IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON ADVANCED DATA MINING METHODS FOR SOCIAL COMPUTING

Received August 25, 2019, accepted September 19, 2019, date of publication September 26, 2019, date of current version October 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943959

Matrix Factorization for Personalized
Recommendation With Implicit
Feedback and Temporal

Information in Social

Ecommerce Networks

MINGYANG LI, HONGCHEN WU, AND HUAXIANG ZHANG

School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China

Corresponding author: Hongchen Wu (wuhongchen@sdnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702312, in part by the Natural
Science Foundation of Shandong Province of China under Grant ZR2017BF019, and in part by the Project of Shandong Province Higher
Educational Science and Technology Program under Grant J17KB178. The work of H. Wu was supported by the China Scholarship
Council (CSC) under Grant 201306220132.

ABSTRACT Collaborative filtering with implicit feedback is regarded as one of the most challenging issues
in social ecommerce networks. However, the scarcity of negative feedback and the impact of time makes
collaborative filtering difficult to use. Most models assign a uniform weight to missing data, but this method
is invalid in the real world and leads to a biased representation of user profiles. In social ecommerce networks,
the popularity of an item is implicit social information that is dynamic and can affect the preferences of a user.
In this paper, we propose a smart model named TimeMF to address the above issues by incorporating implicit
feedback and temporal information into social ecommerce recommendation. The weighting scheme is based
on the dynamic popularity of an item. Then, we present an objective function and adopt an optimization
strategy to enhance the efficiency. The experimental results for a real-world dataset reveal that our model
outperforms the baselines on several metrics.

INDEX TERMS Personalized recommendation in social computing, implicit feedback, collaborative

filtering, temporal information, dynamic weight, matrix factorization, ecommerce.

I. INTRODUCTION

Although social computing has achieved considerable
success in user identification [1] and human behavior [2], [3],
information overload is a problem that cannot be neglected.
Recommender systems based on collaborative filtering are
an efficient method to address this problem in social ecom-
merce networks. Matrix factorization (MF) is one of the
most popular technologies applied for this purpose. However,
early recommender systems based on MF focused on explicit
feedback [4]-[7], where the ratings of items reflect the
preference of a user. Therefore, due to the unicity of data
(i.e., item ratings), the recommendation is formulated as a
rating prediction problem for abundant unobserved ratings

The associate editor coordinating the review of this manuscript and
approving it for publication was Huizhi Liang.

141268

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

(i.e., missing entries), and in order to improve the recommen-
dation efficiency, missing entries are ignored because they
are supposed to be unrelated to the preferences of the user.
The modeling workload is reduced in this way, and some
models based on explicit feedback, such as SVD++ [8] and
TimeSVD [9], have been devised.

Matrix factorization, which is based on implicit feedback,
is topical [10]. Explicit feedback is not available in many
applications, such as trust information, but implicit feedback
is the main method of interaction between users and items,
such as a user’s video viewing, purchase history, and log
of sharing. The sparsity of explicit feedback results in a
biased representation of user profiles [9], [11]. Compared
with explicit feedback, implicit feedback is easily captured
by the service provider, and rich information that reflects the
user profile be given serious attention. But there is a problem

VOLUME 7, 2019

https://orcid.org/0000-0002-7086-1645
https://orcid.org/0000-0002-7321-4646

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

IEEE Access

related to a lack of negative feedback [12]. In order to solve
this problem, a traditional solution assigns uniform weights
to missing data [10], [11], [13]-[15], and overall missing
data are considered to be negative feedback [10]. However,
this approach is not realistic in the real world. Another strat-
egy based on the law of implicit feedback assigns nonuni-
form weights to missing data, but the dynamicity of implicit
feedback is not considered.

Existing models that incorporate temporal information [9],
[16]-[20] focus on explicit feedback and find the regulation
between rating and time to improve user bias or item bias.
However, temporal implicit feedback information is usually
ignored because it is not obvious in the dataset and is dif-
ficult to modeled. However, time is a significant factor in
data mining, which has numerical and consistent nature, and
is usually viewed as an entirety instead of a single digital
field [18]. Temporal information can accurately represent
the transformation of a user’s activity over time, and such
changes can indirectly reflect the variety of user preferences.
Many factors can lead to these changes, such as artificial
effects and changes in environment. For example, in a music
recommender system, a user can change their preferred style
of music with the release of a movie or a friend’s recom-
mendation, or a user may like a melody that they have never
listened to [21]. Thus, incorporating time information into
implicit feedback is important when building a recommender
system.

Implicit feedback and temporal information can promote
the recommendation accuracy, and it is important to use
such information. The problem is to discover and model the
relationship between implicit feedback and time. Unlike the
relationship between explicit feedback and time (i.e., time
and ratings), time-based bins are not suitable for implicit
feedback because the interactive time for missing entries is
non-unique. The selection of the interactive time for each item
would impact the algorithm’s efficiency.

In this paper, a novel recommendation model named
TimeMF is proposed, which makes use of both implicit feed-
back and temporal information. The temporal information of
a real-world dataset was analyzed in this paper, and some
regulations were found. In particular, we assign the weight of
missing data based on the dynamic popularity of items, which
makes use of the regulations from temporal information. This
method improves the results. The experimental results on a
real-world dataset suggest that the proposed model is state-
of-the-art.

The rest of this paper is organized as follows. Section II
introduces related work on collaborative filtering of implicit
feedback and time information. Section III presents an
analysis of time information and proposes the TimeMF
model. Section IV provides the results of an experiment and
comparison. Finally, the paper is concluded.

Il. RELATED WORK
Matrix factorization (MF) used in recommender systems
is different from traditional singular value decomposition.

VOLUME 7, 2019

Matrix factorization is inspired by machine learning and aims
to obtain a feature matrix by training a model. To promote
the predictive accuracy of recommendation, Koren et al.
propose SVD++ [8], which incorporates implicit feedback.
Henceforth, some algorithms have been developed based on
SVD++, such as TrustSVD [9], TimeTrustSVD [18], and
EnhancedSVD [22]. Despite incorporating social information
in addition to rating scores, such as trust information, reviews
of items, and the relationship of the user, these models largely
focus on explicit feedback and result in biased representations
of user profiles.

Compared with explicit feedback, implicit feedback can
accurately reflect a user’s preferences because of the large
number of data that record the history of a user’s activity.
Thus, some matrix factorization methods have been devel-
oped based on implicit feedback [10], [23]. Recommendation
is formulated by these works as a rating prediction problem
for a large volume of unobserved ratings. Moreover, recom-
mender systems are widely used to correctly rank unknown
ratings for each user [11], [24]-[30], with little attention given
to the actual ratings. However, the lack of negative feedback
cannot be avoided. It is difficult to distinguish unknown val-
ues and negative feedback in missing data. A popular solution
is to uniformly weight all missing data [10], [11], [13]-[15]
and treat all unobserved ratings as negative feedback. But the
weight strategy is not suitable for real applications because
inefficiency is an issue. Another strategy is non-uniform
weighting [12], [27]-[29] based on rules of implicit feed-
back. However, non-uniform weighting is difficult to utilize
in real scenarios because the strategy considers only one
aspect and simplifies the problem of the lack of missing data.
Meanwhile, the dynamicity of implicit feedback is ignored.

Temporal information should not be neglected and exists
in a wide variety of real-world datasets. Although tem-
poral information can intuitively represent the change in
a user’s preference, it is not easy to utilize because tem-
poral information is ambiguous. Recommender systems
attach importance to temporal information. Some models
that incorporates temporal dynamic, such as TimeSVD [9],
TimeTrustSVD [18], TimeAware [16], TimeSQRC [31],
and TimeAwareQOS [32], have been developed, but these
methods still focus on the relationship between ratings
and temporal information. Furthermore, the recommenda-
tion performance is influenced by the size of the time bins,
which represent a fragment of the time span. In recent years,
some models that integrate implicit feedback and temporal
information have been designed [33]. But these models are
developed for specific domains and need a large space to store
the data that reflect the associating between implicit feedback
and time.

ill. MODEL

As shown in Fig.1, the proposed TimeMF model first cleans
the data which is past behaviors to obtain the implicit
feedback and temporal information. Afterwards, the implicit
feedback and temporal information will be analyzed to find

141269

IEEE Access

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

Temporal information
Solving the lack of

i 0[O]0) Ay ;
‘= ;E Clean Analyze \@¢ negative feedback
~\W)<

Dynamic weight

1010119,
001011
1014117

Matrix factorization

Past behaviors Implicit feedback

User feature matrix
Seb Seb

D Recommend-a
-]

Item feature matrix

Optimize

FIGURE 1. Workflow of our proposed TimeMF model.

their correspondences. Accordingly, the dynamic weight
strategy is proposed to solve the lack of negative feedback.
Finally, the user feature matrix and item feature matrix are
obtained by training the model, and using them to recommend
top-k items for each user. In what follows, we describe the
analysis of temporal information.

A. THE ANALYSIS OF TEMPORAL INFORMATION
Temporal information is an important factor in recommender
systems. A service provider can collect a user’s information
in real time, such as explicit feedback and implicit feedback,
and use the information to improve the quality of service.
However, the randomness and opacity of temporal infor-
mation makes it difficult to use in recommender systems.
Next, we will analyze the relationship between time and the
popularity of an item in a real-world dataset, which will be
beneficial to building the model.

The popularity of an item is an important factor in a social
ecommerce network. Unlike explicit social interactions, such
as trust information, the recommendation of a friend, and
a user’s social status, the popularity of an item is implicit.
The popularity reflects the probability that an item will be
exhibited on the home page; moreover, the user’s activity can
influence the popularity of an item. Explicit social informa-
tion originates from the user’s friend and affects the user’s
preferences; however, each user who interacts with the item
can affect the popularity of the item, and thereby influence
the preferences of a user who views the item exhibited on the
home page. Therefore, item popularity is social information.

Our analysis is based on amazon-movie, which is a
real-world dataset spanning 18 years from 1995 to 2013.
Compared with the sparsity of ratings, the time density of
popularity is large. Clearly, the temporal information is very
dense, which creates a solid foundation to utilize these data.

First, we analyze the variation in the average popularity
of all items over time to observe the influence of time on
popularity. In Fig.2, we observe a strong correlation between
average popularity and time. The X-axis represents the time
span, and the Y-axis represents the average popularity of all
items. Clearly, the average popularity of all items increases
for 900 days and reaches a peak on the 1000th day. This
phenomenon suggests that items experience a hot stage before
the 1000th day. But after 1000 days, at which point the

141270

100

- Average number of click

80

60

401

Number of click

20

T

0 L L L n LI
0 1000 2000 3000 4000 5000 6000
Day of interaction for all items

FIGURE 2. The distribution of the average number of clicks for all items.

2000 r
- Single item's number of click

1500
<
2
S
kS

+ 1000 |-
15}
)
g
=
Z

500

OJ I . '. oo i s ol
0 1000 2000 3000 4000 5000 6000

Day of interaction for single item

FIGURE 3. The distribution of the number of clicks for a random item.

average popularity drops significantly and begins to decrease
slowly. This tendency indicates that items gradually become
obscure.

Next, consider the variation in the popularity of a sin-
gle item over time. We randomly select an item. In Fig.3,
the X-axis represents the time span, and the Y-axis represents
the popularity of a single item. The popularity increases
slowly for approximately 500 days, but after the 500th day,
it increases significantly and reaches a peak on the 1000th
day. However, the popularity the decreases in a short time.
After 1000 days, the remaining time span can be split into
two periods. The first period is approximately 1700 days,
from the 1000th day to 2700th day, and the second period is
approximately 3300 days, from the 2700th day to the 6000th
day. Although fluctuating in the two periods, the popularity
of a single item still shows an overall decreasing trend.

Based on the above analysis, we can draw the following
conclusions:

First, there is a strong correlation between time and popu-
larity. Popularity is dynamic and changes over time. In gen-
eral, the stage of popularity can be split into two periods: the
hot period in which the popularity is increasing and the cold
period when the popularity is declining.

Second, the discrimination of negative feedback is trans-
formed with time. If an item is popular, the item should be

VOLUME 7, 2019

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

IEEE Access

recommended and shown on the home page [34]. Therefore,
if a popular item is not interacted with by users, we should
treat the lack of interaction as negative feedback. However,
the discrimination of negative feedback is influenced by
temporal information; therefore, we should consider time
information to discriminate negative feedback from missing
data.

B. PRELIMINARIES
We being by introducing some basic notation. User-item
interaction matrix R has a volume of M x N, where M
and N denote the numbers of users and items, respectively.
R denotes the set of user-item pairs that are not missing
values. We use index u to denote a user, and an item is denoted
by index i. Vector x,, denotes the latent feature vector of u, and
vector y; denotes the latent feature vector of i. R(u) denotes the
set of items that u interacts with. Similar notation is used for
y; and R(i). Matrices X € RE*M and ¥ € RE*N) denote
the latent feature matrices for users and items, respectively.
Xyuk 1s the kth feature of x,,. Similar notation is used for y;x.
Formally, the squared loss is used to formulate the
objective function of weighted matrix factorization.

M N
J= Y dui(rui—ru)’ + 2 (Z EAREY ||yl~||2>
u i

(u,))eR
(D

where d,; denotes the weight of each user-item pair. ry;
denotes each entry of R, ry; is the prediction score following
matrix factorization, ry; = quy,-. A is aregularization param-
eter, which is usually the L, norm, to prevent overfitting.
Note that in the implicit feedback, missing data are usually
assigned a zero value, but the value of the weight is nonzero,
which is important for the performance.

C. WEIGHT STRATEGY
According to a previous analysis, we know how to find
negative feedback in unobserved values. Therefore, we pro-
pose a new weight strategy based on the dynamic popularity
of items. Thus, we parametrize d (i, stagel-) based on the
following strategy:
C.sig(stagei)xa
d(i, stage;) = doNl— 2)
Z stig(stagei)xa
J

where ¢; denotes the popularity of item; based on the number
of clicks; stage; denotes the period of item;; dy denotes the
weight of overall missing values; and « is an exponent rang-
ing from O to 1 that controls the level of popularity of an item
and helps in discriminating negative feedback.

On the basis of the above analysis of time information,
item popularity is influenced by temporal dynamics, e.g.,
the period of time determines whether the item is pop-
ular. Therefore, how to split the granularity of time to
determine popularity is important. Existing models, such as

VOLUME 7, 2019

TimeSVD [9] and TimeTrustSVD [18], focus on the rela-
tionship between ratings and time. They usually adopt the
final time as the rating’s time; thus, there is a one-to-one
correspondence between ratings and time. Compared with
explicit feedback, implicit feedback is composed of a user’s
activity history. The relationship between the activity of a
user and time is many-to-many, and activity history does not
have any tag to indicate who executes the activity. In implicit
feedback, whether a user performs an interactive action on
an item is a criterion used to distinguish the item type as
interactive or non-interactive. If we adopted the time strategy
of explicit feedback, we would be confronted with several
problems. First, the granularity of time is fine, so we need a
large volume for storage. Second, according to the previously
defined objective function, if an item is not interacted with
by any user, the interactive time of the item is difficult to
determine.

To address these problems, we include a parameter fyqge,
which is a time node that places a boundary on popularity.
Anitem is popular when its time of issuance is less than fge;
otherwise, the item is out of fashion. Based on a previous
analysis, a popular item should be well known in general: a
popular item that is ignored is probably irrelevant to the user.
Thus, a miss on a popular item should be given a high weight
to be treated as negative feedback. stage; is a parameter used
to define the stage of an item. It has two values, —1 or 1. item;
is popular when the value of stage; is 1, and its weight is high;
otherwise, the item is not popular, and its weight is lower than
that of a popular item.

In addition to fggge, the length of the release time of an
item is an important factor in defining the value of stage;. The
time of the first interaction with the item is the start point, and
the end point is the time of the last interaction with the item.
Based on the two time points, we can calculate the time span
of the item. If the time span is less than #yqg., the value of
stage; is 1; otherwise, the value is —1.

D. TRAINING THE MODEL

Due to the large volume of items, missing values for a user
are a mixture of unknown values and negative feedback.
However, negative feedback and unknown values are difficult
to discriminate in missing data because of the nature of
implicit feedback. Therefore, we can set a matrix to weight
missing values to identify negative feedback. Considering the
influence of temporal information, we devise a fine-grained
objective function:

T=3"3" de(rui— r)’

U ieR(u)

+ Z Z d(, stagei)r;,-2

u i¢R(u)

M N
+1 (Z lbeal®) llyill? 3)

where d, denotes the confidence of explicit feedback and
d(i, stage;) is a function used to calculate the weight of

141271

IEEE Access

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

implicit feedback. The objective function can be split into
two parts. The first part denotes the loss of observed data,
and the second part denotes the loss of missing data.

We analyze the second term of objective function,
2o 2igrw 4G, stage;)r”, which denotes the square loss of
missing entries. The term is inefficient because most items are
not rated by the user. However, the term can be reformulated
between the sum on all entries and the sum on the items rated
by the user. Thus, the sum of missing entries can be removed
from the computations:

M N
Z Z d (i, stage;) r,},-z = Z Zd (i, stage;) r;,-z
U igR() u
- Z Z d (i, stage;) r;iz

u ieRu)
4

There are two terms in the formulation, and the first term,
SMsNaq, stage;)ry;i”, is the core on which the subsequent
optimization is based. The first term can be transformed as:

M N M N

Y Y d i stagen i =Y " [d(, stage;)

u u

x| ©)

ny va d (i, stage;) 72 can be reformulated:

M N

M N
Z Z d (i, stage;) ry* = Z Z [d(i, stage;)
- — 4

u i

oy x] - (©)

We have posed ! = va d(i, stage;)y;yi" ,a K x K matrix
that is independent of i. Assuming S’ is known, we can
compute the derivative of x,y:

aJ A . N
oy Z [de (Fi — rui) — d, stage;) - i) - ik
i€eR(u)
K
) xSty A (D)
f

where sif denotes the factor of S!, and K is the number of
features of the latent feature matrix of X.

Symmetrically,
M
sU = ququ 8)
u
M N M N
Z Z d (i, stage;) > = Z Z [d(i, stage;)
u i u i
ik vi) ©)

141272

We assume that the feature of an item is known, and we
can compute the derivative of yj:

aJ o . N
r = Z [de (rui - rui) —d(i, stage;) - rui] " Xuk
ik ueR(@)
K
+) i s+ Ay (10)
f

where s,l{] denotes the factor of SV and K is the number of
features of the latent feature matrix of Y.

According to the derivation, our optimization is based on
the features of the latent feature matrix. Therefore, we use
adaptive gradient descent to determine the size of the gradient
step for each feature of the latent feature matrix. Meanwhile,
the gradient steps of features are dynamic; in other words,
they decrease with increasing feature gradient. Thus, we can
obtain the optimal solution with respect to the objective func-
tion, and [rate denotes learn rate.

Algorithm 1 TimeMF
Input: R, K, X, tyage, o, do, Irate
Qutput: the latent feature Matrices X and Y
1: Initialize X and Y
2: Calculate the vector of weights with the popularity of
item and stage;
3: for the epoch is less than the number of iterations do
4: for u is less than the number of users do
5 for f is less than K do
6: Adopt AadGRAD to update the lrate of x,f
7
8
9

Update the x,y in lrate
Update the gradient of x,¢
end for
10: end for
11: for i is less than the number of items do

12: for f is less than K do

13: Adopt AdaGRAD to update the lrate of y;
14: Update the y;r in lrate

15: Update the gradient of y;s

16: end for

17: end for

18: end for

19: return X and Y

Algorithm1 summarizes TimeMF. For convergence, one
can either monitor the value of the objective function on the
training set or check the prediction performance on hold-out
validation data.

IV. EXPERIMENT
In this section, we begin by introducing the experimental
setting, followed by the traditional offline protocol.

A. EXPERIMENTAL SETTING
In this part, we introduce the experimental setting.

VOLUME 7, 2019

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

IEEE Access

1) DATASET

We evaluate a real-world dataset: Amazon Movie. In order
to transform the review data into implicit feedback, we use
a strategy in which each entry is marked as 0/1 to indicate
whether the item was viewed by the user. Note that if the value
of the entry is 1, the user interacted with the item; otherwise,
the user did not view the item. For the purpose of availability
of temporal information, we filter out the information with
invalid time stamps.

2) METHODOLOGY

In order to build the training matrix and testing list, we use
leave-one-out evaluation in which the latest interaction of the
user is reserved for prediction and the remaining data are
used to train the model. We adopt the traditional offline pro-
tocol to evaluate the performance of our algorithm; therefore,
the strategy is based on the historical data of recommended
items for the user.

Compared with traditional matrix factorization, matrix fac-
torization based on implicit feedback focuses on correctly
ranking the unobserved items for each user, which is known
as the top-k problem. The evaluation of the performance
is different from that of traditional matrix factorization.
To assess the ranked list based on test items that the user
interacted with, we use the hit ratio (HR) and normalized dis-
counted cumulative gain (NGCD). The HR indicates whether
the ground truth is in the ranked list, and the NDCG denotes
the position of the ground truth in the ranked list. In fact,
relevant items ranked at high positions contribute to the final
score.

3) BASELINES
We compare our method with the following models:

ALS [10]: A conventional matrix factorization model
based on complete data.

RCD [11]: A state-of-art matrix factorization model based
on implicit feedback. RCD determines the step size of the
vector of features by line search, and the value we use comes
from the author’s implementation.

4) PARAMETER SETTING

With regard to the weight of observed entries, we uniformly
set the value to 1. We set the regularization parameter to
0.1 for all models, which is convenient for paired compar-
isons. For the initialization of the latent feature matrix, we use
a Gaussian distribution. Note that we set the mean to 0 and
the standard deviation to 0.01. All models are implemented
in java8 and run on the same machine (Intel core i7 CPU and
16 GB RAM). The performance increases with increasing
number of features, and we use K to denote the number of
features. Thus, we discuss the result only for K = 128.

B. WEIGHT OF MISSING VALUES

In section III, we propose the strategy of assigning weights
based on the dynamic popularity of an item based on time
information. There are three parameters: dy, &, and fygge.

VOLUME 7, 2019

0.59 " " " " " " 0.16
0.58 10.156
2 o}
& 0.57} 10152 8
s Z
0.56 1 10.148
—*—Hit Ratio
—+NDCG
0.55 ' ' ' ' ' ; 0.144
16 32 64 128 256 512 1024 2048
do
FIGURE 4. The impact of weighting parameter d.
0.605 " " " " 0.161
0.6 10.16
= @)
c 2
s Z
0.595 30.159
—e—Hit Ratio
—=NDCG
0.59 ‘ : : : 0.158
0 0.2 0.4 0.6 0.8 1
«

FIGURE 5. The impact of controlling parameter «.

do denotes the confidence of overall missing entries, « con-
trols the level of popularity for each item, and #,g. denotes
the period in which the item is popular, to determine the value
of stage;.

First, we set ¢ = 0 and fg4ee = 1000 to study how
do impacts the performance. In Fig.4, it is clear that the
performance degrades significantly when dj is very small,
such as dy = 0. As dj increases, the performance improves.
This result demonstrates the necessity of considering missing
entries when building implicit feedback about item recom-
mendations. However, the performance suffers significantly
when the value of d is very large.

Then, we keep the value of 7,4, constant, set dy to the best
value, and vary « to study the impact on the performance.
In Fig.5, when o = 0, we assign uniform weights to miss-
ing values, missing entries are treated as negative feedback,
and the performance degrades seriously. The performance
improves as « increases. However, if « is too large, such as
o > 1, the performance suffers because a large o has an
adverse effect on the ability to discriminate negative feed-
back. As a result, the item weights are imbalanced between
popular items and less popular items. Thus, it is important to
assign a proper weight for less popular items.

Finally, we set dy and « to the best values and vary #y,qe
to assess the change in performance. In Fig.6, when #y,qe

141273

lEEEACC@SS M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

0.61 i i i 0.161

0.6 0.159

NDCG

Hit Ratio

0.59 0.157

—e—Hit Ratio
-=-NDCG
; 0.155

0 1000 2000 3000 4000

0.58

t
stage

FIGURE 6. The impact of time parameter f54,g¢.

0.18

0.16 1

0.04 : : : :
0 20 40 60 80 100 120 140

Number of feature

FIGURE 7. The impact of the number of features.

is large or small, such as fyqge = 0 O fyuee > 4000,
the performance drops substantially because #yqg. is an essen-
tial component for controlling the level of item popularity.
Extreme values degrade the ability to discriminate negative
feedback. Therefore, finding a correct time point is crucial
for the performance.

In the following experiments, we fix dp, o, and fgqge to their
best values, i.e., dy = 256, a = 0.4, tg4e. = 1000, and we
set the learn rate according to grid search, i.e., lrate = 0.012.

C. THE IMPACT OF THE NUMBER OF FEATURES

Fig.7 shows the relationship between the number of features
and the prediction accuracy in terms of NDCG. TimeMF
consistently outperforms ALS and RCD, which demonstrates
that the proposed model is efficient. The prediction accuracy
improves significantly with increasing K . In real applications,
there is a large volume of users and items, and a large number
of features is important to improve the prediction accuracy.

D. TRAINING TIME

The training time per iteration is shown in Table 1. With
the increase of the number of features, ALS spends longer
time than TimeMF and RCD. Specially, when the number
of features is 128, ALS spends 29 minutes for one iteration

141274

TABLE 1. Training time per iteration of different methods with varying
the number of features.

number of features | TimeMF | ALS | RCD
8 7s 9s 15s
16 15s 25s 17s
32 34s 1.4m | 25s
64 80s 6m 47s
128 4.7m 29m | 2.3m

s and m denote seconds and minutes.

0.61

0.6

Hit Ratio
I
W
N}

—TimeMF
-- ALS
RCD

0.58 ¢

0.57 . . . !
0 100 200 300 400 500

Number of iteration

FIGURE 8. The prediction accuracy of three MF models in each iteration
(Hit Ratio).

0.161

0.16 [

NDCG

0.159 1

0.158 I — TimeMF|
: --ALS
: RCD
0.157 : : : :
0 100 200 300 400 500

Number of iteration

FIGURE 9. The prediction accuracy of three MF models in each iteration
(NDCG).

on amazon-movie, while TimeMF takes 4.7 minutes. The
speed-up is significant. TimeMF and RCD have the same
running time, the minor difference can be caused by the data
structures.

E. COMPARISON

Fig.8 and Fig.9 show the prediction accuracy with regard to
the iteration number. Note that to carefully show the impact
of iteration for TimeMF, the iteration is split into four stages:
in the first stage (iterations 1 to 199) the span of iteration
is 1; in the second stage (iterations 200 to 300), the span is
5; in the third stage (iterations 300 to 400), the span is 10;
and in the fourth state (all remaining iterations), the span

VOLUME 7, 2019

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

IEEE Access

is 20. After the number of iterations exceeds 300, the accuracy
of these models, TimeMF, ALS, and RCD become stable,
and TimeMF achieves the best performance. Thus, TimeMF
outperforms ALS and RCD. Meanwhile, the prediction accu-
racy of TimeMF is lower than that of the other models
when the number of iterations is less 300. ALS focuses on
optimizing the feature vector, so it does not need to learn
the rate to train the features of the latent feature matrix via
gradient descent and can therefore rapidly reach a stable state.
RCD adopts a line search to determine the best step size
for each feature in the feature vector, so it can find the best
step size to train the features for each epoch. By contrast,
TimeMF uses adaptive gradient descent to train the latent
feature matrix; therefore, due to the nature of adaptive gradi-
ent descent, we cannot obtain the optimal solution when the
number of iterations is small. This is the reason that the other
methods converge faster than does TimeMF. However, once
the number of iterations exceeds 300, the proposed model
outperforms the other state-of-the-art models. There are two
reasons. First, we adopt the dynamic popularity of items in
which the level of popularity is controlled by the tempo-
ral information and is used to weight missing entries. The
weighting strategy addresses the lack of negative feedback to
facilitate the utilization of missing data. Second, each feature
in the feature vector is assigned a step size for training, and
the step size decreases with increasing feature gradient; thus,
we can obtain the optimal solution for each feature, which
contributes to the prediction accuracy.

V. CONCLUSION

In this work, we propose a smart model called TimeMF,
which is based on implicit feedback and incorporates tem-
poral information, to address the lack of negative feedback to
solve the problem of information overload in social ecom-
merce networks. We study the relationship between item
popularity and time and devise a new weighting strategy
based on the dynamic item popularity to assign non-uniform
weights to missing data. The optimal model assigns an exclu-
sive learning rate to each feature of the latent feature matrix
and adopts adaptive gradient descent to update the learning
rate to enhance the accuracy. The experimental results reveal
that our model outperforms the baselines with respect to
ranking-oriented evaluation. Furthermore, temporal informa-
tion can be used to improve the prediction accuracy in matrix
factorization based on implicit feedback.

REFERENCES

[1] K.Deng, L. Xing, L. Zheng, H. Wu, P. Xie, and F. Gao, “A user identifica-
tion algorithm based on user behavior analysis in social networks,” IEEE
Access, vol. 7, pp. 47114-47123, 2019.

[2] M. A. Al-garadi, M. R. Hussain, N. Khan, G. Murtaza, H. F. Nweke,
1. Ali, G. Mujtaba, H. Chiroma, H. A. Khattak, and A. Gani, ‘““Predicting
cyberbullying on social media in the big data era using machine learning
algorithms: Review of literature and open challenges,” IEEE Access, vol. 7,
pp. 70701-70718, 2019.

[3] L. Nie, X. Song, and T.-S. Chua, “Learning from multiple social net-
works,” Synthesis Lectures Inf. Concepts, Retr., Services, vol. 8, no. 2,
pp. 1-118, Apr. 2016.

VOLUME 7, 2019

[4]

[5

—

[6

—

[71

[8

—

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27])

(28]

(29]

Y. Koren and R. Bell, “Advances in collaborative filtering,” in Rec-
ommender Systems Handbook. Cham, Switzerland: Springer, 2015,
pp. 77-118.

H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua, “Discrete
collaborative filtering,” in Proc. 39th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr., Jul. 2016, pp. 325-334.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Proc. Int. Conf. Algorithmic
Appl. Manage. Cham, Switzerland: Springer, 2008, pp. 337-348.

T. Man, H. Shen, J. Huang, and X. Cheng, “Context-adaptive matrix
factorization for multi-context recommendation,” in Proc. 24th ACM Int.
Conf. Inf. Knowl. Manage., Oct. 2015, pp. 901-910.

Y. Koren, R. Bell, and C. Volinsky, ‘“Matrix factorization techniques for
recommender systems,” Computer, vol. 1, no. 8, pp. 30-37, Aug. 2009.
Y. Koren, “Collaborative filtering with temporal dynamics,” in Proc. 15th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jun./Jul. 2009,
pp. 447-456.

Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proc. 8th IEEE Int. Conf. Data Mining, Dec. 2008,
pp. 263-272.

R. Devooght, N. Kourtellis, and A. Mantrach, “Dynamic matrix factor-
ization with priors on unknown values,” in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2015, pp. 189-198.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang,
“One-class collaborative filtering,” in Proc. 8th IEEE Int. Conf. Data
Mining, Dec. 2008, pp. 502-511.

1. Pilaszy, D. Zibriczky, and D. Tikk, “Fast ALS-based matrix factorization
for explicit and implicit feedback datasets,” in Proc. 4th ACM Conf.
Recommender Syst., Sep. 2010, pp. 71-78.

H. Steck, “Training and testing of recommender systems on data missing
not at random,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Jul. 2010, pp. 713-722.

M. Volkovs and G. W. Yu, “Effective latent models for binary feedback in
recommender systems,” in Proc. 38th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr., Aug. 2015, pp. 313-322.

H. Liang, Y. Xu, D. Tjondronegoro, and P. Christen, “Time-aware topic
recommendation based on micro-blogs,” in Proc. 21st ACM Int. Conf. Inf.
Knowl. Manage., Oct. 2012, pp. 1657-1661.

Y. Ding and X. Li, “Time weight collaborative filtering,” in Proc. 14th
ACM Int. Conf. Inf. Knowl. Manage., Oct. 2005, pp. 485-492.

C. Tong, J. Qi, Y. Lian, J. Niu, and J. J. Rodrigues, “TimeTrustSVD: A col-
laborative filtering model integrating time, trust and rating information,”
Future Gener. Comput. Syst., vol. 93, pp. 933-941, Apr. 2017.

D. Sanchez-Moreno, Y. Zheng, and M. N. Moreno-Garcfa, “Incorporating
time dynamics and implicit feedback into music recommender systems,” in
Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI), Dec. 2018, pp. 580-585.
P. Zhang, Z. Zhang, T. Tian, and Y. Wang, “Collaborative filtering rec-
ommendation algorithm integrating time windows and rating predictions,”
Appl. Intell., vol. 49, no. 8, pp. 3146-3157, Aug. 2019.

B. Marlin, R. S. Zemel, S. Roweis, and M. Slaney, ‘““Collaborative filtering
and the missing at random assumption,” 2012, arXiv:1206.5267. [Online].
Available: https://arxiv.org/abs/1206.5267

X. Guan, C.-T. Li, and Y. Guan, “Matrix factorization with rating com-
pletion: An enhanced SVD model for collaborative filtering recommender
systems,” IEEE Access, vol. 5, pp. 27668-27678, 2017.

B.-W. Chen, W. Ji, S. Rho, and Y. Gu, “Supervised collaborative filtering
based on ridge alternating least squares and iterative projection pursuit,”
IEEE Access, vol. 5, pp. 6600-6607, 2017.

S. Balakrishnan and S. Chopra, “Collaborative ranking,” in Proc. 5th ACM
Int. Conf. Web Search Data Mining, Feb. 2012, pp. 143-152.

P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proc. 4th ACM Conf.
Recommender Syst., Sep. 2010, pp. 39-46.

J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer, ‘“Local collaborative
ranking,” in Proc. 23rd Int. Conf. World Wide Web, Apr. 2014, pp. 85-96.
R. Pan and M. Scholz, “Mind the gaps: Weighting the unknown in large-
scale one-class collaborative filtering,” in Proc. 15th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jun./Jul. 2009, pp. 667-676.

X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “‘Fast matrix factorization for
online recommendation with implicit feedback,” in Proc. 39th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2016, pp. 549-558.

H. Li, X. Diao, J. Cao, and Q. Zheng, ‘““Collaborative filtering recommen-
dation based on all-weighted matrix factorization and fast optimization,”
IEEE Access, vol. 6, pp. 25248-25260, 2018.

141275

IEEE Access

M. Li et al.: MF for Personalized Recommendation With Implicit Feedback and Temporal Information

[30]

[31]

[32]

[33]

[34]

C.-Y. Lin, L.-C. Wang, and K.-H. Tsai, ““Hybrid real-time matrix factoriza-
tion for implicit feedback recommendation systems,” IEEE Access, vol. 6,
pp. 21369-21380, 2018.

F. Zhang, “A personalized time-sequence-based book recommendation
algorithm for digital libraries,” IEEE Access, vol. 4, pp. 2714-2720, 2016.
S.Li, J. Wen, F. Luo, and G. Ranzi, “Time-aware QoS prediction for cloud
service recommendation based on matrix factorization,” IEEE Access,
vol. 6, pp. 7771677724, 2018.

V. W. Anelli, T. Di Noia, E. Di Sciascio, A. Ragone, and J. Trotta, “‘Local
popularity and time in top-n recommendation,” in Proc. Eur. Conf. Inf.
Retr. Cham, Switzerland: Springer, 2019, pp. 861-868.

X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama, ‘“Predicting the
popularity of Web 2.0 items based on user comments,” in Proc. 37th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2014, pp. 233-242.

MINGYANG LI received the B.S. degree in com-
puter science and technology from the Harbin Uni-
versity of Science and Technology, in 2016. He is
currently pursuing the master’s degree with the
School of Information Science and Engineering,
Shandong Normal University, China. His research
interests include recommender systems, network
security, and data mining.

141276

HONGCHEN WU received the Ph.D. degree in
computer science and technology from Shandong
University, in 2016. He studied at the University
of California at Irvine, USA, as a joint Ph.D. stu-
dent supported by the CSC for two years, since
2013. He is currently a Lecturer with the School of
Information Science and Engineering, Shandong
Normal University, China. His research interests
include machine learning, network security, and
data management.

HUAXIANG ZHANG received the Ph.D. degree
from Shanghai Jiaotong University, in 2004. He is
currently a Professor and the Dean of the School of
Information Science and Engineering, Shandong
Normal University, China. He has authored over
180 journal and conference papers. His research
interests include machine learning, pattern recog-
nition, evolutionary computation, and web infor-
mation processing. He also served as a Review
Expert for the National Natural Science Founda-

tion of China, the Doctoral Found of the Ministry of Education of China,
and the China Postdoctoral Science Foundation.

VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	MODEL
	THE ANALYSIS OF TEMPORAL INFORMATION
	PRELIMINARIES
	WEIGHT STRATEGY
	TRAINING THE MODEL

	EXPERIMENT
	EXPERIMENTAL SETTING
	DATASET
	METHODOLOGY
	BASELINES
	PARAMETER SETTING

	WEIGHT OF MISSING VALUES
	THE IMPACT OF THE NUMBER OF FEATURES
	TRAINING TIME
	COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	MINGYANG LI
	HONGCHEN WU
	HUAXIANG ZHANG

