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ABSTRACT With the integration of photovoltaic (PV) power into an electrical network, the complexity
of the grid management is increasing because of intermittent and fluctuation nature of solar energy. Solar
irradiance forecasting is essential to facilitate planning and managing electricity generation and distribution
in smart grid cyber-physical system (CPS). The performance of existing short-term forecasting methods
is far from satisfactory due to a lack of reliable and fast time-frequency model for continuous-time solar
irradiance data. To address this problem, this paper proposes a new method, Elman Neural Network (ENN)
driven Wavelet Transform (WT-ENN), for hourly solar irradiance forecasting. Firstly, the solar irradiance
series was decomposed into a set of constitutive series using wavelet transform. Secondly, the new wavelet
coefficients were predicted by ENNs in every sub-series with the best network structure and parameters.
Thirdly, Wavelet reconstruction will predict next hour solar irradiance through the aggregation of outputs of
the ensemble of ENNs. Finally, the forecasting performance was evaluated using two large real-world solar
irradiance datasets. Experiment results show that the new WT–ENN model outperforms a large number of
alternative methods and an average forecast skill of 0.7590 over the persistence model. Thus, it is concluded
that the proposed approach can significantly improve the forecasting accuracy and reliability.

INDEX TERMS Smart grid, cyber-physical system, solar energy, solar irradiance forecasting, Elman neural
network, wavelet transform.

NOMENCLATURE
CPS cyber-physical system
PV photovoltaic
ENN Elman neural network
WT wavelet transform
CWT continuous wavelet transform
DWT discrete wavelet transform
WT-ENN Elman neural network driven wavelet

transform
IoT internet of things
NWP numeric weather predictor
AI artificial intelligence
SVM support vector machines
BPNN back propagation neural network
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ARMA auto-regressive moving average
SOM self-organizing maps
SVR support vector regression
PSO particle swarm optimization
LSTM long short term memory neural network
MLPNN multilayer perceptron neural network
TB K-means transformation based K-means algorithm
GHI global horizontal irradiance
MBE mean biased error
MAE mean absolute error
RMSE root mean square error
nRMSE normalized root mean square error
R Pearson correlation coefficient
FS forecast skill
FE forecasting error
WCS wavelet cross spectrum
COI cone of influence
RNN Recurrent Neural Network
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I. INTRODUCTION
Because of the challenges of climate change, environmental
pollution, and energy insecurity, the market penetration of
renewable energy sources is growing rapidly. While renew-
able energy sources such as solar, wind, and geothermal
are in abundance, they are much harder to harvest. Larger
scale deployments of smart technologies, which represented
by Internet of Things (IoT) and Cyber-Physical Systems
(CPS) [1], [2], are needed in order to make these energy sup-
plies more reliable and secure. These promoted the progress
of smart grid [3]. Power generation is an important com-
ponent of smart grid, which is becoming more complex
because of the integration of photovoltaic (PV) power into
an electrical network. The power generated from the PV
power plants is related to the solar irradiance falling on the
surface. However, the values of solar irradiance are affected
by various atmospheric events such as rain and clouds. Rapid
fluctuations of solar irradiance may occur in various regions.
The range of solar irradiance fluctuations can reach up to hun-
dreds of W/m2. As more and more solar power is connected
to the grid, the sudden power drop caused by the decrease of
solar irradiance will adversely reduce the stability and power
quality of the local grid, possibly having a domino effect on
the adjacent power nodes [4]. This is a dangerous problem
in energy management. The power grid needs to be balanced
in real-time, and only limited low-cost storage and spinning
reserves are generally available. Predicting solar irradiance
is essential to facilitate planning and to managing electricity
generation and distribution. These are strong motivations for
short-term solar energy production forecasting [5].

A number of models have been proposed to forecast solar
irradiance, which can be classified into three categories:
physical, statistical and hybrid solar forecasting. The physical
models describe how much solar irradiance can be collected
with physical considerations. They predict the daily or hourly
solar irradiance according to the expected weather condi-
tions of a specific day. There are two well-known physical
models, numeric weather predictor (NWP) and clarity index.
Although these physical models can interpret internal rela-
tionships, their complexity hinders further improvement in
forecasting. The statistical models predict the solar irradiance
by using the historical samples or spatial-temporal samples,
which are good at the short-term forecasting. Statistical tech-
niques can be further divided into time series based methods
and artificial intelligence (AI) basedmethods. The time series
based methods includes the AutoRegressive (AR), Autore-
gressive Moving Average (MA), AutoRegressive Integrated
Moving Average (ARIMA) methods [6], [7], which have
demonstrated reliable performance and fast prediction. The
AI based methods, such as the Artificial Neural Networks
(ANN) [8]–[12], Hidden Markov Models (HMMs) [13],
Fuzzy Logic [14], Wavelet Networks [15], Long Short-
TermMemory Networks (LSTM) [16], K-Nearest Neighbors
(KNN) and Support Vector Machines (SVM) [17], [18], and
deep learning [19], [20], can deal with the nonlinear and
complex solar irradiance series.

The hybrid models have gained a lot of attention as they
can combine advantages of different models. A basic idea
of the model combination in forecasting is to use each
model’s unique feature to capture different patterns in the
data. There are a few typical hybrid methods in the literature.
Sharma et al. [21] proposed a mixed wavelet neural net-
work (WNN) for short-term solar irradiance forecasting,
with initial application in tropical Singapore. A combina-
tion of Morlet and Mexican hat wavelets is used as the
activation function in the hidden-layer neurons of a feed
forward ANN. The experiment results showed that WNN
has better prediction skill than other forecasting techniques.
Voyant et al. [22] presented a hybrid ARMA/ANN model to
predict global radiation. This forecast model has been evalu-
ated with the hourly global radiation data collected from five
places in Mediterranean area. Mohammadi et al. [23] pro-
posed a hybridmodel that combines the SVMand theWavelet
Transform (WT) algorithm to predict horizontal global solar
radiation. The SVM-WTmodel has high preciseness and reli-
ability in estimating the global solar radiation on a horizontal
surface. Benmouiza and Cheknane [24] forecasted hourly
global horizontal solar radiation by combining the k-means
algorithm and ANN. The k-means was used to extract useful
information through modeling the time series behavior and
discovering the patterns in data clusters. Azimi et al. [25]
developed a hybrid forecasting method that combines a time-
series analysis, a novel clustering technique, a new cluster
selection algorithm and a multilayer perceptron neural net-
work (MLPNN) for different time horizons. Li et al. [26]
proposed a predictionmodel with EmpiricalModeDecompo-
sition (EMD) and ANN to predict long-term solar radiation.

As reported in the literature, the accuracy of solar radiation
forecasting is still less satisfactory. The root mean square
errors (nRMSE) of existing prediction models are about
10%-24% [20]. Moreover, it lacks of the studies concerning
fast time-frequency model, which hinders further advance-
ments in this field. In this paper, we proposed a novel
WT-ENN approach that hybridizes wavelet transform (WT)
and Elman neural network (ENN) to forecast solar irradi-
ance. Firstly, the original solar irradiance data are decom-
posed into stable wavelet sub-series for prediction modelling.
Then the new wavelet coefficients are optimized by ENN
in every sub-series. Finally, the solar irradiance date are
reconstructed using the prediction model and the newwavelet
coefficients. A large number of experiments are conducted
on two real-world datasets to evaluate the performance of the
proposed hybrid approach. The experiment results show that
the proposed WT-ENN model has superior performance and
can effectively improve the prediction accuracy. These also
indicate that the accurate forecasting hourly solar irradiance
using only historical irradiance without other meteorological
parameters is possible.

The novelty of this study is to model the solar irradiance
time series, both in temporal and spectral domains. A WT is
performed that decompose the irradiance into different fre-
quency and time resolutions, and different ENNs are trained
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accordingly. The main contributions of this study are as
follows:

1) This study improves the performance of ENN models
by using WT for the original data and, subsequently,
develops an improvedWT-ANN hybrid model for solar
irradiance forecasting.

2) This study explores the suitability of wavelet-coupled
ENN models for the first time in two regions which
have abundant solar energy resources.

The organization of the paper is as follows. Section II pro-
vides the information about the real-world datasets. The new
prediction approach is proposed in Section III. The exper-
iments and results and are reported in Section IV. Finally,
conclusions are given in Section V.

II. DATA AND ANALYSIS
In this work, measured global horizontal irradiance (GHI)
taken from a meteorological ground station are used to
forecast GHI for the next hour. We need to apply lots of
real-world data to train and optimize the proposed model.
Two real-world datasets are used to evaluate hourly-ahead
forecasts of the GHI at the Earth’s surface: Kunming
(24◦51′ N, 102◦51′ E, Yunnan, China) and Denver (39◦44’N,
105◦11’W, Colorado, USA), which have abundant solar
energy resources.

Kunming, located at the southwest of China, has a humid
subtropical mild summer climate that is mild with dry win-
ters, mild rainy summers and moderate seasonality. The
annual average temperature in Kunming is 14.6◦C. The alti-
tude is 1895 m. The average sunshine per year is 2172 hours
and the annual solar irradiance is about 5500 MJ/m2. The
atmosphere in Kunming is relatively thin, which makes the
solar irradiance on the horizontal surface abundant and uni-
form throughout the year. The Kunming dataset is provided
by a portable automatic weather station, which is installed
at Yunnan Normal University. The solar irradiance value in
this paper refers to the GHI at the Earth’s surface. The solar
irradiance data and the meteorological data, such as ambient
temperature, relative humidity, wind velocity, atmospheric
pressure, rainfall and so on, were measured and logged by
a data logger (CR1000) every minute during the period from
April 12th 2017 to May 29th 2018. We analyze 554,400 data
instances (385 days, from April 12th, 2017 to May 29th,
2018,). The first 436,320 data instances, which were pro-
duced in 303 days, from April 12th, 2017 to February 9th,
2018, were assigned as a training set for model training and
optimization. The remaining 118,080 data instances covering
82 days, from March 8th, 2018 to May 29th, 2018, were
assigned as a testing set to evaluate the performance of the
forecasting model. Both the training and testing sets include
the diverse conditions of weather and cloud content. The
data for between February 9th, 2018 and March 8th, 2018 is
lost because of the Winter Holiday in China. In this paper,
we consider hourly solar irradiance and the data per minute
is converted into the data per hour by the average value.

FIGURE 1. Experimental hourly solar irradiance (Training data) recorded
by the data logger at Yunnan Normal University in China during period
April 12th, 2017–February 9th, 2018.

The measured values of solar irradiance used for training are
shown in Figure 1.

Denver, Colorado has a humid subtropical climate that
is mild with no dry season, constantly moist (year-round
rainfall). Summers are hot and muggy with thunderstorms.
Winters are mild with precipitation from mid-latitude
cyclones. Seasonality is moderate. The annual average tem-
perature in Denver is 10.1◦C, the altitude is 1612 m, the aver-
age sunshine per year is 3115 hours and the annual solar
irradiance is about 6300 MJ/m2. The solar irradiance data
and the meteorological data are collected every hour during
the period from January 1st 2015 to December 30th 2018 by
National Renewable Energy Laboratory (NREL). We divide
the data into the training, validation and testing data sets,
which covers 731(the first two years data), 365 (the third year
data) and 365 (the fourth year data) days, respectively.

FIGURE 2. Hourly solar irradiance (Training data) at Denver in USA during
period January 1st 2015 to December 30th 2016.

The data of solar irradiance for training are shown in
Figure 2. Figure 2 and Figure 3 display a clear seasonal
component in almost all the plots.

In addition, we study the most important parameters for
solar irradiation prediction in this paper. This analysis is done
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FIGURE 3. Hourly average solar irradiance with different months for
training data in Denver.

TABLE 1. Pearson R correlation coefficients between meteorological
parameters and solar irradiation in kunming and denver

using the data analysis tool for Pearson correlation. Correla-
tion analysis is to check if there is a true relationship between
two different variables. The relationships among irradiation
and wind direction, wind speed, atmospheric pressure, air
temperature, relative air humidity, and rainfall are analyzed
to determine which variables are important to prediction.
Table 1 shows the results of the correlation analysis on these
variables. It can be seen that these parameters have little to no
collinearity. Different degrees of correlation occur in different
datasets. In this paper, we use only irradiance data and don’t
consider other meteorological parameters.

III. NEW WT-ENN APPROACH
The proposed approach is a new aggregation of WT repre-
sentation and ENN neural model. The WT can decompose
the original solar irradiance data into a set of better-behaved
constitutive sub-series. The future values of these constitutive
series are forecasted by the ENN neural model. The ENN
model with the inverse WT can predict the future behavior
of the solar irradiance.

A. WAVELET IRRADIANCE REPRESENTATION
The wavelet transform is a mathematical approach. It gives
the time-frequency representation of a signal with the pos-
sibility to adjust the time-frequency resolution. WT can be
regarded as the time-frequency analysis method with an
adjustable window. In this paper, the solar irradiance series
are transformed into a set of constitutive series through

FIGURE 4. Decomposition process of the WT.

wavelet transform. The constitutive series are able to char-
acterize the behind pattern better than the original solar irra-
diance series.

There are two types of wavelet transform, continuous
wavelet transform (CWT) and discrete wavelet transform
(DWT). The accuracy of DWT is almost the same as the
CWT, but it is more effective in reducing the substantial
redundant information generated by the CWT [27].

The CWT W (a, b) of solar irradiance signal s(t) can be
defined as

W (a, b) =
1
√
a

∫
+∞

−∞

s (t) ϕ∗
(
t − b
a

)
dt (1)

where ϕ is so-called mother wavelet, ϕ∗ is a complex conju-
gate of ϕ, the parameter ‘‘a’’ denotes wavelet dilation and
controls the spread of the wavelet, parameter ‘‘b’’ denotes
time shift of wavelet and determines the central position.

The wavelet transform procedure can be carried out by
considering a finite number of positions and resolution lev-
els. In DWT, the decomposition coefficients of the wavelet
transform of the hourly solar irradiance are given by

W (m, n) = 2−(m/2)
T−1∑
t=0

stϕ∗(
t − n · 2m

2m
) (2)

where ϕ∗(·) is a complex conjugate of the selected wavelet
function, st is the value of the solar irradiance at hour t,
T is the length of the series, W(m, n) is the decomposition
coefficient corresponding to position n and resolution levelm.
The parameters of scaling and translation are functions of the
integer variables m and n(a = 2m, b = n2m).

Our new approach is based on Mallat’s theory [28] about
decomposition and reconstruction for the multiresolution sig-
nal. The solar irradiance series are decomposed into the
‘‘approximations’’ and ‘‘details’’. An approximation (A) is
the low-frequency representation of the original solar irradi-
ance signal, which maintains the general trend of the original
solar irradiance signal; whereas details (D) describe the high-
frequency component, which is the difference between two
successive approximations. A one-dimensional multilevel
(3-level) decomposition process is described in Figure 4.
It can be formulated as f = A3+ D3+ D2+ D1.
In this paper, according to the relevant research [23], [29],

we use Daubechies wavelet of order 5 (abbreviated as DB5)
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FIGURE 5. Discrete wavelet coefficients (DWC) of the solar irradiation
sequence for the WT-ENN model development with approximation (A3)
and three levels of detail (D1, D2, and D3) in training period. (a) Kunming,
(b) Denver.

as the mother wavelet ϕ(t) and select three-level decomposi-
tion. Figure 5 shows the wavelet decomposed sequences of
the solar irradiation.

B. ELMAN NEURAL MODEL
Elman neural network is partially recurrent network or simple
recurrent network, which can feedback connections from
the hidden layer to its input by an additional context layer
[30]–[32]. The context units make the Elman neural networks
very sensitive to the historical inputs and qualified for the effi-
ciency in the dynamic signal modeling. The ENN architecture
is shown in Figure 6.

The output of an Elman network is described by Equa-
tion (1), (2) and (3):

y (k) = g(w3x(k)) (3)
x (k) = f (ω1xc (k)+ ω2u(k − 1)) (4)
xc(k) = x(k − 1) (5)

FIGURE 6. Elman recurrent neural network architecture.

where, u(k−1) and y(k) are the input and output of the Elman
network, respectively, at a discrete time k; xc(k) is the node
of the context layer, x(k) is the node of the hidden layer; and
ω1, ω2, ω3 are the weight matrices for the context-hidden,
input-hidden, and the hidden-output layer, respectively.

In this architecture, the input layer consists of two parts:
the true input unit (u(k− 1)) and the context unit (xc(k)). The
context unit only saves the output of the hidden unit in the
previous step (x(k−1)). Therefore, the network can integrate
temporal information tracing back to its initial state.

C. WAVELET ELMAN PREDICTION
The new Algorithm WT-ENN shows the detailed process of
our new prediction approach.

The procedure can be described step by step in Figure 7,
wavelet transform is implemented in the first and last stages.
The actual irradiance time-series are first decomposed into
sub-series. The decompose signals are then fed into the ENN
at the second stage to predict the future time-series patterns
for each of the sub-series. Finally, the solar irradiance date
was reconstructed using these new wavelet coefficients.

Step 1: Divide the available data into training, validation
and test set.

Step 2: Using the WT algorithm to decompose the original
training/validation/test set into the ‘‘approximations A3’’ and
‘‘details D1 D2 D3’’ (3-level decomposition). The purposed
of this step is to decrease the non-stationary of the detailed
components.

Step 3: Select architecture and training parameters, such as
the number of neuron of the hidden layer, layer-delays, train-
function, and other training parameters of ENN.

Step 4: Train the model using the training set
(‘‘approximations A3’’).

Step 5: Evaluate the model using the validation set.
Step 6: Repeat steps 3 to 5 using different training

parameters.
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Algorithm 1WT-ENN
Input: X1,X2,X3, · · · ,Xn, while n is the number of samples.
Output: Y1,Y2,Y3, · · · ,Yn.
Procedure:
1. Using WT algorithm to decompose the data of original

irradiance time series into the ‘‘approximations A3’’ and
‘‘details D1 D2 D3’’ (four sub-series). Then, these
values are described by x1, x2, x3, . . . , xi, . . . , xn
respectively.

2. Each of sub-series A3 D1 D2 D3 are normalized to
[−1, 1] using Eq. (6).

3. Repeat
4. For each sub-series do
5. Real-input/output S = {(xi, yi)}ni=1, while

xi = xt−23, xt−22, · · · , xt−1, xt , yi = xt+1.
6. End
7. Repeat
8. For each S in the sub-series do
9. Initialize ENN structure and parameters. Set the

number of neuron of the hidden layer (initial value
= 10),layer-delays (initial value= 1:1), train-function
(gradient descent with Momentum and Adaptive LR)
and Learning Algorithm (Levenberg-Marquardt).

10. Train and optimize the ENN network.
11. Evaluate the network using the validation set.
12. Save the best network.
13. End for
14. Until maximum number of iterations or stopping

criteria is attained.
15. Repeat
16. For each input in the sub-series (for test samples) do
17. Forecast the new wavelet coefficients using the

corresponding network and renormalize the data.
18. End
19. Calculate the predicted solar irradiance by

wavelet reconstruction.

Step 7: Select the best parameters, train data from the
training and validation set, and save the best net.

Step 8: Compute this final model using the test set
(‘‘approximations A3’’), and forecast wavelet coefficients
(for each layer).

Step 9: Repeat steps 3 to 8 with the set details D1,
D2 and D3.

Step 10: Forecast solar irradiance by wavelet reconstruc-
tion. f = A3+D3+D2+D1, where, A3’, D3’, D2’ and D1’
are the new wavelet coefficients using ENN.

We use Python and Matlab R2016b to develop the experi-
ment program for WT-ENN.

Before applying the training algorithm, the data
(input/output) should be normalized to [-1, 1] according
to Eq. (6).

y =
(ymax − ymin) (x − xmin)

(xmax − xmin)
+ ymin (6)

FIGURE 7. The scheme of the WT-ENN forecast model.

where x ∈ [xmin, xmax], y∈ [ymin, ymax]. ‘‘x’’ is the origi-
nal datum and ‘‘y’’ is standardized value. We assume that
ymin = −1, ymax = 1.

IV. EXPERIMENTS AND RESULTS
This section reports a large number of experiments and results
on two real-world datasets for performance evaluation.

A. PERFORMANCE METRICS
We use five statistical metrics to assess the performance of
the models.

Mean biased error (MBE)

MBE =
1
N

∑N

i=1

(
Ŷi − Y i

)
(7)

where the N is the number of testing instances, Ŷi is the
prediction of the models and Yi is the measured irradiance
mean.

Mean absolute error (MAE)

MAE =
1
N

∑N

i=1

∣∣∣Yi − Ŷi∣∣∣ (8)

Root mean square error (RMSE)

RMSE =

√
1
N

∑N

i=1

(
Ŷi − Yi

)2
(9)

Normalized root mean square error (nRMSE)

nRMSE =
RMSE

Ȳ
(10)

where Ȳ is the mean value of Yi.
Furthermore, forecast skill (FS) is a metric to compare a

specific model to a reference model (usually persistence),
independent of forecast horizon, location or method [33]. It is
neutral and useful error metric in solar irradiance forecasting,
as given by Eq.(11).

FS = 1−
nRMSE

nRMSEpersistence
(11)
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The persistence model is a considerably elementary fore-
casting model, which is commonly used to justify the per-
formance of the other forecasting models. In this model,
the forecasted GHIs is assumed to remain the same with the
previous hour.

B. NEURAL NETWORK ARCHITECTURE
The input of ENN is a vector of 24 dimensions, which rep-
resents the irradiance values with 1-hour intervals for the
previous 24 hours. The single output of ENN is the pre-
dicted irradiation value. In order to achieve better network
performance, different numbers of hidden neurons and delays
are studies for selecting best architecture. A summary of the
designed network is given in Table 2.

TABLE 2. Summary of ENN design and architecture Units for Magnetic
Properties.

C. FORECASTING RESULTS AND ANALYSIS
The forecasted results are reported in Figure 8 and Table 3.
As one can see in Figure 8(a)(b), the blue circle (©) repre-
sents the measured value and the red asterisk (∗) represents
the forecasted value. The trend of the prediction line follows
the actual line at every moment. The local enlarged drawing
can show the small difference between measured and fore-
casted values. The forecasted values of solar irradiance well
match the groud-truth values. As shown in Figure 8(c)(d),
there is a good correlation between the forecasted value and
the actual value.

Table 3 and Table 4 report the research on prediction accu-
racy and the statistical parameters such as RMSE, nRMSE,
MBE. Refer to column 4 of Table 3, one can see that the
RMSE is 26.84 W/m2, the nRMSE is 12.37%, the MBE is
0.987 W/m2, the MAE is 19.33 W/m2, the Pearson correla-
tion coefficient is 0.9959, and the FS is 0.7718. These are
forecasting performance on the Kunming data.

In Denver dataset, it can be seen from column 4 of
Table 4 that the RMSE is 25.83W/m2, the nRMSE is 14.17%,
the mean bias error (MBE) is -0.314 W/m2, the MAE is
18.24 W/m2, the Pearson correlation coefficient is 0.9951,
and the FS is 0.7590. The experimental results on the
two different datasets are very similar. These evaluation

TABLE 3. The performance of WT-ENN and classical Elman (non-wavelet)
model in test samples (kunming) measured by Root mean square error
(RMSE, W/m2), nRMSE (%), Mean biased error (MBE, W/m2), Mean
absolute error (MAE, W/m2), Pearson correlation coefficient (R), and
forecast skill (FS).

TABLE 4. The performance of WT-ENN and classical Elman (non-wavelet)
model in test samples ( denver).

results confirm that the proposed WT-ENN approach works
very well.

Since the solar irradiance is zero or close to zero during the
0-7h and 20-24h, the forecasted values of 8-20h are extracted
from 0-24h. As shown from column 5 of Table 3 and 4
that the nRMSE reduces to 7.74% and 9.40% respectively.
The local enlarged drawing of Figure 8 suggests, when the
actual value of irradiance is 0, there is a certain deviation
in the predicted value. In actual forecasting, these mean-
ingless values are usually removed. Overall, these results
indicate that the proposed prediction model has excellent
performance.

Meanwhile, we conduct a comparison between the pro-
posed hybrid WT-ENN model and the classical ENN model.
The results are reported in Table 3 and 4. RMSE decreases
from 68.96 to 26.84 W/m2 (from 73.09 to 26.99 W/m2 in
Denver) when using the hybrid method. The accuracy has
been improved by 2.5 times. The performance improvements
on other statistical parameters are also significant. It can be
inferred from Table 3 and 4 that the proposed hybrid method
is effective and its accuracy is outstanding.

The statistical metrics deduced over the test period
(Table 3 and 4) exemplifies good predictive skill of the
WT-ENN compared to the classical ENN model. It is also
of interest to check the time-series of model forecasting
for analyzing the hour-to-hour solar irradiance forecasting.
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FIGURE 8. Scatter plot of the measured and forecasted hourly solar irradiance. (a)(c) for Kunming; (b)(d) for Denver.
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FIGURE 9. The forecasting error (Forecasting error, FE = Ŷi−Yi (W/m2) in test period. The statistics of forecasting
error are shown including the number of points in ±(1, 2 and 3) standard deviations. (a) Kunming, (b) Denver.

Figure 9 plots the forecasting error (FE) of a time-series for
the classical ENN and WT-ENN model. Forecasting error,
FE = Ŷi − Yi describes the difference between the hourly
measured (Yi) and the hourly forecasted (Ŷi) solar irradi-
ance. The mean of FE, standard deviation (σ ) of FE and a
numerical count of the datum points in (0–1), (1–2), (2–3)
and (3+)σ have been enumerated. There is strong evidence
that the classical ENN model exhibits higher amplitude in
the fluctuation in FE. This is also verified by the standard

deviation of the model’s FE. As it can be seen in Figure 9(a),
for Kunming, the standard deviation of the WT-ENNmodel’s
FE is 26.82. The standard deviation of the ENN model’s
FE is 68.95. There is a remarkable difference. Meanwhile,
the WT-ENN model has 1469 datum point (75.5%) in <1σ
range. In Figure 9(b), for Denver, the standard deviation of the
WT-ENN model’s FE is 26.99. The standard deviation of the
ENN model’s FE is 73.10. Meanwhile, the WT-ENN model
has 6876 datum point (78.7%) in <1σ range. The results of
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FIGURE 10. Wavelet cross spectrum for measured irradiance and predicated irradiance, where relative phase arrows point right for in-phase and left for
anti-phase coherence. (a) ENN approach for Kunming, (b) ENN approach for Denver, (c) WT-ENN approach for Kunming, (d) WT-ENN approach for Denver.

TABLE 5. Comparison of hourly solar irradiance forecasting with some existing methods in the literature.

the two regions are similar. All of these results confirm again
that the WT-ENN model is more accurate than the classical
ENN model.

Figure 10 shows the wavelet cross spectrum (WCS) anal-
ysis on two approaches. The bold contour line indicates a
95% confidence level using Monte Carlo simulation with
red noise [34]. The power spectrum below the line cone of
influence (COI) is uncertain because of edge effects after
zero padding. The wavelet spectra reveal high power for the

period between 16 and 32 hours, which is marked in oxblood
red, implying that it has a significant oscillation with a daily
period for solar irradiance. In other words, the irradiance
reveals a daily cycle. The area marked in deep blue indicates
irregular oscillations.

A WCS plot in Figure 10(a) (b) reveals that in the case
of ENN approach, the period between 32 and 128 hours is
not correctly modeled. A relative phase difference of 5–95◦

(direction of small black arrows inside the WCS plot)
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TABLE 6. Accuracy results for the proposed forecasting and existing traditional methods as well as the Persistence forecasting method.
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FIGURE 11. Monthly error (RMSE and nRMSE) of prediction for the BPNN, SVM, ENN, WT-ENN and the persistence models in Denver.

FIGURE 12. Comparison between measured and forecasted hourly solar irradiance for 3 types of weather using different methods. (a) Sunny
(March 15th), Kunming, China, (b) Cloudy (March 26th, 2018), Kunming, China, (c) Rainy (May 29th, 2018), Kunming, China, (d) Sunny (July 9th), Denver,
USA, (b) Cloudy (September 1st, 2018), Denver, USA, (c) Rainy (May 19rd, 2018), Denver, USA.

between measured and estimated solar irradiance is observed
on the time axis. On the other hand, this is not the problem
for the WT-ENN approach and the relative phase difference
is corrected as shown in Figure 10(c) (d). The direction of
small black arrows in the WCS plot is towards right most
of the time. This suggests that ENN approach could not
well model the frequency contents of the solar irradiance
signal related to 32-128 hours. However, when the signal

is decomposed, with wavelet decomposition, into relatively
simple parts, the problem vanishes.

ENN can use internal memory to exhibit temporal behavior
and handle arbitrary input data series, whichmakes them suit-
able for time series prediction [35]. When the original solar
irradiance datasets are used to as input of ENN, the prediction
results are unsatisfactory. Due to the fluctuation nature of
solar irradiance, it is difficult to describe the tendency of
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TABLE 7. Statistical test between measured and forecasted hourly solar irradiance for a Sunny, Cloudy and Rainy day.

solar irradiance for accurate forecasting. Considering that the
irradiance in the same area is mainly affected by the weather,
the solar irradiance series can be regarded as a combination
of sub-series with different frequencies. Each sub-series cor-
responds to a frequency range and shows regularity. They can
be predicted more accurately than the original data sequence.

D. COMPARISON TO DIFFERENT
FORECASTING STRATEGIES
The comparison of hourly solar irradiance forecasting with
several existing methods in literature are shown in Table 5.
The proposed WT-ENN approach has better prediction accu-
racy than the other methods. WT-ENN consistently outper-
forms all other models.

Table 6 reports the accuracy of our WT-ENN method
and other models including the BPNN, SVM, ENN and
the Persistence forecasting method. The forecast accuracy is

calculated for each month and then averaged to provide the
performance measures for each month of the year 2018 in
Denver region. The details of the monthly errors in every year
are provided in Figure 11. The forecasting results indicate
that the WT-ENN method outperforms other common neural
network techniques and Persistence forecasting method.

Furthermore, three types of weather are chosen to com-
pare the performance of different methods, as shown in
Figure 12 and Table 7. In Figure 12 (a) (d)(sunny day,
March 15th Kunming, July 9th in Denver). The predicted
curves are in reasonably good agreement withmeasure curves
using the proposed method. The nRMSE is only 6.55% and
4.75% respectively, the accuracy of the models using BPNN
and SVM methods is similar to that in Denver data set.
However, with Kunming data set, there are some differences
between them. In Figure 12 (b) (e) (cloudy day, March 26th,
in Kunming, September 1st in Denver), there are some
differences between the predicted value the actual value.
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Compared with the ENN, BPNN and SVM, the performance
advantage of WT-ENN is significant. It is relatively diffi-
cult to predict the hourly irradiance values of the cloudy
day because of the rapid change in hourly weather types
during the predicted day. WT-ENN model is excellent.
In Figure 12 (c) (rainy day,May 29th, in Kunming),WT-ENN
shows big advantage over other methods. In Figure 12 (f)
(rainy day, May 19th in Denver), the advantage of WT-ENN
is not so significant. All related results are reported in Table 7.

The results show that our WT-ENN method has superior
prediction performance in sunny days. It also produces good
results for cloudy and rainy days. In WT-ENN, the data is
processed by wavelet transform and some fluctuations were
filtered out, so the prediction accuracy and reliability can be
improved.

V. CONCLUSIONS
In this study, we proposed a new WT-ENN approach, which
combines wavelet transform (WT) and Elman neural network
(ENN) to forecast hourly solar irradiance in smart grid cyber-
physical system. The traditional RNN and ANN approaches
lack the ability to capture time-frequency signals. In this
paper, the complex solar irradiance signals are decomposed
into relatively simple time series with varying time and
frequency resolutions using wavelet decomposition. Mean-
while, considering the characteristics of solar irradiance data,
ENN modeling, which is the simpler RNN, is applied to
these simple time series. Finally, the predicted time series are
reconstructed to form an estimate of the final solar irradiance
signal. Two real-world datasets with different regions and
different types of climate were used for comprehensive per-
formance evaluation. A large number of experiment results
show that the proposed WT-ENN approach can significantly
improves the forecasting performance. With five different
statistical validationmetrics,WT-ENN’s performance consis-
tently outperforms other comparison models. Our approach
can achieve the following best performance. The RMSE is
26.84 W/m2 and 25.83 W/m2, the nRMSE is 12.37% and
14.17%, respectively. The forecast skill (over the persistence
model) is 0.7718 and 0.7590, respectively. Their results are
similar in different regions. The results also indicate that the
single variable of historical irradiance could yield accurate
forecasting hourly solar irradiance.
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