocessors (CMPs) have
replaced uniprocessors and become mainstream for building
high-performance computers, due to the limitation of the
power wall and the birth of advanced integration technol-
ogy [1]. The network-on-chip (NoC) serving as an effective
interconnection fabric connects these many on-chip compo-
nents. It provides better scalability and higher bandwidth
compared to traditional interconnections such as the bus
and crossbar [2]–[4]. However, NoCs consume a significant
amount of power in CMPs, that is, 40 percent of the tile power
consumption in the 16-tile MIT RAW chip [5], 28 percent in
the 80-tile Intel TeraFLOPS chip [6] and 19 percent in the
36-tile SCORPIO chip [7]. Buffers consume a large portion of
network power and area [6], [8]. This motivates the bufferless
design in low-power NoC architecture.

In the past, several bufferless NoCs have been pro-
posed and achieve great power and area savings at a cost
of lower throughput compared to conventional buffered
networks [8]–[11]. For example, the CHIPPER [9],

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

a misrouting-based bufferless NoC, reduces the network
energy by 55% and achieves 36% area savings by eliminating
buffers, but it increases the average runtime of benchmarks
by 13.6%. We compared the average latency of bufferless
and buffered NoCs as shown in Figure 1. The SCARAB [10]
and CHIPPER [9] are two state-of-the-art bufferless designs.
The former is an optimized NACK-based network that
sends NACK messages to trigger retransmissions of dropped
packets in the event of a collision, and the latter enables
NACK-less operations by misrouting the conflicting flits.
Compared with the buffered NoC, the SCARAB network
shows a lower bandwidth, and the CHIPPER NoC runs with
a higher average latency and this becomes worse as the
injection rate increases. Therefore, bufferless NoCs are only
suitable for low injection rates. However, in the big data era,
it is essential to design high-performance bufferless NoC that
achieves low latency and high bandwidth while maintaining
the energy and area benefit of bufferless design.

Many applications, such as machine learning, search-
ing, scientific computing and multimedia applications, have
shown inherent fault tolerance. They allow inexactness in
outputs and can employ selective approximation to achieve

141516 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1233-9557
https://orcid.org/0000-0002-0026-2284

L. Wang et al.: Approximate Bufferless NoC

FIGURE 1. Average latency for single-flit uniform random traffic on
bufferless and buffered NoCs.

better performance [12] These safe-to-approximate appli-
cations motivate the approximate hardware designs which
trade off accuracy for performance improvement and energy
saving.

Recently, some new approximate NoC techniques focusing
on providing disproportionate gains in efficiency have been
presented for the scientific community. APPROX-NoC [13]
exploits lossy data compression in NoC. It facilitates approx-
imate matching of data patterns to improve the compres-
sion ratio. Our previous work ABDTR [14] also shows an
approximation-based dynamic traffic regulation mechanism
in NoC. The ABDTR can regulate the injection rate of each
router by selectively dropping some approximable data based
on the network congestion information. These approximate
NoCs reduce the volume of data injected and achieve good
latency reduction in buffered NoCs. But to date, no literature
presents approximation in bufferless NoC, relaxing commu-
nication accuracy to increase throughput of bufferless trans-
mission.

Instead of in-router buffering, NACK-based bufferless
NoCs discard contending packets in the event of a collision
and then retransmit them from the sources. We evaluate
the the ratio of retransmitted packets under uniform random
workloads. All the injections are single-flit packets. Figure 2
shows that the percentage of retransmitted packets increases
as the injection rate increases. When the injection rate is
greater than 0.2, more than 50% packets are retransmitted,
and about half of them are served more than once. Thus,
we intend to reduce packet retransmissions for through-
put improvement (part of retransmitted packets are dropped
instead of being reinjected). Figure 3 shows the average
latency in bufferless network with different retransmission
reduction ratios. Obviously, reducing retransmissions results
in a great latency reduction and a bandwidth improvement.
And the greater the retransmission reduction, the greater the
return is. Therefore, the main goal of this paper is to reduce
network retransmissions with low quality loss and achieve a
performance improvement in bufferless NoC.

In this work, we design the ABNoC, an approximate
bufferless NoC. It relaxes the transmission accuracy to reduce
packet retransmissions and increase network throughput. The
ABNoC is a lossy NACK-based bufferless design. It can
discard conflicting approximable flits without retransmission

FIGURE 2. The percentage of packets with different retransmissions
under uniform random workloads.

FIGURE 3. Average latency of bufferless networks with different
retransmission reduction ratios under single-flit random workloads.

and recover them after packet transmission, thereby reduc-
ing packet retransmissions and improving bufferless network
performance.

We make the following contributions in this paper:
(1) A novel approximate bufferless NoC to materialize a

low latency and high bandwidth bufferless transmission is
presented.

(2) We design an approximate allocation mechanism and a
packet approximationmethod to reduce network conflicts and
packet retransmissions and recover the approximable missing
flits.

(3) Experiments show that ABNoC achieves an average
83.6% retransmission reduction, an average 46.7% latency
reduction and a up to 1.92× bandwidth improvement com-
pared to SCARAB.

The rest of the paper is organized as follows. In Section 2,
we motivate our work by presenting the big impact of packet
retransmission on bufferless NoC performance and the error
tolerance of wide range applications. Section 3 gives an
overview of the approximation framework. Section 4 explains
the microarchitectural implementation and functional princi-
ples of ABNoC. Section 5 shows the packet approximation
method. In Section 6, we present our experimental setup.
Section 7 details the evaluations. Section 8 presents the
related work. Finally, we conclude our work in Section 9.

II. BACKGROUND AND MOTIVATION
The SCARAB [10] is an outstanding NACK-based bufferless
NoC that implements a single-cycle latency pipeline and pro-
vides high-speed in-router transmission. Besides, it equips a
physically separate circuit-switched NACK network to elim-
inate the negative impact that NACKs will further increase

VOLUME 7, 2019 141517

L. Wang et al.: Approximate Bufferless NoC

FIGURE 4. Network conflict distribution at a random injection rate
of 0.2 flits per cycle per node.

the total network congestion. The SCARAB also introduced
an opportunistic buffering technology. It can retransmit the
dropping packets from an intermediate node, not the sources,
by utilizing the processor-side buffers (miss status handling
registers) to opportunistically store some in-flight packets.
Thereby, SCARAB shows a lower energy consumption and
a lower latency of retransmissions compared with previ-
ous NACK-based bufferless NoCs. In this paper, we use
the SCARAB as a baseline. All the bufferless technologies
are preserved except for opportunistic buffering. Since the
opportunistic buffering could likewise be applied to the other
bufferless designs to reduce retransmission latency. Further-
more, opportunistic buffering is not a completely bufferless
design but needs to take up processor-side buffers. ABNoC
is also an NACK-based bufferless NoC, but it introduces
approximate designs, relaxing transmission accuracy for
retransmission reduction and improving performance. The
main motivation of the ABNoC design is that (1) retransmis-
sion seriously exacerbates network conflicts in NACK-based
bufferless NoC, and (2) lossy communication is acceptable in
applications that exhibit some level of error tolerance.

A. RETRANSMISSION SERIOUSLY EXACERBATES
NETWORK CONFLICTS
In NACK-based bufferless NoCs, all the conflicting packets
are dropped and retransmitted. To analyze the impact of
packet retransmission on network performance, we design a
BASELINE NoC without retransmissions to compared with
the SCARAB. The BASELINE is almost the same as the
SCARAB, except it cannot generate NACK messages for
retransmission. Thus, in a conflict the BASELINE drops all
the conflicting packets but does not try to retransmit them
again. It is a lossy bufferless network. Both the SCARAB and
the BASELINE are 8×8 2D mesh network, and all injected
packets are single-flit and on a random traffic pattern.

Figure 4 shows the conflict distribution in BASELINE and
SCARAB at an injection rate of 0.2 flit per cycle per router.
Both SCARAB and BASELINE drop at least one packet in
the event of a conflict. Therefore, the conflict distribution
is described based on the drop rate of each router, which is
calculated as in Equation (1),

ri =
di

t + rt
, (1)

FIGURE 5. Conflict rate of bufferless NoC under single-flit random
workloads.

where ri is the drop rate of router i, di is the number of
dropped packets in router i, t is the number of total injected
packets, and rt is the number of total retransmissions. The
drop rate is the ratio of the number of dropped packets to
the number of total transmitted packets. The heat map shows
the drop rate of each router, whereas the brighter the color,
the larger the value is, and vice versa. It is clear that the drop
rate in the SCARAB is much larger than that in BASELINE,
especially for the nodes in the middle of network. For further
comparison, we evaluate the conflict rate in SCARAB and
BASELINE at different injection rates, as shown in Figure 5.
The conflict rate is the sum of the drop rates of routers. It is
calculated as in Equation (2),

c =
n∑
i=0

ri, (2)

where c is the conflict rate, and n is the number of routers
in NoC. Figure 5 shows that the conflict rates of SCARAB
are always greater than that of BASELINE. As the injection
rate increases, the conflict rate of SCARAB grows faster than
that of BASELINE. Furthermore, Figure 1 and Figure 5 show
that both the average latency and the conflict rate increase
sharply when the injection rate exceeds 0.2 flit/cycle/node.
In NACK-based bufferless NoCs, network conflict results in
packet retransmission, and retransmission exacerbates net-
work conflict and packet latency, hereby the network perfor-
mance degrades greatly and the throughput quickly saturates
at a high injection rate. In this paper, we design an approx-
imate allocation mechanism (AAM) that aims to mitigate
network conflicts and reduce retransmissions.

B. LOSSY COMMUNICATION IS ACCEPTABLE
Many applications in domains such as image/video process-
ing and machine learning allow inaccurate outputs. They do
not require exact data transmission for accurate computa-
tions. Previous works have proposed load value approxima-
tion for CPU [15] and GPU [16], which shows great potential
in relaxing the accuracy of computing data. Moreover, some
annotation frameworks that label sections of the safe-to-
approximate data are also proposed [15], [17], [18]. These
applications and designs accentuate acceptable inaccuracy of
communication and computation. Many approaches, such as
APPROX-NoC [13], ABDTR [14] and DAPPER [19], have
explored lossy communication in NoCs and achieve a good
latency reduction and power saving. These approximation

141518 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

FIGURE 6. ABNoC operation flowchart.

designs show that applications have a sufficient amount of
value similarities, and data traversing the network have suffi-
cient capacity to be approximated. Approximation, relaxing
transmission accuracy, is a promising technology to achieve
high performance and low power consumption in NoC con-
necting a large number of on-chip components. We propose
a novel approximate bufferless architecture. It includes an
in-network flit discarding scheme and a packet approximation
method to improve bufferless network performance while
maintaining low quality loss.

III. APPROXIMATION FRAMEWORK
A. APPROXIMATION DESIGN
In this paper, flits are delivered independently in ABNoC.
In each router, any incoming flit performs routing and port
allocation. Figure 6 shows the principle of ABNoC. In
case of a routing conflict, only one flit can be allocated
successfully and cross the router while all the conflicting
flits being dropped. The AAM triggers a NACK message
for packet retransmission when a non-approximable flit is
dropped. For the approximable ones, they will be discarded
directly and be recovered at the destination node through
packet approximation method after the packet transmission.
This design will reduces the retransmission of packets with
approximable flits. In ABNoC, not all non-approximable
flit drops will trigger NACKs immediately in the network
conflicts. Some NACKs are triggers in the destination routers
when non-approximate flits in a packet are found missing.
The approximate transmission will be expanded in the next
subsection.

Another important design is the packet approximation
method that works for recovering the approximable miss-
ing flits. The packet approximation in ABNoC includes
two parts: approximate encoding before packet injection and
approximate decoding after packet transmission. We encodes
all the the approximable flits of a multi-flit packet into
a non-approximable flit and transmit it with the multi-flit
packet. The non-approximable flits can be preserved in
ABNoC. Thus, themissing approximable flits can be decoded
from the encoded flit. This approximate method only works
for multi-flit packet transmission. All the single-flit packets

FIGURE 7. Approximation framework overview.

in our design are non-approximable and can achieve lossless
transmissions in ABNoC.

Figure 7 shows the overview of the approximate design. In
each router the AAM drops the conflicting flits and triggers
NACks for retransmitting the packets with non-approximable
flits loss. Thereby, the conflicting approximable flits are
discarded without retransmission. And ABNoC results in
the packet retransmission reduction and network conflicts
mitigation. After a packet transmission, the missing approx-
imable flits in the packet will be recovered through the packet
approximation method. The ABNoC provides an in-network
traffic reduction can accurately capture the network conges-
tions. In ABNoC, only the conflicting approximable flits
are discarded and approximated, while others still have
lossless delivery. Therefore, ABNoC could improve buffer-
less network performance while maintaining low application
error.

B. APPROXIMATE NACK-BASED BUFFERLESS
TRANSMISSION
In ABNoC, the flit transmissions and ACK/NACK feedbacks
are separated. Each packet is transmitted with an exclu-
sive NACK channel for ACK/NACK message transfer. For
single-flit packet, the single flit configures theNACK channel
while it is transmitted over a router. For multi-flit packet, only
the head flit is transmitted with a configured NACK channel,
while others enable NACK-free transmission and travel inde-
pendently in ABNoC. There are no buffers at the switch ports
in ABNoC, so flits cannot be stopped. In every cycle, flits that
arrive at the input ports contend for the output ports. When
two or more flits contend for the same output port, only one
can be transferred through the output channel, and others are
dropped. If the single-flit packet or the head flit of a multi-flit
packet fails in any allocation or there are no remaining NACK
channels, it will be dropped. Then, an NACKmessage travels
along the preconfigured NACK channel back to the source to
trigger the whole packet retransmission. Other flits are free to
transmit and perform independent routing and port allocation
in each router. If they are dropped in a conflict, the NACK
message will not be generated immediately. After a multi-flit
packet finishes its transmission,1 it will be checked whether

1When the head flit and the last flit of a multi-flit packet reach the
destination or the limited waiting time of the head flit at destination node
is over, the packet transmission is considered complete.

VOLUME 7, 2019 141519

L. Wang et al.: Approximate Bufferless NoC

FIGURE 8. Destination node operation flowchart.

all the non-approximable flits have been received.2 If there
is any non-approximable flit being lost, the NACK channel
corresponding to this packet will signal an NACK message
to its source node for packet retransmission, and the received
flits of the packet will be discarded. For other missing flits,
they will be recovered through the packet approximation
method, while an ACK signal will be triggered for releasing
the exclusive NACK channel.

Figure 8 shows the overall flow in the destination node.
When a flit successfully reaches its destination, if it is a
single-flit packet, it can be sent directly to the processing
element (PE) and then anACKmessagewill be signaled back.
Or if it is the head flit of a multi-flit packet, it will be kept
in the destination node, waiting for the remaining flits of the
packet. All the received flits of a multi-flit packet can be kept
in destination node until the packet transmission is over. After
a multi-flit packet transfer is completed, the packet will be
checked whether there is any flit being discarded. The loss
of non-approximable flits will trigger NACK messages and
the approximable missing ones can be approximated. If no
non-approximable flits are lost, an ACK message will be fed
back along the exclusive NACK path.

IV. ARCHITECTURE DESIGN FOR ABNOC
A. MULTIPLANE ARCHITECTURE
The ABNoC router separates packet transmission and
ACK/NACK rollback by a multiplane architecture to avoid

2The approximable flits’ quantity of a multi-flit packet is stored in its head
flit, and the approximable status is also stored in each flit. Thus, if the number
of received non-approximable flits does not equal the total flits numberminus
the approximable flits’ quantity, there is at least one non-approximable flit
being dropped.

FIGURE 9. ABNoC architectural overview.

traffic collisions caused by ACK/NACK messages. The
ABNoC provides a two-plane architecture: one for data
transfer named data network and the other for ACK/NACK
rollback named NACK network. Each packet transmitting
in the data network obtains an exclusive channel of the
NACK network to the ACK/NACK message rollback. In the
NACK-network, the exclusive channel is allocated based on
the allocation results of the data network. Thus, the NACK
network acts as a preconfigured circuit-switched network.
Note that each packet is delivered with only one exclusive
channel of the NACK network. For a multi-flit packet, only
the head flit shares allocation results with paired routers in the
NACK network and is transmitted with an exclusive NACK
channel. Moreover, the head flit or a single-flit packet can be
successfully allocated in each router only if the productive
output is obtained and a free NACK channel exists along its
output path.

Figure 9 shows the high-level architectural depiction of
the ABNoC router. The ABNoC connects the processing
elements (PEs). In ABNoC, each router consists of two inter-
related but physically separate components: the data router
and NACK router. The data router is a fully functional buffer-
less router, while the NACK router does not need routing
computation, and it is configured with the allocation results
from the data router. Each data router also contains an AAM
that can discard the conflicting approximable flits without
NACK messages.

B. BUFFERLESS DATA NETWORK
1) BUFFERLESS ROUTER
Figure 10 illustrates the design of the bufferless router in
the data network. Each router consists of five multiplexers:
four cardinal neighbor connections and one local connection.
There are no buffers needed for packet transmission in a
router. Each cardinal neighbor connection is only equipped
with a latch for storing a flit that may come in from the output
port of neighbor direction at any cycle. And all arriving flits
contend for output ports and are forced to be routed out in
the next cycle, except the flits in injection port. Injection can
only occur when the required output slot is free. Therefore,

141520 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

FIGURE 10. Bufferless data router architecture.

some injection buffers are needed to store the flits waiting
to be injected. Some ejection buffers are also necessary for
receiving the arrived packets. But the injection and ejection
buffers can also be replaced with the miss status handling
registers (MSHRs) as in previous bufferless designs [9], [10].

The bufferless data router supports XY routing and AAM.
The XY routing and AAM are combined together, and
can quickly determine whether the incoming flits are being
served or discarded without retransmission. Due to the lossy
transmission, the data router simplifies the complex con-
flict prevention design in previous bufferless NoCs. It is
with a lightweight router architecture which consumes very
little area and power and reduces the pipeline stages for
single-cycle delivery in a router. In Figure 10, the assignments
of input ports relative to output ports is ‘twisted’. The reason
is that straight-through router traversals (N⇔ S and E⇔W)
are more common than turns.

In the data router, each flit in a packet starts with some
header bits for independent routing and port arbitration.
Figure 11 shows the flit packetization in an 8×8 mesh
network. The header bits are encoded as follows,
a 5-bit priority, 1-bit single/header indicator, 6-bit desti-
nation address, 6-bit source address and 3-bit flit ID. The
128-bit data bits are used for storing some int or float values.
In ABNoC, the XY routing and AAM is a priority-
based design. The non-approximable flits will have a
higher priority than approximable ones. And the priority of
non-approximable flits is incremented with retransmissions.
The first 4 bits of the 5-bit priority are used to record the
number of retransmissions of non-approximable flit. The
last 1 bit indicates the approximable info of flit (1 for
non-approximable, 0 for approximable). The priority of an
approximable flit is always 0. The priority and destination
info is used for the XY routing and port allocation. The 1-bit
single/header indicator determines whether a flits needs to
configure an NACK channel during the transmission. Only
the single-flit packet and the head flit of multi-flit packet is
transmitted with a NACK channel and shares the allocation
results with a paired NACK router. The 3-bit flit ID has two
functions. It indicates the place of a flit in an 8-flit data
packet. And in the encoded head flit, it stores the number of
approximable flits in a 8-flit data packet. Based on the source,
ID and flit approximable info, at the destination node we can

FIGURE 11. The flit packetization.

determine whether the transmission of a multi-flit packet is
complete and whether there is a non-approximable flit loss.

2) ROUTING
The bufferless data network employs XY routing. The pro-
ductive output port of each flit is based on its destination
address, which is stored in its header bits as X and Y values.
Routing computation in each router determines the correct
output port by comparing the destination address with the
local address. XY routing provides each packet with a unique
transmission path, so the flits in a multi-flit packet are routed
independently but with the same output. Therefore, the order
of flits in a multi-flit packet will not be changed with the
bufferless transmission.

3) AAM
The AAM has three functions: (1) allocating the output port
to flits based on the routing result, (2) dropping contending
flits with low priority, and (3) triggering an NACK message
when a single-flit packet or a head flit is dropped. With XY
routing, we fix the arbitration scheme for each output port.
All the input ports are hardcoded with a default priority: north
> south > west > east > injection, which means if flits with
the same priority from two different input ports, one always
take precedence based on this default priority. This design
allows all the incoming flits to quickly be either directed to
their preferred output ports or dropped in a conflict. The fixed
arbitration follows a rule that a flit going straight has a higher
priority than a flit that is turning. The injection port always
has the lowest priority because the flits can be buffered first
in the injection port. If a flit in the injection port does not
succeed in arbitration for its output port, we can try again
in the next cycle until it is injected into the network for
transmission.

4) IMPLEMENTATION
The required signals for routing and allocation are obtained
from the header bits of the incoming flits at each input port.
In Figure 12, the Vdirection, Pdirection, S/Hdirection, Xdirection,
Ydirection correspond to the valid bit, priority, single or head
flit, destination X and Y values respectively. Once a flit
arrives at a input port, the valid bit will be activated, which
indicates a valid flit is waiting at the input port. Xr and Yr
are the local address of the working router. NACKdirection
represents whether there is at least one NACK wire not being
assigned at the output port direction in the NACK network.

Figure 12(a) shows the east and west output routing and
allocation. Based on the XY routing, the east and west
direction output only needs to consider the latches of their

VOLUME 7, 2019 141521

L. Wang et al.: Approximate Bufferless NoC

FIGURE 12. Routing and AAM.

opposing input ports and the injection port, regardless of the
flit priority. Any time that a flit arrives at either the east or
west input port with a nonzero X value, it will be guaranteed
to be forwarded straight since it has the highest priority in
our fixed arbitration scheme. Routing and arbitration for the
north and south output ports are more complicated since they
need to consider flits turning.

Figure 12(b) shows that the arbitration follows the default
hardcoded priority. The multiplexers always check the oppos-
ing input port first and then determine if the flit in west input
port is turning, followed by the east input port, and finally
the injection port, if all the input flits have the same priority.
Otherwise, the flit with higher priority will be preferred. Note
that a flit traverses at most three 2-to-1 multiplexers from
its input port to its output port, which keeps the critical path
delay low.

The logic circuit in the ejection port, shown in Figure 12(c),
is similar to that of the north and south output ports. Four
channels are selected by three multiplexers, and the incoming
flits are ranked based on their flit priorities and the default
hardcoded rule. The source address of a packet can never be

the same as its destination address, thus eliminating the need
to connect the ejection port to the injection port. To determine
if a packet is destined for the ejection port, both the X and Y
values need to be zero.

In addition, each output port is also equipped with a selec-
tor. If the output flit of the outermost multiplexer is a head
flit or a single-flit packet, the selector will work based on
the NACKdirection signal. Otherwise, the flit will go directly
through the selector. The selector is used to ensure that each
head flit or single-flit packet traversing the router configures a
1-bit NACK path. If the NACKdirection signal is false, the head
flit or single-flit packet will be dropped and an NACK signal
will travel along the corresponding NACK path to trigger
retransmission. Moreover, the design performs routing and
AAM together to allow flits to traverse each router in a single
cycle.

5) DEADLOCK AND LIVELOCK
TheXY routing andAAMgreatly simplify route computation
and port arbitration. Our design can quickly direct flits from
the input port to their productive output ports and determines
which flits to be dropped with or without the NACK signal in
the event of a conflict. All the conflicting flits are dropped
instead of being blocked in ABNoC. The bufferless data
network is deadlock-free in nature due to the XY routing and
AAM design.

To prevent the livelock problem caused by saturating pri-
ority, we provide 4-bit priority increment, which supports
up to 15 retransmissions before saturation. This can satisfy
most packet retransmission requests. Even for the worst case
in which a packet is retransmitted up to 15 times, we will
stop injecting other packets with 15 retransmissions until this
packet finishes transmission. This design will ensure that
there is at most one 15-priority packet that is transmitted in
the network and avoids livelock.

There is another situation that may lead to a livelock.
Flits perform independently in each router, so a multi-flit
packet injection may be interrupted by transmissions of other
flits due to the lowest priority of the injection port. The
interruption will result in a long injection interval between
two flits of the packet. In addition, for the multi-flit packet,
the injection period from the head flit to the last flit is the same
as its ejection period due to no network congestion. After
the ejection space is filled, if the multi-flit packet has not
completed the transmission, a livelock will be generated. To
avoid the livelock caused by the limited ejection space being
filled, the packet injection period needs to be limited. In our
design, each router allocates a counter of fixed E cycles in
the injection port. When the head flit of a multi-flit packet is
injected, the counter starts to decrease with the number of
cycles until it reaches zero or the last flit of the packet is
injected. When the count is over, the remaining flits of the
multi-flit packet will be dropped. Then, the packet will be
stored into MSHR and wait for retransmission. Each router
injects one flit per cycle. Thus, the E + 1 must be larger than
the size of the data packet, where the 1 is for the head flit.

141522 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

FIGURE 13. Overview of the multichannel NACK router.

The waiting time of head flit in destination node will not
exceed E cycles, since it is the same as the packet injection
period.

C. NACK NETWORK
1) MULTICHANNEL CIRCUIT-SWITCHED NETWORK
The NACK network in the ABNoC operates as a small 5× 5
mux-based switch, and each port is equipped with multiple
1-bit channels, which is similar to the design in
SCARAB [10]. Figure 13 illustrates the overview of an
NACK router. There are no buffers and routing and arbitrator
microarchitecture. The NACK router works with only some
logic to control the crossbar for establishing or releasing a
1-bit pathway to transfer the acknowledgment (ACK) and
negative acknowledgment (NACK) messages. The routing
and allocation information comes from its paired data router.
When all channels of a port are assigned, an NACKdirection
signal will be activated and fed back to the data router.
Compared with the traditional NACK-based bufferless NoC
that needs to send a full packet to request retransmission,
the 1-bit channel NACK network results in a very energy
efficient means of signaling feedback.

Moreover, messages in the NACK network take two cycles
per hop. Any message sending out on an even clock cycle can
only be transferred by the next router in a later even cycle.
This enables us to use time division multiplexing (TDM)
technology to halve the number of inter-router NACK chan-
nels and sustain network bandwidth. This design reduces the
number of NACK channels for area and power saving in
ABNoC. The TDM allows each inter-router NACK circuit
channel to transfer two messages that are differentiated by
even and odd cycles. The circuit path setup and message
transmission are separate in the NACK network. Thus, any
packet transmitted in the data network needs to be NACKed
or ACKed after an even period, which drives the maximum
injection period (E) to be an even value.

2) PATH ESTABLISHMENT AND RELEASE
The NACK network works as a general circuit-switch net-
work, where a dedicated circuit channel must be set up before
data transmission. Every packet traverses a router with con-
figuring a 1-bit channel of the NACK network. This NACK

channel is connected along the packet’s entire path, such
that the ACK or NACK message is transmitted along the
preconfigured circuit path. In the NACK network, each feed-
back message transfers each preconfigured hop with 2 cycles,
which creates a deterministic delay of message transmission
of 2 × N cycles, where N is the number of hops of the
preconfigured circuit path.

Unlike the SCARAB design that allows NACK channels
to be reallocated after the implicitly ACKed transmission
delay, the ABNoC releases a circuit path with the NACK and
ACK message. When a router in the NACK network receives
a feedback message, the router releases the corresponding
configured connection with the previous node. This means
that each established path is only used once for transferring
the NACK or ACKmessage before being released. Moreover,
the NACK network in ABNoC is more energy efficient in
comparison to that in the SCARAB due to not needing coun-
ters to record the implicit ACKed epochs.

In the ABNoC design, a feedback message can be trig-
gered in three situations: (1) An NACK signal is triggered
when the head flit or single-flit packet is dropped during
its transmission; (2) signaling NACK at the destination node
since a non-approximable flit is not received after the packet
transmission; and (3) an ACK signal travels from destination
node to the source when the packet is delivered successfully,
whichmeans all the non-approximable flits are received at the
destination node. As the transmission delay in both theNACK
network and data network are proportional to the delivery
hops (2 × hops), the time of the transmission delay plus the
NACK/ACKmessage feedback time will be 4 times the hops.
At the destination node, the ejection period is the same as
injection period which is less than E cycles. The maximum
waiting time of head flit is E cycles. Thus, the window of
time that a packet could be NACKed or ACKed after initial
transmission is deterministically bounded, as shown in Equa-
tion (3),

L = 4× (|Xs − Xd | + |Ys − Yd | + 1)+ E (3)

where L is the maximum delay, E is the maximum injection
period, (Xs,Ys) and (Xd ,Yd) are the source address and the
destination address respectively.

V. PACKET APPROXIMATION
Previous approximation designs in NoC focus on the reduc-
tion of data injection [13], [14], [19]. They discard some
approximable data before being injected into the network.
However, the injected flits in these designs still need to face
network conflicts and wait, which results in long latency of
contending flits. These end-to-end traffic reduction schemes
cannot response to network conflicts on the spot. Therefore,
we propose an in-network traffic reduction scheme which
can accurately capture the network workload. In ABNoC,
contending flits are discarded instead of waiting, and the
approximable ones can be safely approximated after packet
transmission. Packet approximation is a stage for recovering
the lost approximable flits. In this paper, we propose a new

VOLUME 7, 2019 141523

L. Wang et al.: Approximate Bufferless NoC

FIGURE 14. Approximate encoding and decoding of a 4-flit packet.

value approximation method for approximating the missing
flits with low quality degradation.

In packet approximation, each multi-flit packet starts with
a non-approximable head flit. All the approximable flits
are encoded into the head flit. ABNoC ensures that the
non-approximable flit will not be lost in packet transmission.
So that, the discarded approximable flits can be decoded from
the head flit at the destination node.

Figure 14 shows a packet approximation example with a
4-flit packet transfer. We assume that the first three flits are
approximable and the last one is non-approximable. Note that
the number and the place of approximable flits have no effect
on our design. All the approximable flits can be encoded into
a head flit that is signed non-approximable. The head flit
and the existing 4 flits comprise a new 5-flit packet and are
injected into theABNoC.During the packet transmission, any
approximable flit could be discarded in a network conflict. In
the example, we assume the approximable flit2 is discarded.
After the packet reaches the destination router, the flit2 is
recovered as the flit ′2 by decoding the head flit.
In this work, we focus on 32-bit integer and floating-point

value approximation. The 128-bit data of a flit consists
of 4 integer or floating-point values. Each flit recovery is
to approximate the four values. Note that a flit is annotated
as approximable only when the flit stores the words of a
same type and they are all approximable. The approximate
encoding and decoding will be elaborated in the following
subsection.

A. APPROXIMATE ENCODING
The approximate encoder works by using the 128-bit data
space of head flit to encode the words in all approximate flits.
The number of approximable flits in a packet is 0 to 8. If the
number is 0, we will set the last flit as approximable. This
will not cause a loss of quality to the packet, since the head
flit can duplicate the words in the approximable flit in a one-
approximable-flit packet Thus, there is at least one approx-
imable flit in any multi-flit packet. In approximate encoding,
the 128-bit data space of head flit is divided according to
the number of approximable flits. Then each divided part is

Algorithm 1 Encoding
Input: n← the number of approximable flits

flit0, ..., flitn−1← the data bits in
approximable flits
Output: H ← the data bits in head flit

1 if n == 1 then
2 // the approximable data is
3 // duplicated into the head
4 H = flit0;
5 end
6 if n == 2 then
7 // the data space is divided into 2 equal parts
8 Hi← H

2 , i ∈ {0, 1}
9 // the half stores the encoded flit0
10 H0← approximate(flit0);
11 // the other half stores the encoded flit1
12 H1← approximate(flit1);
13 end
14 if n == 3, 4 then
15 // the data space is divided into 4 equal parts
16 Hi← H

4 , i ∈ {0, 1, 2, 3}
17 for j =0; j<n; j++ do
18 // each flit is encoded into an equal part
19 Hj← approximate(flitj)
20 end
21 end
22 if n == 5, 6, 7, 8 then
23 // the data space is divided into 8 equal parts
24 Hi← H

8 , i ∈ {0, 1, ..., 7}
25 for j =0; j<n; j++ do
26 // each flit is encoded into an equal part
27 Hj← approximate(flitj)
28 end
29 end
30 return H

used to encode a 4-value approximable flit. The number of
approximable flits (1-8) can be stored in the 3-bit ID of head
flit.

Algorithm 1 shows the encoding process. In approximate
encoding, the 128-bit data space of head flit can be divided
into 1, 2, 4 or 8 equal parts, shown as the Figure 15. Specifi-
cally, 1 is for one approximable flit, 2 for two, while 4 is for
three and four approximable flits, and 8 is for five, six, seven
or eight. Then all the approximate flits are encoded into the
divided parts in order.

Encoding a flit is to approximately store the four 32-bit
integers or floating-point values of the flit. First, we encode
each 32-bit value as a 16-bit data. Figure 16 shows the integer
and floating-point value encoding. The most significant bit of
the 16-bit data is used to indicate the value type, 0 for integer
and 1 for floating-point. For the integer value, we shift data
to the right by n digits for converting an integer value to a
maximum 10-bit value (A-value). The shifted number n is

141524 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

FIGURE 15. 128-bit data space division in head flit.

FIGURE 16. Integer and floating-point value approximate encoding.

stored in the 16-bit data with the 10-bit value. For example,
an integer value +445566789 will be shifted to the right
by 20 digits and stored as +0x1A8 (A-value). The coding
result is 0x51A8. The floating-point value is represented as
Equation (4),

float = (−1)S × (1+ .mantissa)× 2exponent (4)

where S is the sign bit. The mantissa and exponent are stored
in a 23-bit and an 8-bit spaces separately, as shown in Fig-
ure 16(b) We propose to approximate only the mantissa field
of the floating-point value. We encode the 23-bit mantissa in
a 6-bit A-mantissa by removing the 17-bit LSB and the the
sign bit and exponent bits are reserved.

Second, the encoded values are stored into a divided
part (Hi). Different divisions result in different sizes to store
these values. When the divided part is full, the rest encoded
values that can not be stored will be discarded. For example,
if there are three approximable flits, each flit will be encoded
into a 32-bit space. Only the first 2 values of the approximable
flit can be encoded and stored in a divided space. The remain-
ing 2 values of the flit will be discarded.

B. APPROXIMATE DECODING
Decoding is to recover the missing flits. When a multi-flit
packet finishes transmission, the decoder will first determine
the divisions of the data bits in the head flit by the number of
approximable flits. Then, each missing flit will be determined

Algorithm 2 Decoding
Input: n← the number of approximable flits

H ← the data bits in head flit
Output: flit0, ..., flitm← the data bits in the missing

flits
1 // determine the division in head flit
2 if n == 1 then
3 return flit0 = H
4 end
5 if n == 2 then
6 Hi← H

2 , i ∈ {0, 1}
7 end
8 if n == 3, 4 then
9 Hi← H

4 , i ∈ {0, 1, 2, 3}
10 end
11 if n == 5, 6, 7, 8 then
12 Hi← H

8 , i ∈ {0, 1, ..., 7}
13 end
14 //the fliti is the jth approximable flit
15 for i=0; i<m; i++ do
16 //4-value recovery per flit
17 while 4 times do
18 if Hj is not empty then
19 // recovering a value from 16 bits
20 // in jth part of head flit
21 32-bit value← recover(0xFFFF & Hj)
22 // storing the value into fliti
23 fliti← fliti << 32 + 32-bit value
24 // remove the decoded bits
25 Hj← Hj >> 16
26 end
27 else
28 // repeat the last value to
29 // recover the rest values in fliti
30 fliti← fliti << 32 + 32-bit value (the

last)
31 end
32 end
33 end
34 return flit0, ..., flitm

which division it encodes. Finally, we can recover the data in
the missing flit.

Algorithm 2 shows the decoding process. If there is only
one approximable flit, the values stored in the head flit will
be applied directly to recovering the approximable flit. For
more than one approximable flit, the data space in the head
flit is divided into 2 or 4 or 8 parts based on the approximable
quantity. Each part can recover an approximable flit. Different
divisions result in different sizes being used for recovering
a flit. For example, 2 divisions will result in each part have
64 bits to recover a flit, while for 8-division scenarios, there
are only 16 bits in each division. Each 16 bits of a division can
recover a 32-bit data in the flit. The 4 data of a flit will require

VOLUME 7, 2019 141525

L. Wang et al.: Approximate Bufferless NoC

TABLE 1. NoC configurations.

64 bits to recover. If there are not enough bits to recover
the flit. The remaining data in the flit can be restored to the
last decoded data. The decoding that recovers a 32-bit data
from 16 bits in a division is the opposite process of encoding.
It pads the missing bits with zeros.

VI. METHODOLOGY
We evaluate the effectiveness of the ABNoC in
comparisonwith the outstandingNACK-based bufferless net-
work (SCARAB) [10] and a compression-based approximate
design (APPROX-NoC) [13]. The network configuration
parameters are listed in Table 1.

1) NoC CONFIGURATIONS
We compare ABNoC against a non-approximate bufferless
NoC and an approximate bufferless NoC. The configurations
are listed below:

• SACRAB: In this configuration, the NoC is the
non-approximate bufferless SCARAB. The workload is
uncompressed and achieves losslessly delivery. All the
data packets are filled with 8 flits. As detailed in [10],
each flit needs to perform two stages (switch traversal
and link delay) in each SCARAB router. For purposes
of fair comparison, the SCARAB network referenced
in this paper is designed with priorities but without the
opportunistic buffering, as the opportunistic buffering
needs router-side buffers and could likewise be applied
to the other bufferless design for reducing retransmission
latency.

• SACRAB_APPROX: There is no approximate design
in bufferless NoC so far. We apply the approxima-
tion framework APPROX-NoC [13] to the SACRAB
network. In this configuration, the network is the
non-approximate SCARAB, but the injection pack-
ets are compressed and damaged. Following the
APPROX-NoC design, all the data packets are com-
pressed with the frequent-pattern approximate compres-
sion technique which is called FP-VAXX. Its error
threshold is set as 10%. The compression latency is
three cycles and the decompression latency is two
cycles, which is the same as the default configuration
in APPROX-NoC.

• ABNoC: This is our proposed approximate bufferless
NoC. All the data packets are equipped with an extra
encoded head flit, but the data are uncompressed. The
flits in ABNoC contain more 21-bit header bits for

routing and port allocation and routers have the same
channel width as the flit size.

2) SYNTHETIC TRAFFIC
We evaluate the average latency and average number of
retransmissions in NoCs under several synthetic traffic pat-
terns. We use a cycle-accurate, in-house NoC simulator. All
injected packets are multi-flit packets, and we randomly
select 50% of the packets to be approximable. A varying
percentage of approximable flits are also studied to show their
impact on the performance of ABNoC. As stated in [13],
the APPROX-NoC enhances the compression ratio by up to
41% and increases the non-approximate compression ratio by
30%. Therefore, we reduce the approximable packet by 3 flits
and the non-approximable packet by 2 flits. The approx-
imable data packet is compressed into a 5-flit packet, while
the non-approximable ones become 6-flit packets.

We also evaluate the arrival rate in ABNoC to show the
percentage of received flits. Its value is the ratio of the number
of received flits (not including decoding flits) to the number
of input flits. The arrival rate determines the output quality.
A high arrival rate means that only a small amount of flits will
be approximated. Bandwidth is another important parameter
for the NoCs. It is the injection rate where the network latency
becomes excessive. A large bandwidth means low packet
latency at high injection rates. In this paper, we evaluate
the bandwidth as the maximum injection rate where network
latency is less than 100 cycles.

3) FULL-SYSTEM SIMULATION
To evaluate the impact of ourABNoCmechanism on the over-
all application output error, we utilize the Pin tool, a dynamic
binary instrumentation framework [20]. We hand-annotate
the benchmarks mentioned below, in a similar fashion to the
load value approximation [15], to identify the data regions
that can be approximated. The ABNoC only focuses on
integer and floating-point value approximation. An impor-
tant consideration while hand-annotating approximable data
regions is the data type of the variables being determined
to be approximable. We annotate the flits as approximable
only if their words are approximable and have the same type
(integer or floating-point). In ABNoC, there is at least one
approximable flit in each data packet due to the encoding and
decoding algorithm. If all the flits of a data packet are non-
approximable, the last flit will be annotated as approximable.
For a full-system evaluation, we use a modified event-driven
many-core simulator [21]. Table 2 lists the full-system simu-
lation parameters.

4) BENCHMARKS
The benchmarks used for performance evaluation are selected
from the PARSEC [22]. We configure each application with
64 threads and run the benchmarks for 100 million instruc-
tions with small input size. All the simulation benchmarks
and their quality metrics are listed in Table 3.

141526 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

TABLE 2. Full–system simulation system configurations.

TABLE 3. Benchmarks.

FIGURE 17. Maximum count of injection counter sensitivity analysis.

VII. EXPERIMENTAL RESULTS
A. DESIGN PARAMETERS EXPLORATION
1) INJECTION PERIOD
In ABNoC, packet injection period needs to be limited in
E cycles. Figure 17 shows the average packet latency and
the arrival rate in ABNoC by varying the limited injection
period (E). All the packets are injected randomly. At low
injection rates, the average packet latencies with different E
values have hardly changed. When the injection rate exceeds
0.2, with E decreases, the average latency and the arrival
rate weakly decreases. The reason is that the reduction of E
results in more flits to be discarded before injection, thereby
the waiting time before injection will be reduced. At a low
injection rate, there is little waiting time before injection and
the reduction of E reduces the arrival rate and achieves little
latency benefit. In ABNoC, considering the arrival rate and
the latency benefit, the default value of E is set as 16.

2) NACK CHANNELS
Generally, multiple NACK channels are to meet the high
injection rate requirements. We evaluate an 8×8 network
with 4, 8, 12, and 16 logical NACK channels. Figure 18
shows the percentage of failed transmissions due to the lack
of the NACK channel. The workload is random single-flit

FIGURE 18. Percentage of flits dropped due to lack of the NACK channel
under a random single-flit traffic workload.

traffic, so that each flit applies a dedicated NACK channel. As
the injection rate increases, the NACK channel competition
becomes increasingly more intense. At a low injection rate,
a small number of NACK channels can satisfy NACK channel
contention, whereas it results in a large amount of packet
drops due to NACK channel contention at a high injection
rate. In our tests, when the NACK network is equipped with
16 logical channels in each port, there is little packet drop due
to lack of NACK channel. Therefore, we choose the 16 logical
NACK channels in ABNoC. In physical design, there are
8 NACK channels per port due to the TDM design.

B. PERFORMANCE ANALYSIS
In this section, we present the NoC level performance evalua-
tion of the ABNoC using simulated workloads with different
patterns.

1) AVERAGE LATENCY AND ARRIVAL RATE
We evaluate the average latency of ABNoC on a
random and tornado traffic pattern. Figure 19(a) and
Figure 19(b) show the results comparing with the
SCARAB and SCARAB_APPROX. ABNoC shows a great
decrease in average latency compared to SCARAB and
SCARAB_APPROX. ABNoC achieves the lowest average
packet latency and the highest bandwidth. The average
packet latency of SCARAB_APPROX is higher than that
of SCARAB when the injection rate is very low. It is due
to the SCARAB_APPROX needs more time for compres-
sion and decompression packets. At a high injection rate,
SCARAB_APPROX reduces the queuing time at source
node and slightly reduces network conflicts due to fewer
injections. The ABNoC is dedicated to reducing network
conflicts by allowing the approximable collision flits to be
discarded without retransmission. Therefore, as the injec-
tion rate increases, the network conflict intensifies, ABNoC
achieves great benefits in latency reduction. Under ran-
dom workloads, ABNoC achieves an approximate 1.92×
and 1.47× bandwidth increase compared to SCARAB and
SCARAB_APPROX. For the tornado traffic pattern, ABNoC
increases the bandwidth by 1.73× with respect to SCARAB
and 1.27× compared to SCARAB_APPROX.

Figure 19(a) and Figure 19(b) also show the arrival rate
in the ABNoC under random and tornado traffic patterns.
Across the simulation workloads, the arrival rate is always

VOLUME 7, 2019 141527

L. Wang et al.: Approximate Bufferless NoC

FIGURE 19. Throughput and retransmission analysis under random and tornado traffic patterns.

higher than 70% evenwhen the network saturates. Thismeans
that most of the flits are delivered without loss, even for the
approximable flits.

Packet Retransmission is an important parameter affect-
ing network performance in NACK-based bufferless NoCs.
The retransmitted packets could exacerbate network con-
flicts. Figure 19(c) and Figure 19(d) show the results of the
average number of retransmissions. It shows that the ABNoC
can greatly reduce packet retransmissions. The average num-
ber of retransmissions in ABNoC is very small even when
network throughput has been saturated. ABNoC can greatly
reduce network conflicts, thereby most of the packets travel
through ABNoC are without retransmission. In addition,
due to reducing network injections, the average number of
retransmissions is also reduced by the SCARAB_APPROX.
But the reductions are much smaller than that in ABNoC.
The reason is that the end-to-end traffic reduction can-
not immediately react to network congestions, while the
in-router AAMofABNoC can directly discard the conflicting
flits.

2) SENSITIVITY
We show the sensitivity of the percentage of approximable
flits. Figure 20 shows the average packet latency and the
arrival rate of the ABNoC as the percentage of approx-
imable flits is varied by 25%, 50% (default) and 75%. The
arrival rates are plotted until network saturation. Obviously,
the throughput increases and the arrival rate decreases as
the percentage of approximable packets increases. The rea-
son is that a high approximable ratio increases the chances
of flit discarding without retransmission. Furthermore, for
the arrival rates of the 50% and 75% approximable ratios,
there is little difference between them. It is due to that at
the 50% approximable ratio, network conflicts have been
greatly reduced in ABNoC. The arrival rate will be mainly
determined by the injection rate and the workload pattern.

FIGURE 20. Approximable flits ratio sensitivity analysis.

At a higher approximable ratio, the arrival rate in ABNoC
changes very little.

C. FULL SYSTEM SIMULATION
In this section, we evaluate the performance of ABNoC
in a full-system simulation. We present the average packet
latency, average number of retransmissions, system runtime
and application error on a range of PARSEC benchmarks.

1) OVERALL SYSTEM PERFORMANCE
We analyze the impact of ABNoC on the average net-
work latency and overall system speedup. Figure 21(a)
shows the normalized average latency for benchmarks com-
pared against the SCARAB and the SCARAB_APPROX.
The average latency is normalized to SCARAB. Across
the benchmarks, ABNoC reduces the latency by average
34.6% with respect to SCARAB_APPROX and by average
46.7% to SCARAB. This is mainly because the approxi-
mate transmission of ABNoC brings more reduction in the
number of packet retransmissions, leading to latency bene-
fits. Figure 21(b) shows the average number of retransmis-
sions of benchmarks. Obviously, ABNoC greatly reduces
packet retransmissions for all the benchmarks. On aver-
age, ABNoC reduces packet retransmissions by 83.6% with

141528 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

FIGURE 21. Network latency, retransmission, and system performance for full-system analysis.

FIGURE 22. Benchmark result accuracy and arrival rate in ABNoC.

respect to SCARAB and 81.3% to SCARAB_APPROX. The
SCARAB_APPROX also contributes a minor reduction in
the average retransmission. Thus, the SCARAB_APPROX
also achieves an average 18.5% reduction in latency com-
pared to SCARAB. However, for bodytrack and ray-
trace, SCARAB_APPROX slightly increases the latency,
and for canneal, it only achieves moderate improvement.
The reason is that the latency benefit of traffic reduction
is offset by the compression/decompression overheads in
SCARAB_APPROX.

Figure 21(c) shows how ABNoC affects overall sys-
tem runtime. All the results are normalized to SCARAB.
The evaluation shows that ABNoC and SCARAB_APPROX
achieve an average 1.20× and 1.09× speedup compared to
SCARAB, respectively. And for all the benchmarks ABNoC
achieves a higher speedup than SCARAB_APPROX. This is
due to the higher reduction of ABNoC in packet latency.

2) ARRIVAL RATE AND ERROR
The arrival rates and the result errors in ABNoC is
shown in Figure 22. The average arrival rate is over 92%.

This means that ABNoC delivers most of the flits without
loss. Besides, we analyze the relative error of the encoding
algorithm in ABNoC. For integer value and floating-point
value, their relative error can be calculated by the Equation (5)
and Equation (6).

errorint=


∑n

k=0 Xk2
k∑n+7

k=0 Xk2
k + 2n+8

, int < −512, int > 512

0, − 512 6 int < 512
(5)

where the errorint is the relative error of a integer value; the
Xk is the kth bit value of the integer value and Xk ∈ {0, 1}; n
is the shifted bits (1 ≤ n ≤ 22).

errorfloat =

∑23
k=7 Xk2

−k

1+
∑23

k=1 Xk2−k
(6)

where the errorfloat is the relative error of a floating-point
value; the Xk is the kth bit value of the mantissa and
Xk ∈ {0, 1}. Therefore, according to the summation of geo-
metric progression,3 the maximum error of a integer value
must be less than 0.39% and the maximum relative error of
a floating-point value encoding is less than 1.56%.4 These
relative errors are very low. In addition, The data discarded
in encoding are adjacent to the encoded data in the cache.
They could be very similar. Thus, they could be recovered
by the encoded data with low error. Besides, most of the flits
does not need to be approximated due to the high arrival rate

3∑n
k=1 q

k−1
= (1− qn)/(1− q), where n is the number of terms, and q

is the common ratio in the sequence.
4errorint < 2−8, errorfloat < 2−6

VOLUME 7, 2019 141529

L. Wang et al.: Approximate Bufferless NoC

FIGURE 23. Normalized dynamic power consumption analysis.

in ABNoC. Evaluations shows that all applications have an
error of less than 7%.

D. POWER CONSUMPTION AND AREA OVERHEAD
In this section, we evaluate the effect of ABNoC on the
network power consumption and area overhead. To show the
variation in dynamic power consumption among SCARAB,
SCARAB_APPROX and ABNoC, we depict the dynamic
power of different benchmarks in Figure 23 using the Orion
power simulator [23]. All the results are normalized to
SCARAB. In ABNoC, some benchmarks (canneal, fluidan-
imate, raytrace, swaptions, x264) consume less dynamic
power than that in SCARAB. This is primarily attributed to
the reduction in packet retransmissions. However, the oth-
ers increase their dynamic power consumptions. The main
reason is that flits in ABNoC contain more 21-bit bits than
that in SCARAB and need more energy to pass a router.
When the increase in power consumption is larger than
the power savings of retransmission reduction, the dynamic
power will increase. For an average comparison, ABNoC
has a similar dynamic power consumption to SCARAB.
SCARAB_APPROX achieves dynamic power reduction for
all the benchmarks compared to SCARAB, It is due to the
reduction in the number of injected flits.

To ensure accurate hardware modeling, the ABNoC router
is implemented in RTL based on the open source RTL router
design [24]. We use the Synopsys design compiler with
TSMC 65nm technology to evaluate the power and area. The
results of SCARAB router power and area are cited from [10].
For purposes of fair comparisons with SCARAB, the injec-
tion and ejection buffers are also designed to use MSHRs
in the ABNoC router, which is the same as the SCARAB
design. We also compare with a regular buffered router that
equipswith 5 ports (128-bit channel width), 4 virtual channels
(4-flit each) per port and a 3-stage pipeline based on the XY
routing. All the routers work at a 1.9GHz frequency (same
as the SCARAB). And we assume a constant uniform load
on all input ports (same as the SCARAB). The results of
router power and area are listed in Table 4. Compared with
SCARAB, the ABNoC router has slightly more consumption
in terms of power and area. It incurs 5.0% more power
consumption and 14.1% more area overhead. It is due to the
more bits of channel width in ABNoC and the additional
packet approximation design. However, these increments are

TABLE 4. Router power and area comparison.

much smaller relative to the area and power overhead in the
buffered design. ABNoC reduces 76.2% power consumption
and 88.9% area overhead compared to the buffered router.
ABNoC still maintains the area and power benefit of buffer-
less design.

VIII. RELATED WORK
A. APPROXIMATE NoC DESIGNS
Recent studies have been conducted regarding approximate
computing in NoC architecture design for applications that
allow inaccurate outputs [13], [14], [19], [25]–[28]. These
articles explore the performance improvement or energy effi-
ciency of approximate computing for reducing communica-
tion bottlenecks by two techniques: communication reduction
and dynamic power management. The APPROX-NoC [13],
ABDTR [14], DAPPER [19] and DEC-NoC [25] belong to
the former. APPROX-NoC reduces injected flits by approx-
imate compression, which improves the compression ratio
based on a value approximationmatching technique. ABDTR
proposes approximate communication to address congestion
in NoCs, which selectively discards approximable data that
may affect network congestions before injecting. DAPPER
coalesces approximable data waiting for transmission to
reduce the number of injected packets in the NoC of the
GPGPU architecture. DEC-NoC relaxes transmission accu-
racy in order to reduce retransmissions due to communication
errors. These approximation designs focus primarily on the
data being transmitted and do not change packet transmis-
sions in the NoC. Ahmed et al. [26] and Ascia et al. [27], [28]
use dynamic power management to transfer approximable
data at lower power in order to trade the result quality for
energy savings. In AxNoC [26], a dual-voltage look-ahead
scheme is proposed for the power management in approxi-
mate NoC design, which isolates a critical path for providing
headers and critical flits with perfect transmission under high
voltage and the remaining flits with bit flips by decreasing
the supply voltage. In [27], Ascia et al. selectively reduce the
voltage swing of a link based on the forgiving nature of the
approximable communication flow for a trade-off between
quality degradation and energy saving. In [28], Ascia et al.
introduce a dynamic power management into approximate
wireless NoC design, in which both wireless and wired com-
munications are controlled based on their expected reliabil-
ity levels. Approximable communications will be applied
with low power and transferred with low expected reliability.
These approximate NoCs achieve a high energy benefit with
dynamic power management, but exert little effort in network
contention. Channel contending during transmission greatly
reduces network performance, especially in bufferless NoCs.
We propose the approximation mechanism in bufferless NoC.

141530 VOLUME 7, 2019

L. Wang et al.: Approximate Bufferless NoC

It reduces channel competitions by discarding the approx-
imable flits in transmission conflicts and approximating the
dropped flits at the destination node and hence improves per-
formance of a bufferless network. Betzel et al. [29] and Reza
and Ampadu [30] summarize the approximate techniques in
NoCs and present a bright future of approximate communi-
cation in energy-efficient and high-performance NoC design.

B. BUFFERLESS NoC DESIGNS
have received significant research attention [8]–[11],
[31]–[35]. BLESS [11] and CHIPPER [9] are designed based
on deflection routing. Kim et al. [32] and Daya et al. [34]
improve deflection routing of bufferless networks with
clumsy flow control and virtual express paths, respectively.
The BPS [31] is a hybrid-solution bufferless NoC that
combines both deflection routing and an NACK-based mech-
anism, which rolls back packets through loopback chan-
nels for retransmission. The SCARAB [10] is an optimized
NACK-based design that transfers packets with a single-cycle
latency pipeline and issues NACKmessages through a physi-
cally separate network upon contentions. Zhao et al. [33] pro-
pose a heterogeneous NoC architecture using both buffered
routers and bufferless routers for a low-cost design. In
the Chameleon [35] and Runahead [8] network, which are
multiple-NoCs, a bufferless NoC working as a subnetwork
must be paired with a buffered NoC for an energy-efficient
design. Our ABNoC operates by first utilizing an approxi-
mation engine in an NACK-based bufferless NoC to reduce
retransmissions, and it achieves throughput and bandwidth
improvement with a low amount of quality degradation.

IX. CONCLUSION
In this paper, we propose the ABNoC, a hardware approx-
imation design relaxing transmission accuracy in exchange
for high-performance bufferless NoC. Packet retransmission
shows severe impact on performance of the NACK-based
bufferless NoC. ABNoC provides an in-network traffic
reduction scheme to reduce packet retransmissions and net-
work conflicts. It can discard the conflicting approximable
flits during the deliveries based on the AAM design and
recovers them after packet transmission via the packet
approximate method. In addition, with a separate preconfig-
ured circuit-switched NACK network, ABNoC can send an
NACK message to trigger a retransmission of a packet with
non-approximable flits loss. Evaluations on synthetic traffic
show that ABNoC increases the bandwidth up to 1.92× com-
pared to SCARAB. And compared to the compression-based
approximation framework (SCARAB_APPROX), ABNoC
also achieves up to 1.47× bandwidth improvement. For a
range of PARSEC benchmarks, ABNoC reduces the average
packet latency by 28.2%with respect to SCARAB_APPROX
and 46.7% compared to SCARAB. Besides, it achieves an
average 1.20× speedup compared to SCARAB, while main-
taining less than 7% application error. As a bufferless design,
ABNoC also achieves 76.2% and 88.9% savings in power and
area respectively compared to the buffered design. ABNoC

reduces packet latency and increases bandwidth of bufferless
network, while maintaining low application error and small
area and power overhead. These results confirm that ABNoC
is a promising deign to improve bufferless NoC performance
in applications that exhibit some level of error tolerance.

REFERENCES
[1] S. Borkar, ‘‘Thousand core chips: A technology perspective,’’ in Proc. 44th

Annu. Design Autom. Conf., 2007, pp. 746–749.
[2] S. Bell et al., ‘‘TILE64-processor: A 64-core SoCwithmesh interconnect,’’

in Proc. IEEE Int. Symp. Solid-State Circuits Conf., Feb. 2008, pp. 88–598.
[3] A. Agarwal, C. Iskander, and R. Shankar, ‘‘Survey of network on chip

(NoC) architectures & contributions,’’ J. Eng., Comput. Archit., vol. 3,
no. 1, pp. 21–27, 2009.

[4] S. Borkar, ‘‘Future of interconnect fabric: A contrarian view,’’ in Proc.
12th ACM/IEEE Int.Workshop Syst. Level Interconnect Predict., Jun. 2010,
pp. 1–2.

[5] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, ‘‘Evaluation of
the raw microprocessor: An exposed-wire-delay architecture for ILP and
streams,’’ ACM SIGARCHComput. Archit. News, vol. 32, no. 2, p. 2, 2004.

[6] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, ‘‘A 5-GHz
mesh interconnect for a teraflops processor,’’ IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[7] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S. Park,
T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S. Peh, ‘‘SCORPIO:
A 36-core research chip demonstrating snoopy coherence on a scalable
mesh NoC with in-network ordering,’’ in Proc. ACM/IEEE 41st Int. Symp.
Comput. Archit. (ISCA), Jun. 2014, pp. 25–36.

[8] Z. Li, J. S. Miguel, and N. E. Jerger, ‘‘The runahead network-on-chip,’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Mar. 2016,
pp. 333–344.

[9] C. Fallin, C. Craik, and O. Mutlu, ‘‘CHIPPER: A low-complexity buffer-
less deflection router,’’ in Proc. IEEE 17th Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2011, pp. 144–155.

[10] M. Hayenga, N. E. Jerger, and M. Lipasti, ‘‘SCARAB: A single cycle
adaptive routing and bufferless network,’’ in Proc. 42nd Annu. IEEE/ACM
Int. Symp. Microarchitecture, Dec. 2009, pp. 244–254.

[11] T. Moscibroda and O. Mutlu, ‘‘A case for bufferless routing in on-
chip networks,’’ in Proc. 36th Annu. Int. Symp. Comput. Archit. (ISCA),
New York, NY, USA, 2009, pp. 196–207.

[12] S. Mittal, ‘‘A survey of techniques for approximate computing,’’ ACM
Comput. Surv., vol. 48, no. 4, pp. 62-1–62-33, Mar. 2016.

[13] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
‘‘APPROX-NoC: A data approximation framework for network-on-chip
architectures,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit., Jun. 2017,
pp. 666–677.

[14] L. Wang, X. Wang, and Y. Wang, ‘‘ABDTR: Approximation-based
dynamic traffic regulation for networks-on-chip systems,’’ in Proc. IEEE
Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 153–160.

[15] J. S. Miguel, M. Badr, and N. E. Jerger, ‘‘Load value approximation,’’
in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2014,
pp. 127–139.

[16] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, ‘‘RFVP: Rollback-free value prediction with
safe-to-approximate loads,’’ ACM Trans. Archit. Code Optim., vol. 12,
no. 4, 2016, Art. no. 62.

[17] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, ‘‘EnerJ: Approximate data types for safe and general low-
power computation,’’ ACM SIGPLAN Notices, vol. 46, no. 6, pp. 164–174,
Jun. 2011.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, ‘‘Architec-
ture support for disciplined approximate programming,’’ in Proc. 17th
Int. Conf. Archit. Support Program. Lang. Oper. Syst., New York,
NY, USA, 2012, pp. 301–312. [Online]. Available: http://doi.acm.
org/10.1145/2150976.2151008

[19] V. Y. Raparti and S. Pasricha, ‘‘DAPPER: Data aware approximate NoC for
GPGPU architectures,’’ in Proc. 25th IEEE/ACM Int. Symp. Netw.-on-Chip
(NOCS), Piscataway, NJ, USA: IEEE Press, 2018, Art. no. 7. [Online].
Available: http://dl.acm.org/citation.cfm?id=3306619.3306626

VOLUME 7, 2019 141531

L. Wang et al.: Approximate Bufferless NoC

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, ‘‘Pin: Building customized
program analysis tools with dynamic instrumentation,’’ in Proc.
ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI),
New York, NY, USA, 2005, pp. 190–200. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

[21] X.Wang,M. Yang, Y. Jiang, P. Liu,M. Daneshtalab,M. Palesi, and T.Mak,
‘‘On self-tuning networks-on-chip for dynamic network-flow dominance
adaptation,’’ ACM Trans. Embedded Comput. Syst., vol. 13, no. 2s, 2014,
Art. no. 73.

[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC
benchmark suite: Characterization and architectural implications,’’ in
Proc. 17th Int. Conf. Parallel Archit. Compilation Techn. (PACT),
New York, NY, USA, 2008, pp. 72–81. [Online]. Available: http://doi.acm.
org/10.1145/1454115.1454128

[23] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, ‘‘Orion: A power-
performance simulator for interconnection networks,’’ in Proc. 35th Annu.
ACM/IEEE Int. Symp. Microarchitecture (MICRO), Los Alamitos, CA,
USA: IEEE Computer Society Press, Nov. 2002, pp. 294–305. [Online].
Available: http://dl.acm.org/citation.cfm?id=774861.774893

[24] D. U. Becker, ‘‘Efficient microarchitecture for network-on-chip routers,’’
Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Palo Alto, CA, USA,
2012.

[25] Y. Chen, M. F. Reza, and A. Louri, ‘‘DEC-NoC: An approximate frame-
work based on dynamic error control with applications to energy-efficient
NoCs,’’ in Proc. IEEE 36th Int. Conf. Comput. Design (ICCD), Oct. 2018,
pp. 480–487.

[26] A. B. Ahmed, D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano,
‘‘AxNoC: Low-power approximate network-on-chips using critical-path
isolation,’’ inProc. 25th IEEE/ACM Int. Symp. Networks-on-Chip (NOCS),
Piscataway, NJ, USA: IEEE Press, Oct. 2018, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3306619.3306625

[27] G. Ascia, V. Catania, S. Monteleone, M. Palesi, D. Patti, and J. Jose,
‘‘Improving energy consumption of NoC based architectures through
approximate communication,’’ in Proc. 7th Medit. Conf. Embedded Com-
put. (MECO), Jun. 2018, pp. 1–4.

[28] G. Ascia, V. Catania, S. Monteleone, M. Palesi, D. Patti, and J. Jose,
‘‘Approximate wireless networks-on-chip,’’ in Proc. Conf. Design Circuits
Integr. Syst. (DCIS), Nov. 2018, pp. 1–6.

[29] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and
U. Karpuzcu, ‘‘Approximate communication: Techniques for reducing
communication bottlenecks in large-scale parallel systems,’’ ACM Com-
put. Surv., vol. 51, no. 1, Apr. 2018, Art. no. 1. [Online]. Available:
http://doi.acm.org/10.1145/3145812

[30] M. F. Reza and P. Ampadu, ‘‘Approximate communication strategies
for energy-efficient and high performance NoC: Opportunities and chal-
lenges,’’ in Proc. Great Lakes Symp. VLSI (GLSVLSI), New York, NY,
USA, 2019, pp. 399–404. [Online]. Available: http://doi.acm.org/10.
1145/3299874.3319455

[31] C. Gómez, M. E. Gómez, P. López, and J. Duato, ‘‘Reducing packet
dropping in a bufferless NoC,’’ in Proc. Eur. Conf. Parallel Process.Berlin,
Germany: Springer, 2008, pp. 899–909.

[32] H. Kim, Y. Kim, and J. Kim, ‘‘Clumsy flow control for high-throughput
bufferless on-chip networks,’’ IEEE Comput. Archit. Lett., vol. 12, no. 2,
pp. 47–50, Jul. 2013.

[33] H. Zhao, M. Kandemir, W. Ding, and M. J. Irwin, ‘‘Exploring hetero-
geneous NoC design space,’’ in Proc. Int. Conf. Comput.-Aided Design
(ICCAD), Piscataway, NJ, USA: IEEE Press, Nov. 2011, pp. 787–793.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2132325.2132496

[34] B. K. Daya, L. Peh, and A. P. Chandrakasan, ‘‘Towards high-performance
bufferless NoCs with SCEPTER,’’ IEEE Comput. Archit. Lett., vol. 15,
no. 1, pp. 62–65, Jan./Jun. 2016.

[35] J. Wu, D. Dong, X. Liao, and L. Wang, ‘‘Chameleon: Adaptive energy-
efficient heterogeneous network-on-chip,’’ in Proc. 33rd IEEE Int. Conf.
Comput. Design (ICCD), Oct. 2015, pp. 419–422.

LING WANG received the B.S. degree in mon-
itoring and control technology from the Harbin
University of Science and Technology, China,
in 2010, and the M.S. degree in biomedical engi-
neering from the Harbin Institute of Technology,
China, in 2012, where he is currently pursuing
the Ph.D. degree with the School of Computer
Science and Technology. His research interests
include high-performance many-core architecture
and bioinformatics applications.

XIAOHANG WANG received the B.Eng. and
Ph.D. degrees in communication and electronic
engineering from Zhejiang University, in 2006 and
2011, respectively. He is currently an Associate
Professor with the South ChinaUniversity of Tech-
nology. His research interests include many-core
architecture, power efficient architectures, optimal
control, and NoC-based systems.

YADONG WANG is currently a Professor with
the School of Computer Science and Technol-
ogy, Harbin Institute of Technology. He is also
the Dean of the School of Computer Science
and Technology, the Director of the Center for
Biomedical Information Technology and Software
Systems of Heilongjiang Province, and the Direc-
tor of the Bioinformatics and Computational Biol-
ogy Key Lab of Heilongjiang Province. His
research is focused on high-performance comput-

ing, bioinformatics, machine learning, and knowledge engineering. He is a
member of the Chinese Computer Association.

141532 VOLUME 7, 2019

