
Received August 29, 2019, accepted September 9, 2019, date of publication September 26, 2019, date of current version October 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943971

Efficient Verifiable Multi-Key Searchable
Encryption in Cloud Computing
YAPING SU 1, JIANFENG WANG 1, YUNLING WANG 1, AND MEIXIA MIAO2
1State Key Laboratory of Integrated Service Networks (ISN), Xidian University, Xi’an 710126, China
2National Engineering Laboratory for Wireless Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Corresponding authors: Jianfeng Wang (jfwang@xidian.edu.cn) and Meixia Miao (miaofeng415@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0802202, in part
by the National Natural Science Foundation of China under Grant 61702401, Grant 61572382, and Grant 61902315, in part by the
Fundamental Research Funds for the Central Universities under Grant XJS17053, in part by the National Cryptography Development Fund
under Grant MMJJ20180110, and in part by the China 111 Project under Grant B16037.

ABSTRACT The notion of Multi-Key Searchable Encryption (MKSE) enables data owners to outsource
their data into a cloud server, while supporting fine-grained data sharing with the authorized users. Note that
the traditional MKSE is vulnerable to data leakage. That is, the malicious data owner may collude with the
server and recover the search queries of authorized users. Recently, Hamlin et al. (PKC’18) presented a new
MKSE construction that can ensure data privacy between data owner and authorized users, where the share
key is generated depending on data owner, authorized user and the specific document. However, their scheme
cannot support verifiable search in the case of the malicious cloud server. In this paper, we propose a new
verifiable MKSE (VMKSE) scheme by leveraging Garbled Bloom Filter, which can simultaneously support
verifiability of search result and secure data sharing in multi-user setting. Compared to the state-of-the-art
solution, the proposed scheme is superior in efficiency and verifiability. The experiment results demonstrate
the efficiency of our scheme.

INDEX TERMS Searchable encryption, garbled bloom filter, verifiable search.

I. INTRODUCTION
Cloud computing enables client to enjoy high-quality data
storage and computing services in a pay-as-you-go manner.
With the popularity of cloud computing, a growing number
of organizations and individuals prefer to outsource their
massive data to the cloud server. Despite its tremendous
benefits, outsourcing data to a remote server brings some
security issues [1]–[3]. Very recently, it is reported that the
famous social networking company Facebook exposed more
than 540 million users’ personal information, including users
Facebook IDs, account names, and their activities [4].

A traditional encryption method can protect the confi-
dentiality of the outsourced data. However, it brings dif-
ficulties to search over the encrypted data [5]. Searchable
Encryption (SE), as a promising solution, has drawn great
attention in both academic and industrial community, which
allows a data owner to outsource his encrypted documents
to a cloud server while retaining search ability. Specifically,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

the data owner encrypts his documents with his private
key and generates a search index, then outsources them
to the cloud server. Upon receiving a search token from
a user, the server performs search over the search index
and finds out the matched results. There is a rich research
on both Searchable Symmetric Encryption (SSE) schemes
[6]–[10] and Public-Key Encryption with Keyword Search
(PEKS) schemes [11]–[13]. These SSE schemes can be
adapted to a variety of scenarios in the cloud environment.
Most of previous SSE schemes mainly focus on keyword
search, including single-keyword search and multi-keyword
search. These keyword search schemes are all designed in the
single-user or multi-user setting.

In single-user SSE [8], [14]–[16], the data owner out-
sources the encrypted documents and later only allows him-
self to perform search. While in multi-user SSE [17]–[21],
the data owner outsources the encrypted documents and
selectively shares them with a group of authorized users.
In this case, any authorized user needs provide valid search
tokens to the server and get all the matched documents
encrypted with different keys. Obviously, the number of

141352 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-6653-2398
https://orcid.org/0000-0001-5297-0293
https://orcid.org/0000-0001-6561-2540
https://orcid.org/0000-0002-6502-472X

Y. Su et al.: Efficient VMKSE in Cloud Computing

search tokens are linearly related to the number of documents
to search. This can lead to inefficient searching for a large
number of documents.

In Multi-Key Searchable Encryption (MKSE) schemes,
multiple data owners share documents encrypted with their
own different data keys which allows any authorized user to
provide the server with a search token of a single keyword,
but still allows the server to search across these documents
encrypted with different shared with them. The size of the
search token is independent of the number of documents.
PoPa et al. [37] presented the first MKSE scheme which
generates a share key for each authorized data user. The share
key is used to transform a query under a specific user’s key
into the one under the data owner’s key. Thus the server can
perform search in documents encrypted with different keys
using the transformed query. However, Grubbs et al. [22]
and Van Rompay et al. [23] later that the first MKSE
scheme suffers from query leakage when the malicious data
owner colludes with the cloud server. The reason is that
the transformed query can be used to search over any out-
sourced documents. As a result, the data owner can collude
with the cloud server to launch an offline attack against a
given keyword to recover the user’s query. Very recently,
Hamlin et al. [24] proposed a new MKSE scheme which can
prevent the above attack. The share key in this scheme is
related to not only the keys of data owner and data user, but
also the shared documents, which makes that the cloud server
can only perform search over the shared documents instead of
arbitrary one.

As to the scheme of [25], which can also prevent the above
attack. More specifically, to resist the threat of the mali-
cious data owner colluding with the cloud server, the scheme
uses two non colluding servers. Note that each server has a
portion of the information that would be held by a single
server. One server is mainly responsible for transforming
trapdoors, another server is responsible for storing encrypted
indexes and searching for related indexes based on the
transformed trapdoors. To achieve strong security, namely
response unlinkability, Oblivious Transfer (OT) technique
is used between the two servers in search protocol, but the
rounds of interaction between the two servers are frequent.
In addition, the implementation of the scheme is more com-
plicated, and the computational cost between the two servers
is large (since several logarithmic and exponential operations
are involved). Notice that all of the aforementioned schemes
are designed in an honest but curious server model, in which
the server performs all search operations honestly and returns
all search result correctly.

However, in practice, the cloud server is also likely to be
malicious. That is, it may well return incorrect or incom-
plete search results. The reason comes from the software
and hardware failure, or the server’s selfish behavior, such
as saving the bandwidth or computation resources. To fight
against a malicious server, verifiable SSE has received con-
siderable attention [26]–[32]. Chai andGong [26] constructed
the first verifiable SSE scheme based on the character tree.

Kurosawa and Ohtaki [27] constructed a verifiable SSE
scheme based on MAC against non-adaptive adversaries,
which can verify the correctness of the search result.
Sun et al. [29] designed a verifiable SSE scheme based
on bilinear-map accumulator. However, it cannot provide a
reasonable proof when the server returns an empty set. Sim-
ilarly, Wang et al. [32] presented a verifiable SSE scheme
based on the accumulator in 2018. Liu et al. [28] pre-
sented a verifiable SSE scheme based on the approach of
key aggregation and the authenticated data structure Bloom
Filter under the multi-owner setting, and their scheme can
execute even if when the server returned an empty set.
However, since the verification phase involves multiplica-
tion, exponentiation and pairing operations, the expensive
operations lead to the verification inefficiency. Recently,
Liu et al. [33] presented a multi-user verifiable SSE against
non-adaptive adversaries, which allows multi-user to perform
search and validate the integrity of search result. Unfortu-
nately, the verification time is linear with the number of doc-
uments shared and the number of documents returned by the
server.

To our best knowledge, how to construct an efficient veri-
fiable MKSE (VMKSE) scheme which can simultaneously
ensure verifiability of search result and support multi-user
search remains a great challenge problem.

A. OUR CONTRIBUTION
In this paper, we propose a VMKSE scheme, themajor contri-
butions of our proposed scheme are summarized as follows:
• We present a new VMKSE scheme based on Garbled

Bloom Filter, which can ensure verifiability of search
result even if the server deliberately returns an empty set.
The proposed scheme can support efficient verifiable
search using only symmetric operation (i.e., XOR and
hash operations).

• We formally define a security model and make a rig-
orous security and efficiency analysis for the proposed
scheme, which can well achieve the desired security
goals with a comparable computational cost. Besides,
we provide an implementation on a real-world email
dataset, the experiment results show that our scheme is
highly efficient.

B. ORGANIZATION
The rest of this paper is organized as follows. Some necessary
preliminaries applied in the proposed scheme are given in
Sect II. The concrete construction is presented in Sect III.
Section IV provides the detailed security and efficiency
analysis. Section V describes the performance evaluation.
Conclusion is described in Sect VI.

II. PRELIMINARIES
In this section, we firstly give some necessary notations
(as TABLE 1 shows) and a brief revisit on Garbled Bloom
Filter. Then, system and threat model is given, and security
definition of the proposed scheme is presented.

VOLUME 7, 2019 141353

Y. Su et al.: Efficient VMKSE in Cloud Computing

TABLE 1. Notations.

FIGURE 1. Add elements into a Garbled Bloom Filter.

A. GARBLED BLOOM FILTER
In 2013, Dong et al. [34] proposed a new variant of the Bloom
Filter (BF, see [35] for details), called Garbled Bloom Filter
(GBF). GBF is a data authentication structure which is used
to check whether an element belongs to a set S. A GBF
consists ofm numbers of λ-bit strings and k independent hash
functions H = {h1, . . . , hk}, where hi : {0, 1}∗ → [1,m],
1 ≤ i ≤ k . Initially, all the locations of GBF are set to NULL.
To insert an element x into the GBF, we determine k locations
based on the k hash functions. The strings filled in the k
locations satisfy that GBF[h1(x)] ⊕ . . . ⊕ GBF[hk (x)] = x,
where GBF[j] denotes the strings at location j. After locating
all the elements in S, each unoccupied location stores a
random string.

Given an element y, the steps for checking whether it
belongs the set S as follows. We first determine k locations
based on the k hash functions. Then we XOR all the strings
at the k locations and obtain a value y′. Finally we check
whether the two values y and y′ are equal. If yes, it indicates
that y ∈ S. Otherwise, y /∈ S.

A simple example is shown in FIGURE 1. In the initial
phase, we set all the locations in the GBF toNULL (expressed
as ‘*’). Then, we will insert elements x1, x2 into the GBF.
First, we insert x1 as 3 shares S1,1, S1,2, S1,3 at 3 locations.
Second, when inserting element x2, we find that GBF[5] has
been occupied by the share S1,2, so we reuse S1,2 as a share of
x2. In this case, we set x2 = S1,2⊕S2,2⊕S2,3. After inserting
all elements, we set a random λ-bit string to each unoccupied
location.

In the following, we give two different probabilities of
the GBF, collision probability and maximum false positive
probability. The collision probability refers to the probabil-
ity when y /∈ S, but it hashes to the same locations for
some x ∈ S. The collision probability can be expressed as:
Pr|(⊕i=k−1i=0 GBF[hi(y)]) = x| ≤ ε, where ε is the maximum
false positive probability of BF (see [35] for details). Note
that, a collision does not lead to false positive probability, but
it reveals x. The false positive probability of a GBF is the

FIGURE 2. System for our model.

probability when y /∈ S but the recovered strings equals to y
accidentally. The false positive probability can be expressed
as: Pr|(⊕i=k−1i=0 GBF[hi(y)]) = y| ≤ 2−λ.

Very recently, Van Rompay and Önen [36] pointed out the
proof of security of GBF in [34] is flawed and gave a new
formal proof. In particular, in the security analysis of GBF,
Van Rompay et al. ensure that an adversary obtains the same
information from a random string in unoccupied location as
from a fixed value. In our scheme, in order to meet certain
functional requirements, we modify the original GBF to get
a variant GBF, the security of the variant GBF is also based
on the new proof in Sect.5.2 in [36].

B. SYSTEM AND THREAT MODEL
In this paper, as shown in FIGURE 2, we consider
three different entities: data owners, data users and the
server.
• Data owners: The data owners have a set of documents

and wish to share them with a group of authorized data
users. It requires the data owners to encrypt the docu-
ment and all keywords contained in that document, and
then outsources encrypted document alongside with the
encrypted set of keywords to a cloud server. However,
the data owner is malicious, he may collude with the
cloud server and try to recover the data user’s query
privacy.

• Data users: A data user wants to access the outsourced
data on the server. To support efficient retrieval of the
encrypted documents stored on the server, the data user
generates the share key. To support verifiability of the
search results by the cloud server, the data user generates
the auxiliary information GBF. To search the encrypted
documents for a keyword, data user uses his query key to
generate his token and send it to the server. Notice that
the data user performs the above operations honestly.

• Server: The server is mainly responsible for storing
encrypted data, share key, the auxiliary informationGBF
and providing retrieval services for data users. Assume
the server is malicious, it may return incomplete and/or
incorrect search result deliberately.

141354 VOLUME 7, 2019

Y. Su et al.: Efficient VMKSE in Cloud Computing

C. DEFINING VERIFIABLE MULTI-KEY
SEARCHABLE ENCRYPTION
We present the notion of VMKSE scheme in this section.
An MKSE scheme permits data owners to share documents
with authorized data users, and the data users can query
those documents using their own query keys while protecting
both data and query privacy. Furthermore, a VMKSE scheme
allows data users to verify the integrity of search result.
Precisely, a VMKSE scheme composes of five polynomial-
time algorithms

∏
= (Setup, Share, TokenGen, Search,

Verify).
Definition 1 (VMKSE): A tuple

∏
= (Setup, Share,

TokenGen, Search, Verify) of polynomial-time algorithms is
a VMKSE scheme for a universal set U , if the following holds.
• (KSE,T) ←Setup(1λ, d): Data owner runs the algo-

rithm to generate data key KSE. The algorithm takes a
security parameter 1λ and the document d as input and
outputs a symmetric data key KSE and the encrypted set
T . The data owner encrypts d with KSE to generate the
encrypted documentC . T is obtained by encrypting each
keyword in d . Then, the data owner uploads (C,T) to the
server. If the data owner wishes to share the document d
with an authorized user, he will send KSE to the user.

• (KPRF,1 = ({r1, . . . , rn},D),GBF)←Share({KSEi}
n
i=1,

{Ti}ni=1,GBF): Data user runs the algorithm to generate
a query key KPRF, a share key 1 = ({r1, . . . , rn},D)
and an authenticated structureGBF . The algorithm takes
as input the set of keys {KSEi}

n
i=1 and the encrypted

set {Ti}ni=1, and outputs the query key KPRF, the share
key 1 = ({r1, . . . , rn},D) and GBF . Each data
user has a query key KPRF, which is used to gen-
erate secure tokens. Finally, the data user uploads
(1 = ({r1, . . . , rn},D),GBF) to the server.

• q←TokenGen(KPRF,w): Data user runs the algorithm
to generate a secure search token. The algorithm takes
as input the key KPRF and the keyword w, and outputs a
token q of keyword w.

• (proof , IdSet)←Search(1 = ({r1, . . . , rn},D), q,
{Ti}ni=1,GBF): The server runs the algorithm to search
for matched documents. The algorithm takes as input
the share key 1, the token q, encrypted sets {Ti}ni=1 and
GBF , and outputs the proof and the set of identifiers
IdSet .

• True/False←Verify(q, proof , IdSet): Data user runs the
algorithm to test whether the server is malicious. The
algorithm takes as input a token q, proof and a set of
identifiers IdSet . Finally, it outputs True if the test pass,
otherwise outputs False.

• Correctness: A VMKSE scheme is correct if for
every security parameter λ ∈ N and every keyword
w ∈ U : For (KSE,T) ←Setup(1λ, d), (KPRF,1 =

({r1, . . . , rn},D),GBF) ←Share({KSEi}
n
i=1, {Ti}

n
i=1),

q ←TokenGen(KPRF,w), (proof , IdSet) ←Search
(1 = ({r1, . . . , rn},D), q, {Ti}ni=1,GBF):
Pr[True/False←Verify(q, proof , IdSet)] ≥ 1− negl

Where True ←Verify(q, proof , IdSet) if IdSet is cor-
rect and complete for keyword w, otherwise False
←Verify(q, proof , IdSet).

• Security: A VMKSE scheme is secure if for every PPT
adversary A, it has a negl(λ) advantage in the following
security game with the challenger C.
• Step 1: Adversary A sends the following informa-

tion to the challenger C:
1) A set U = {1, . . . , s} represents the number

of data users, a set D = {1, . . . , t} represents
the number of data owners, the corrupted data
owners is represented by a subset Dc ⊆ D.

2) For each i ∈ Dc, n keys {KSEz}
n
z=1. For each

i ∈ D, n sets of keywords {W 0
dz}

n
z=1 ⊆ U , n

sets of keywords {W 1
dz}

n
z=1 ⊆ U , where

∣∣∣W 0
dz

∣∣∣ =∣∣∣W 1
dz

∣∣∣ for i /∈ Dc, and W 0
dz = W 1

dz for i ∈ Dc.
Besides, a set of share edges E . Concretely,
an edge e(e ∈ E) is denoted by (j, i) for i ∈ D
and j ∈ U which represents data owner i shares
documents with data user j, it allows j to access
to those documents.

3) For each j ∈ U , n sequences of keywords((w0
j,1,1,

. . . ,w0
j,1,kj

), . . . , (w0
j,n,1, . . . ,w

0
j,n,kj)) for kj ∈

N, and another n sequences of keywords
((w1

j,1,1, . . . ,w
1
j,1,kj

), . . . , (w1
j,n,1, . . . ,w

1
j,n,kj))

for kj ∈ N, there are two constraints: for each
i ∈ D, if (j, i) ∈ E , for each 1 ≤ z ≤ n, for
each 1 ≤ l ≤ kj, w0

j,z,l ∈ W 0
dz if and only if

w1
j,z,l ∈ W 1

dz . For each 1 ≤ z ≤ n, for each
1 ≤ l < k ≤ kj,w0

j,z,l = w0
j,z,k if and only if

w1
j,z,l = w1

j,z,k .

• Step 2: The challenger C performs the following
operations:

1) First, randomly chooses a bit b← {0, 1}.
2) Second, invokes n times (KSE,T) ←Setup

(1λ, d): generates {KSEz}
n
z=1 for every data

owner i ∈ D \ Dc. For every data owner i ∈ D,
generates {Tz}nz=1 of {W

b
dz}

n
z=1.

3) Third, invokes (KPRFj ,1j,i = ({r1, . . . , rn},D),
GBFj) ←Share({KSEz}

n
z=1, {Tz}

n
z=1): generates

KPRFj for every data user j ∈ U , generates
1j,i = ({r1, . . . , rn},D) for each edge (j, i) ∈ E ,
generates GBFj for every data user j.

4) Fourth, invokes qj,z,l ←TokenGen(KPRFj ,w):
generates a search token qj,z,l for every data user
j, for keyword wbj,z,l ∈ W b

dz , where 1 ≤ z ≤ n
and 1 ≤ l ≤ kj.

5) Fifth, invokes (proofj, IdSet) ←Search(1 =
({r1, . . . , rn},D), qj,z,l, {Tz}nz=1,GBFj): gener-
ates the proofj and IdSet for every data user j.

6) Sixth, invokes True/False←Verify(qj,z,l, proofj,
IdSet): if IdSet is correct and complete, outputs
True. Otherwise, outputs False.

VOLUME 7, 2019 141355

Y. Su et al.: Efficient VMKSE in Cloud Computing

7) Finally, for each i ∈ D, (j, i) ∈ E, j ∈ U , sends
{Tz}nz=1, 1j,i, proofj, (qj,z,1, .., qj,z,kj), IdSet and
True/False to adversary A.

• Step 3 : Adversary A outputs b′ with AdvA(1λ) =
1
2−Pr[b = b′] advantage.

Discussion. Similar to previous works of searchable
encryption, our definition also allows some information to
leak. More specifically, because the adversary is limited by
choosing w0

j,z,l ∈ W 0
dz if and only if w1

j,z,l ∈ W 1
dz for

every (j, i) ∈ E , the scheme inevitably leaks access pat-
terns, namely leaks which documents matched which query.
Besides, we require that the repeated queries of adversary
are located in the same locations of both n query sequences.
Therefore, if a data user performs repeated queries, then the
repeated queries are likely to leak to the server. Additionally,
some ‘‘benign leakage’’ is leaked to the server, such as the
number of matched documents, the number of queries of each
data user.

III. VERIFIABLE MULTI-KEY SEARCHABLE
ENCRYPTION SCHEME
We firstly introduce the high-level idea of our construction in
this section. Then, we describe the proposed VMKSE scheme
concretely.

A. HIGH-LEVEL IDEA
The problem of verifiable search in multi-user setting can
be expressed as follows: The data owners store encrypted
data onto a cloud server and selectively share it with some
authorized users. To search for some specific documents,
the authorized user sends a search token to the cloud server
and retrieves the matched documents that authorized to him.
We assume that the cloud server is not fully trusted, namely,
the server may collude with data owners and even return a
fragment of search results to response to a search query about
an honest data user. Thus, in order to enable the data user
to verify the integrity of the result, the cloud server should
provide the corresponding proof along with the matched
documents.

The main idea is that each authorized user generates an
authenticated data structure GBF and stores all the document
identifiers shared with him. That is, the authorized user firstly
assigns a random value to each document, and then he gen-
erates an aggregated value for all the documents containing
a specific keyword by XOR all the corresponding document-
specific random values. Finally, all the aggregated values are
inserted into GBF. Based on the self-checkability property of
GBF, the authorized user can simultaneously achieve com-
pleteness and correctness of search result.

B. THE CONCRETE CONSTRUCTION
In this section, we describe the proposed VMKSE scheme
in detail. The construction is based on a pseudorandom
function F , a symmetric encryption scheme (SE.KeyGen,
SE.Enc, SE.Dec), and an authenticated data structure GBF.
The proposed scheme composes of five polynomial-time

algorithms (Setup, Share,TokenGen, Search,Verify). Con-
cretely, the details of the scheme are as follows:
• (KSE,T) ←Setup(1λ, d): For a document d , the data

owner generates a key KSE by the SE.KeyGen algo-
rithm. On one hand, the key KSE is used to encrypt
the document d and generate the encrypted document
C , C ←SE.KeyGen(KSE, d). Each document d has its
own data key. On the other hand, the data key KSE is
used to encrypt each keyword w in the document d ,
i.e. t ←SE.Enc(KSE,w). We set each t in the set T .
Finally, the data owner outsources (C,T) to the cloud
server. If the data owner wants to share the document d
with an authorized user, he will send KSE to the user.

• (KPRF,1 = ({r1, . . . , rn},D),GBF)←Share({KSEi}
n
i=1,

{Ti}ni=1): When the user is shared with n documents,
he downloads the corresponding encrypted keyword set
{Ti}ni=1 and generates a share key 1 = ({r1, . . . , rn},D)
for the n shared documents, and finally generates an
authenticated structureGBF . More specifically, the user
uses {KSEi}

n
i=1 to decrypt {Ti}ni=1 and obtains the plain-

text of keyword w in the shared document. After that,
the user selects a new key KPRF, then assigns a random
identifier r for each shared document and then generates
the share key 1 = ({r1, . . . , rn},D) for the shared
documents. Finally, the data user generates a GBF for
all the shared documents. The details are described in
Algorithm 1. Here we need to mention that there are
two kinds of differences to generate our GBF compared
with the one proposed by [34]. The reason to make this
variant is that we also need to provide a valid proof when
the server returns an empty set. First, the locations in
GBF are not determined by the elements in the set, but
by another value (the keywordw in our scheme). Second,
the unoccupied locations of the GBF in our scheme are
set to 0λ, instead of random λ-bit string. We note that the
variant GBF has the same security as the original GBF ,
the detailed proof is described in [36].

• q ←TokenGen(KPRF,w): When a data user is inter-
ested in a specific keyword w, he generates the token
q = FKPRF (w) and sends it to the server.

• (proof , IdSet)←Search(1 = ({r1, . . . , rn},D), q,
{Ti}ni=1,GBF): Upon receiving the token q, the server
generates tk ′i = Fq(r) and performs search in the hash
tableD. If tk ′i is found inD, the server adds the identifier
r (each r identifies a encrypted set T , each T corre-
sponds to a encrypted document C) into the result set
IdSet . Finally, the server returns the proof (the proof is
the GBF uploaded to the server by the data user in the
share algorithm) and IdSet to the data user. The details
are shown in Algorithm 2.

• True/False←Verify(q, proof , IdSet): To verify the
integrity of search result returned by the server, the data
user needs to check both the correctness and complete-
ness. The output of this algorithm is True or False,
which represents the honest or malicious of the server

141356 VOLUME 7, 2019

Y. Su et al.: Efficient VMKSE in Cloud Computing

Algorithm 1 Share ({KSEi}
n
i=1, {Ti}

n
i=1)

Input: Data keys {KSEi}
n
i=1, encrypted keywords set

{Ti}ni=1
Output: A query key KPRF, share key

1 = ({r1, . . . , rn},D) and GBF
1 KPRF

$
←− {0, 1}λ;

2 D← φ;
3 DB← emptymap;
4 W ← φ;
5 for i = 0 to m− 1 do
6 GBF[i]← NULL;
7 end
8 for i = 1 to n do

9 ri
$
←− {0, 1}λ;

10 Wdi ←SE.Dec(KSEi ,Ti);
11 W = W ∪Wdi ;
12 for all w ∈ Wdi do
13 kw = FKPRF (w); tkw = Fkw (ri);
14 insert tkw into hash table D;
15 end
16 DB[w] = DB[w] ∪ {ri};
17 end
18 H = (h1, . . . , hk);
19 for all w ∈ W do
20 R = 0λ;
21 emptyTag = −1;
22 q = FKPRF (w);
23 for r ∈ DB[w] do
24 R = R⊕ r ;
25 end
26 for i = 1 to k do
27 j = hi(q);
28 if GBF[j] == NULL then
29 if emptyTag == −1 then
30 emptyTag = j;
31 else

32 GBF[j]
$
←− {0, 1}λ;

33 value = value⊕ GBF[j];
34 end
35 else
36 value = value⊕ GBF[j];
37 end
38 end
39 GBF[emptyTag] = value;
40 end
41 for i = 0 to m− 1 do
42 if GBF[i] == NULL then

43 GBF[i]
$
←− 0λ;

44 end
45 end
46 return (KPRF,1 = ({r1, . . . , rn},D), GBF);

respectively. Specifically, the algorithm is performed as
the follows. The details are described in Algorithm 3.

Algorithm 2 Search (1 = ({r1, . . . , rn},D), q,
{Ti}ni=1,GBF)

Input: Share key 1 = ({r1, . . . , rn},D), a token q,
encrypted sets {Ti}ni=1 and GBF

Output: The proof and an identifiers set IdSet
1 IdSet ← φ;
2 for i = 1 to n do
3 tk ′i = Fq(ri);
4 if tk ′i in D then
5 IdSet = IdSet ∪ {ri};
6 end
7 end
8 //the GBF as the proof
9 return (proof , IdSet);

Algorithm 3 Verify (q, proof , IdSet)
Input: The token q, proof and IdSet
Output: True or False

1 Initializes R = 0λ, R′ = 0λ;
2 H = (h1, . . . , hk);
3 if IdSet==∅ then
4 for i = 1 to k do
5 j = hi(q);
6 //each element of proof is GBF[j]
7 if GBF[j] ! = 0λ then
8 continue;
9 else

10 return True;
11 end
12 end
13 return False;
14 else
15 for all r ∈ IdSet do
16 R′ = R′ ⊕ r ;
17 end
18 for i = 1 to k do
19 j = hi(q);
20 R = R⊕ GBF[j];
21 end
22 if R′ == R then
23 return True;
24 else
25 return False;
26 end
27 end

– Case 1: When IdSet is an empty set, it indicates that
there are no matched documents for the token q.
Concretely, the data user computes locations
j = hi(q) for 1 ≤ i ≤ k in the proof . Then the
data user checks whether there is an element at any
of the k locations is 0λ. If yes, the algorithm outputs
True. That is, there is indeed no matched document.
Otherwise, the output is False, which denotes that
there are matched documents.

VOLUME 7, 2019 141357

Y. Su et al.: Efficient VMKSE in Cloud Computing

– Case 2: When IdSet is not an empty set, it indicates
that there are some matched documents for the
token q. The detailed steps for verification are as
follows:
∗ Step 1: The data user also computes k locations
j = hi(q) for 1 ≤ i ≤ k in the proof returned
by the server. Then the data user performs XOR
operations over all the elements in the k locations
and gets the value R.

∗ Step 2: For all the elements in IdSet returned by
the server, the data user also performsXOR oper-
ation and gets the value R′. Then the data owner
checks whether the two values R and R′ is equal.
If yes, the output is True which indicates that the
search result is correct and complete. Otherwise,
the output is False which indicates that some
results in IdSet are incorrect or incomplete.

Remark 1:BF is also a popular authenticated data structure.
There are two reasons for us to adopt GBF as a verification
tool instead of BF in our scheme. Firstly, BF cannot verify the
correctness of the search result in our scheme. Fortunately,
the XOR operation of GBF can further to verify the correct-
ness of the search result. Secondly, the collision probability
of GBF is smaller than BF.

IV. SECURITY AND EFFICIENCY ANALYSIS
In this section, we give the security analysis and efficiency
analysis of the proposed VMKSE scheme.

A. SECURITY ANALYSIS
Theorem 1: A VMKSE scheme is secure against non-

adaptive adversaries if for every PPT adversary A has a
negl(λ) advantage with the challenger C.

Proof: For every i ∈ D, adversary A chooses n sets
{W 0

dz}
n
z=1 and another n sets {W 1

dz}
n
z=1 for data owner i, n

sequences of keywords for queries ((w0
j,1,1, . . . ,w

0
j,1,kj

), . . . ,

(w0
j,n,1, . . . ,w

0
j,n,kj)), namely {W 0

jz }
n
z=1, and another n

sequences of keywords for queries ((w1
j,1,1, . . . ,w

1
j,1,kj

), . . . ,

(w1
j,n,1, . . . ,w

1
j,n,kj)), namely {W 1

jz }
n
z=1 for data user j ∈ U . Let

F1 represent the pseudorandom function F invoked in share
algorithm and TokenGen algorithm, it is used to generate a
key k ′i for F2 and the query q respectively, let F2 denote
the pseudorandom function F invoked in share algorithm to
computer tkw. Every encrypted set of corrupted data owners
and symmetric data keys have the same distribution in both
views, so we fix all these values into view0, view1, and all
distributions. To prove adversaryA can distinguish view0 and
view1 with only a negl(λ) advantage, we use hybrid argument
technique to define some necessary hybrids:

Hb
0: Let Hb

0 denote the hybrid distribution, which is
obtained from viewb using a random functionR instead of F1

(to generate the share key and queries). Here, we considerR
has two inputs, an index of data user as the first input. Thus,R
defines a seriesRj of functions. That is, for all data users j and
all wl ∈ {W b

jz }
n
z=1, each query is represented as q

′
j,l = R(j,wl)

(as a mark for denoting queries inHb
0, but all queries in viewb

have no marks). In accordance with the pseudorandomness
of F , we replace the calls of F1 with a standard hybrid
argument of one data user at a time, then we come to the
conclusion: viewb ≈ Hb

0.
Hb

1:H
b
1 is the same asHb

0, except that F
2 is replaced byR.

(Here, the query q′j,l as the first input ofR, random identifier
r as the second input of R), so the generation of 1j,i are:
For each wl ∈ W b

dz ∩ W
b
jz , its corresponding di,j,l = F2

q′j,l
(r).

For every wl ∈ W b
dz \W

b
jz , choosing a random value as di,j,l ,

the constraint is: di,j,l /∈ {F2
q′j,l

(r),wl ∈ W b
jz }.

Hb,∗: To prove Hb
0 ≈ Hb

1, a new intermediate distribu-
tion Hb,∗ is defined. Through the intermediate distribution,
we can show Hb

0 ≈ Hb
1 as follows: Firstly, we can prove

Hb
0 ≈ Hb,∗. More specially, in Hb,∗, for every data owner i,

every data user j, and every keywordwl ∈ W b
dz∩W

b
jz , the token

di,j,l in share key 1j,i is replaced by a random value and
satisfies: di,j,l /∈ {F2

q′j,l
(r),wl ∈ W b

jz }. According to the pseu-

dorandomness ofF , the tokens replaced by a hybrid argument
one at a time, then we come to the conclusion: Hb

0 ≈ Hb,∗.
Secondly, to showHb

1 ≈ Hb,∗, some sub-hybrid distributions
are defined. Notice that each distinct keyword queried by each
data user represents the key for F2 in all share keys related
to a data user. Hence, in all sub-hybrid distributions, through
replacing F2 by the random functionR to generate one query
for a data user at a time. More specifically, the number of data
users denoted by t = |U |, for every j ∈ U , let lj indicate
the number of different keywords in W b

jz . Then, for each
1 ≤ j ≤ s, for each 0 ≤ l ≤ lj, we define the sub-
hybrid distribution Hb,j,l : Hb,j,l is obtained from Hb,∗ by
generating all queries for the first j − 1 data users, all the
queries corresponding to all occurrences of the first l different
keywords queried by data user j with a random function R,
and generates keyword tokens accordingly. Thus Hb,1,0

=

Hb,∗, Hb,t,lt = Hb
1. Obviously, to show that Hb

1 ≈ Hb,∗,
so we need to prove Hb,1,0

≈ Hb,t,lt as follows: For every
1 ≤ j ≤ s, for every 0 ≤ l ≤ lj, according to the pseudo-
randomness of F2, then Hb,j,l

≈ Hb,j,l−1. Furthermore, for
every 1 ≤ j ≤ s, we have Hb,j,0

= Hb,j−1,lj−1 . So we derive
thatHb,1,0

≈ Hb,t,lt and come to the conclusion:Hb
1 ≈ Hb,∗.

Hb
2:H

b
2 is the same asHb

1, except that for the generation of
each index j′ = hi(q) (1 ≤ i ≤ k) ofGBFj in share algorithm,
and the input q of each hash function hi is computed by the
random function R. Concretely, for every j ∈ U , i ∈ D
and keyword wl ∈ W b

dz (1 ≤ z ≤ n), let qi,j,l denote the
input of each hash function hi in share algorithm, and qi,j,l
is replaced with R for a data user at a time. According to
the pseudorandomness of F1, we come to the conclusion:
Hb

1 ≈ Hb
2.

Hb
3: H

b
3 is the same as Hb

2, except that for all honest
data owners i /∈ Dc, each the encrypted set of W b

dz (1 ≤

z ≤ n) is encrypted instead of
−→
0 (in Hb

2 encrypts the set
W b
dz). H

b
2 ≈ Hb

3 depends on the security of the symmetric
encryption scheme by a standard hybrid argument, where the

141358 VOLUME 7, 2019

Y. Su et al.: Efficient VMKSE in Cloud Computing

TABLE 2. Performance comparison.

encrypted set of W b
dz is replaced with encrypted

−→
0 one at

a time. According to H0
3 = H1

3, then view0 ≈ view1. Thus,
the proposed VMKSE scheme is secure. �

B. COMPARISON
In this section, we compare some existing MKSE schemes
and verifiable SSE schemes with the proposed scheme.
Specifically, we compare our scheme with Hamlin et al.’s
scheme [24], Wang et al.’s scheme [32], Liu et al.’s
scheme [33], Popa et al.’s scheme [37], Kurosawa et al.’s
scheme [27] and Miao et al.’s scheme [38].

Our scheme, Hamlin et al.’s scheme and Popa et al.’s
scheme are designed in malicious data owner-server colli-
sion model. Wang et al.’s scheme, Miao et al.’s scheme,
Liu et al.’s scheme and Kurosawa et al.’s scheme are designed
in malicious server model. Only our scheme, Hamlin et al.’s
scheme and Popa et al.’s scheme are designed in multi-key
setting. Our scheme can be viewed as an extension from
Hamlin et al.’s scheme to support verifiability of search result,
all schemes except Hamlin et al.’s scheme and Popa et al.’s
scheme are capable of verifying the search result returned by
the server. Wang et al.’s scheme, Miao et al.’s scheme and
Popa et al.’s scheme are secure against adaptive adversary.
Wang et al.’s scheme and Miao et al.’s scheme support multi-
keyword search, others only support a single-keyword search.

In our scheme, although it spends extra XOR operations
and hash operations computational cost to generate GBF in
the share phase, we note that the data user only needs to
spend little extra computational overhead to generate theGBF
once. It can be seen very intuitively that our scheme achieves
verifiability of search result, which only spends some extra
computational overhead (i,e. XOR and hash functions) com-
pared to Hamlin et al.’s scheme. Therefore, it is efficient for
the data user to verify the search result. However, the verifi-
cation cost is proportional to the number of documents shared
in Kurosawa et al.’s scheme and Liu et al.’s scheme. The
exponentiation operation of verification phase inWang et al.’s
scheme and Liu et al.’s scheme leads to the verify phase
inefficient.

We denote by N the number of shared documents, |W | the
number of different keywords from the n documents, L the
number of keywords in each document, |DB[w]| the number
of documents containing the keyword w, d the number of
multiple keywords to be queried at one time, s the number of
identifiers selected for integrity verification, k the number of
hash of GBF, |R| the size of search result for keyword w, |R1|
the size of search result for the least frequent keyword w1,
|Wc| the number of documents containing w1, D a division
operation, E an exponentiation operation,M a multiplication
operation, P a computation of pairing, Dec a decryption
operation, C an equal comparison operation, πK a pseudo-
random permutation operation,MOD a modular operation, X
a XOR operation, H a hash operation, F a PRF operation.
The detailed performance comparison of the aforementioned
seven schemes are shown in TABLE 2.

V. PERFORMANCE EVALUATION
We conduct an experimental evaluation of the three compared
schemes(scheme [24], scheme [32] and our scheme) in this
section. The experiments simulated with Java language and
deployed with a LINUX machine on a regular desktop com-
puter with 2.6 GHz Intel Core i7 CPU and 16GB RAM.

We simulate the experiments with a real-world dataset:
Enron Email Dataset [39]. According to the statistics,
the dataset contains a total of 517,401 plaintext documents
with 1.32 GB. After processing all the plaintext email docu-
ments, the number of extracted distinct keywords is 94,650.
Meanwhile, we use HMAC for PRF, AES in CBC mode to
encrypt plaintext documents and corresponding keywords set.
We fix the number of hash functions and each λ-bit string
of GBF as k = 13 and λ = 20, respectively. According
to [34], [40], to guarantee the requirement of collision proba-
bility p1 ≤ 2−20 and false positive probability p2 ≤ 2−20, The
ratio of the length m of the GBF to the number n of elements
to be inserted is fixed at 31.

FIGURE 3 shows the detailed evaluation of experimen-
tal results by comparing our scheme with scheme [24] and
scheme [32]. Our experiments mainly focus on the storage
required by each user to store the keys, the size of GBF and

VOLUME 7, 2019 141359

Y. Su et al.: Efficient VMKSE in Cloud Computing

FIGURE 3. The performance comparison of the three schemes.

the time overhead of the share phase, the token generation
phase, search phase and verify phase. The storage of keys in
scheme [32] is slightly larger than both of our scheme and
scheme [24]. We evaluate the size of GBF in our scheme. The
size of GBF depends only on the shared documents.When the
number of keyword-document pairs grows up to 215, the size
of GBF is less than 400 KB. As FIGURE 3(b) shows, the two
lines are nearly coincident for the reason that the generation
time of GBF is too small to be negligible in share phase.

As the number of shared documents increases, although it
takes a certain amount of time to generate GBF, the extra
computational overhead is relatively small compared to the
share algorithm in scheme [24]. Compared with scheme [32],
it is more efficient for a user to generate a token because of the
TokenGen phase uses only one operation of a pseudorandom
function in our scheme. Besides, our scheme is more effi-
cient in searching for documents, but the search complexity
depends on the documents shared with the user. The search

141360 VOLUME 7, 2019

Y. Su et al.: Efficient VMKSE in Cloud Computing

time in our scheme is slightly larger than the scheme [24]
for the reason that the search algorithm needs to record the
identifiers of documents. Obviously, it is more efficient for
the user to verify the search result in our scheme. Even when
the keyword-document pairs are 215, the data user needs only
50.2 ms to verify the search result, since the verify algorithm
uses only symmetric operations (i.e. XOR and hash opera-
tions). The experimental results denote that our scheme can
achieve security goals against malicious data owner-server
collusion while maintaining a comparable performance.

VI. CONCLUSION
In this work, we focus on the problem of verifiable search-
able encryption under a multi-user setting. A novel VMKSE
scheme is proposed based on the primitive of GBF, which can
support verifiability of search result even when both the data
owner and the cloud server are malicious. Rigorous security
analysis demonstrates that the proposed scheme can achieve
the desired security goals. Furthermore, we implement our
scheme for a real-world dataset, and the experiment results
show that the proposed scheme can provide a comparable
computation overhead. However, our scheme only supports
a single keyword search. How to extend it to a new scheme
that supports multi-keyword search is an interesting question.

REFERENCES
[1] D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally, ‘‘Database man-

agement as a service: Challenges and opportunities,’’ in Proc. IEEE 25th
Int. Conf. Data Eng.Mar./Apr. 2009, pp. 1709–1716.

[2] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, ‘‘New algorithms for secure
outsourcing of modular exponentiations,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 9, pp. 2386–2396, Sep. 2014.

[3] K. Ren, C.Wang, and Q.Wang, ‘‘Security challenges for the public cloud,’’
IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan./Feb. 2012.

[4] Latest Facebook Data Breach Totals Over 540 Million Records
Found Unsecured, Accessed: Apr. 4, 2019. [Online]. Available:
https://latesthackingnews.com/2019/04/04/latest-facebook-data-breach-
totals-over-540-million-records-found-unsecured/

[5] J. K. Liu, M. H. Au,W. Susilo, K. Liang, R. Lu, and B. Srinivasan, ‘‘Secure
sharing and searching for real-time video data in mobile cloud,’’ IEEE
Netw., vol. 29, no. 2, pp. 46–50, Mar./Apr. 2015.

[6] M. Bellare, A. Boldyreva, and A. O’Neill, ‘‘Deterministic and efficiently
searchable encryption,’’ in Proc. Annu. Int. Cryptol. Conf., Santa Barbara,
CA, USA, 2007, pp. 535–552.

[7] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[8] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-
metric encryption,’’ in Proc. Conf. Comput. Commun. Secur., 2012,
pp. 965–976.

[9] H. Li, D. Liu, Y. Dai, and T. H. Luan, ‘‘Engineering searchable encryption
of mobile cloud networks: When QoE meets QoP,’’ IEEE Wireless Com-
mun., vol. 22, no. 4, pp. 74–80, Aug. 2015.

[10] M. Nabil, A. Alsharif, A. Sherif, M. Mahmoud, and M. Younis, ‘‘Efficient
multi-keyword ranked search over encrypted data for multi-data-owner
settings,’’ inProc. IEEE Int. Conf. Commun. (ICC)Kansas City,MO,USA,
May 2018, pp. 1–6.

[11] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn., Interlaken, Switzerland, 2004, pp. 506–522.

[12] Y. H. Hwang and P. J. Lee, ‘‘Public key encryption with conjunctive
keyword search and its extension to a multi-user system,’’ in Proc. Int.
Conf. Pairing-Based Cryptogr., Tokyo, Japan, Jul. 2007, pp. 2–22.

[13] P. Xu, H. Jin, Q.Wu, andW.Wang, ‘‘Public-key encryptionwith fuzzy key-
word search: A provably secure scheme under keyword guessing attack,’’
IEEE Trans. Comput., vol. 62, no. 11, pp. 2266–2277, Nov. 2013.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
‘‘Highly-scalable searchable symmetric encryption with support for
Boolean queries,’’ in Proc. Annu. Cryptol. Conf. Berlin, Germany:
Springer, 2013, pp. 353–373.

[15] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
‘‘Rich queries on encrypted data: Beyond exact matches,’’ in Proc.
Eur. Symp. Res. Comput. Secur. Cham, Switzerland: Springer, 2015,
pp. 123–145.

[16] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, andW. Jonker, ‘‘Compu-
tationally efficient searchable symmetric encryption,’’ in Proc. Workshop
Secure Data Manage. Berlin, Germany: Springer, 2010, pp. 87–100.

[17] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, ‘‘Supporting complex
queries and access policies for multi-user encrypted databases,’’ in Proc.
Workshop Cloud Comput. Secur. Workshop, 2013, pp. 77–88.

[18] C. Dong, G. Russello, and N. Dulay, ‘‘Shared and searchable encrypted
data for untrusted servers,’’ J. Comput. Secur., vol. 19, no. 3,
pp. 367–397, 2011.

[19] Z. Liu, Z. Wang, X. Cheng, C. Jia, and K. Yuan, ‘‘Multi-user searchable
encryption with coarser-grained access control in hybrid cloud,’’ in Proc.
4th Int. Conf. Emerg. Intell. DataWeb Technol., Shaanxi, China, Sep. 2013,
pp. 249–255.

[20] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, ‘‘Efficient
encrypted keyword search for multi-user data sharing,’’ in Proc. Eur. Symp.
Res. Comput. Secur. Cham, Switzerland: Springer, 2016, pp. 173–195.

[21] Y. Wang, J. Wang, S.-F. Sun, J. K. Liu, W. Susilo, J. Baek, I. You, and
X. Chen, ‘‘Towards multi-user searchable encryption supporting Boolean
query and fast decryption,’’ J. Universal Comput. Sci., vol. 25, no. 3,
pp. 222–244, 2019.

[22] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov,
‘‘Breaking Web applications built on top of encrypted data,’’ in Proc.
SIGSAC Conf. Comput. Commun. Secur., Vienna, Austria, Oct. 2016,
pp. 1353–1364.

[23] C. Van Rompay, R. Molva, and M. Önen, ‘‘A leakage-abuse attack against
multi-user searchable encryption,’’ Proc. Privacy Enhancing Technol.,
vol. 2017, no. 3, pp. 168–178, 2017.

[24] A. Hamlin, A. Shelat, M. Weiss, and D. Wichs, ‘‘Multi-key search-
able encryption, revisited,’’ in Proc. Int. Workshop Public Key Cryptogr.
Springer, 2018, pp. 95–124.

[25] C. Van Rompay, R. Molva, and M. Önen, ‘‘Secure and scalable multi-user
searchable encryption,’’ in Proc. 6th Int. Workshop Secur. Cloud Comput.,
2018, pp. 15–25.

[26] Q. Chai and G. Gong, ‘‘Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2012, pp. 917–922.

[27] K. Kurosawa and Y. Ohtaki, ‘‘UC-secure searchable symmetric encryp-
tion,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2012,
pp. 285–298.

[28] Z. Liu, T. Li, P. Li, C. Jia, and J. Li, ‘‘Verifiable searchable encryption
with aggregate keys for data sharing system,’’ Future Gener. Comput. Syst.,
vol. 78, pp. 778–788, Jan. 2018.

[29] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, ‘‘Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data,’’ in Proc. IEEE Conf. Comput. Commun. (INFO-
COM), Apr./May 2015, pp. 2110–2118.

[30] C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Enabling secure and efficient
ranked keyword search over outsourced cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[31] J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang, ‘‘Verifiable auditing for
outsourced database in cloud computing,’’ IEEE Trans. Comput., vol. 64,
no. 11, pp. 3293–3303, Nov. 2015.

[32] J. Wang, X. Chen, S. F. Sun, J. K. Liu, H. A. Man, and Z. H. Zhan,
‘‘Towards efficient verifiable conjunctive keyword search for large
encrypted database,’’ in Proc. Eur. Symp. Res. Comput. Secur. Cham,
Switzerland: Springer, 2018, pp. 83–100.

[33] X. Liu, G. Yang, Y. Mu, and R. Deng, ‘‘Multi-user verifiable searchable
symmetric encryption for cloud storage,’’ IEEE Trans. Dependable Secure
Comput., to be published.

[34] C. Dong, L. Chen, and Z. Wen, ‘‘When private set intersection meets big
data: An efficient and scalable protocol,’’ in Proc. SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 789–800.

[35] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

VOLUME 7, 2019 141361

Y. Su et al.: Efficient VMKSE in Cloud Computing

[36] C. Van Rompay and M. Önen, ‘‘Breaking and fixing the security proof
of garbled bloom filters,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur.
Privacy. Cham, Switzerland: Springer, 2018, pp. 263–277.

[37] R. A. Popa and N. Zeldovich, ‘‘Multi-key searchable encryption,’’ Cornell
Univ., Ithaca, NY, USA, Tech. Rep. 2013/508, 2013.

[38] M. Miao, J. Wang, S. Wen, and J. Ma, ‘‘Publicly verifiable database
scheme with efficient keyword search,’’ Inf. Sci., vol. 475, pp. 18–28,
Feb. 2019.

[39] Enron Email Dataset. Accessed: Feb. 4, 2019. [Online]. Available:
https://www.cs.cmu.edu/ enron/

[40] A. Broder and M. Mitzenmacher, ‘‘Network applications of bloom filters:
A survey,’’ Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

YAPING SU received the bachelor’s degree from
the School of Computer Science and Engineering,
Northwest Normal University, China, in 2017. She
is currently pursuing the master’s degree with the
School of Cyber Engineering, Xidian University.
Her research interests include searchable encryp-
tion and cloud security.

JIANFENG WANG received the M.S. degree in
mathematics, and the Ph.D. degree in cryptog-
raphy from Xidian University, in 2016. He is
currently with Xidian University. He visited the
Swinburne University of Technology, Australia,
from December 2017 to December 2018. His
research interests include applied cryptography,
cloud security, and searchable encryption.

YUNLING WANG received the master’s degree in
electronics and communication engineering from
Xidian University, China, in 2015, where she is
currently pursuing the Ph.D. degree in cryptog-
raphy. During her Ph.D. study, she studied as a
Joint Ph.D. Student with the Faculty of Informa-
tion Technology,MonashUniversity, Australia, for
one year. Her research interests include searchable
encryption and cloud computing.

MEIXIA MIAO received the M.S. degree in
business administration from Xidian University,
China, in 2013, and the Ph.D. degree from the
School of Computer Science and Technology, Xid-
ian University, in 2018. She is currently with the
Xi’an University of Posts and Telecommunica-
tions. Her research interests include cloud comput-
ing and data security.

141362 VOLUME 7, 2019

	INTRODUCTION
	OUR CONTRIBUTION
	ORGANIZATION

	PRELIMINARIES
	GARBLED BLOOM FILTER
	SYSTEM AND THREAT MODEL
	DEFINING VERIFIABLE MULTI-KEY SEARCHABLE ENCRYPTION

	VERIFIABLE MULTI-KEY SEARCHABLE ENCRYPTION SCHEME
	HIGH-LEVEL IDEA
	THE CONCRETE CONSTRUCTION

	SECURITY AND EFFICIENCY ANALYSIS
	SECURITY ANALYSIS
	COMPARISON

	PERFORMANCE EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	YAPING SU
	JIANFENG WANG
	YUNLING WANG
	MEIXIA MIAO

