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ABSTRACT With the rapid progress of urbanization, predicting citywide crowd flows has become increas-
ingly significant in many fields, such as traffic management and public security. However, influenced by
the complex spatiotemporal relations in raw data and other factors, such as events and weather, obtaining
a precise prediction is challenging. Some previous works attempted to address this problem using various
ways, such as autoregressive integrated moving average, vector auto-regression and some deep learning
models. However, seldom can these methods comprehensively capture the spatiotemporal correlations.
In this paper, we propose a novel spatio-temporal prediction model that is based on densely connected
convolutional networks and attention long short-term memory (ST-DCCNAL), to simultaneously predict
the inflow and outflow of the crowds in regions divided within a specific city. The ST-DCCNAL model
consists of three parts: spatial part, external factors part and temporal part. In the spatial part, we employ
densely connected convolutional networks to extract spatial characteristics at different levels. The external
factors part utilizes a fully connected network to extract features from auxiliary information. In the last
part, an attention-based long short-term memory module is leveraged to capture the temporal pattern.
To demonstrate the practicality and effectiveness of the proposed model, we evaluate it using two separate
real-world datasets of taxis in Beijing and bikes in New York. The experimental results confirm that the
performance of our model is better than that of other baseline methods.

INDEX TERMS Data mining, spatiotemporal modeling, crowd flow prediction, densely connected convo-
lutional network, long short-term memory, attention mechanism.

I. INTRODUCTION
As a typical spatiotemporal forecast problem, predicting the
crowd flows in a city based on big data has a significant
role in many fields such as traffic management [1], risk
assessment [2], and public security [3]. The problem is aimed
at acquiring an accurate prediction of crowd flows based
on historical data. For instance, in the traffic management
field, knowing the exact crowd number for each road in a
whole city can solve traffic jams and congestion. A traffic
management department can allocate traffic resources more
appropriately depending on the crowd flow or issue appro-
priate traffic warnings. During holidays or events, people
gather in a crowded and chaotic way, and prone to stampede
accidents. Obtaining the crowd flows beforehand can ensure
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public safety by evacuating people, sending warnings to take
precautions in advance.

Three difficulties arise in obtaining precise predictions
of citywide crowd flows. 1) Complex spatial correlations:
the correlations among neighbouring regions are involved.
Adjacent regions are more similar and relevant than distant
region according to the first law of geography. However,
this kind of description is not comprehensive. For instance,
in a city, regions with similar functions, such as shopping
areas, tend to have a similar trend of crowd flows, while a
long geographical distance may exist between these areas.
2) Dynamic temporal patterns: the movements of crowds are
mostly periodic. People gather during peak hours when they
travel to and from work, which produces a comparatively
higher density of crowds in the morning and nightfall dur-
ing workdays. However, temporal patterns are not strictly
periodic. Some perturbations may occur from one period to
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another period. 3) Other external factors: external factors such
as meteorology and events have a considerable role in crowd
flows prediction. For example, during a vocal concert or an
evening party, people tend to gather together. Thus, the crowd
flows increase on these days. The impact of various factors on
the crowd flows becomes problematic.

In this paper, we focus on the citywide crowd flow pre-
diction problem [4] and consider two types of crowd flows
(inflow and outflow). Inflow denotes the total number of
crowd numbers that enter a specific region during a given
time interval, and the outflow is the reverse condition. As both
of these two flows reflects the changes in crowd flow, con-
trolling their details is significant. We can obtain the crowd
flow data from the volume of vehicles, and pedestrians and
mobile phone signals. Detailed definitions of the crowd flows
are provided in section II.

Traditional spatiotemporal prediction methods often con-
sider crowd flows prediction as a series of time series pre-
diction problems and disregard the spatial correlation among
these regions. Recently, some deep learning-based methods
treat crowd flows as an image and apply simple convolu-
tional neural networks (CNNs) to perform feature extracting.
However, these methods only generate the final high-level
feature and the uncorrelated regions may hinder the predic-
tion performance. To learn the temporal patterns, some meth-
ods directly stack a series of images in chronological order
[4], [5]. Yu et al. [6] utilize a long short-term memory
(LSTM) [7] framework with an autoencoder while disre-
garding the spatial correlations. Yao et al. [8] concatenate
an attention-based LSTM with a low-level LSTM to learn
temporal patterns from features extracted by a CNN, but it
is relatively complex.

To address the previously mentioned problem, we pro-
pose a hybrid model named ST-DCCNAL. In this model,
we exploit the DenseNets [9] module to capture the spatial
correlation. TheDenseNets connects eachCNN layer to every
other layer in a feed-forward fashion. Thus, it is capable of
enhancing feature reuse and strengthening feature propaga-
tion. In addition to the spatial information, other external
features are formalized to address suddenness. Regarding
the temporality, an attention-based mechanism is applied to
assign different levels of attention to features according to
their temporal closeness towards the predicting target. The
features are then sent into an LSTM to discover the underly-
ing temporal dependencies in the data. By combining these
techniques and mechanisms, the proposed model can better
capture spatiotemporal characteristics in the data, and fully
utilize other relevant information. In this way, traffic flows
can be precisely predicted, which plays a crucial role in
intelligent urban management.

Our proposed model is validated via two real-world
datasets (BikeNYC and TaxiBJ) including bike-sharing data
for New York City in 2014 and taxi data for Beijing in 2013-
2016. The total experimental results verify the superior per-
formance of our model over other comparative models. The
major contributions of this paper are summarized as follows:

• We apply a densely connected convolutional network
to model spatial characteristics of regions concerning
their neighbours on different levels. An attention LSTM
mechanism is also employed to learn the periodic and
dynamic temporality.

• We fully utilize auxiliary information such as weather
and events information to improve the process of han-
dling various unexpected circumstances.

• We conduct extensive experiments on two real-world
trajectory datasets. The results demonstrate that our
approach outperforms the six competing baseline
models.

The remainder of this paper is structured as follows: we
introduce some related work in section II. In section III,
we define the problem and describe the techniques used in
this paper. The detailed architecture of ST-DCCNAL model
is described in section IV.We present the experimental results
and analyze them in section V. In section VI, we conclude the
paper and discuss prospects for future work.

II. RELATED WORK
The exploration of spatiotemporal sequence forecasts is a cru-
cial component of spatiotemporal data mining. As a typical
spatiotemporal prediction problem, crowd flows prediction
problems, such as traffic speed prediction problems [10], are
becoming increasingly important due to the construction of
smart cities [11]. In this section, we briefly review related
work on spatiotemporal prediction problems.

Previous work on the problem focuses on time series pre-
diction. Regarding the spatiotemporal problem as a collection
of many independent time series prediction problems, numer-
ous traditional time series prediction methods can be applied
to this field. For instance, autoregressive integrated moving
average (ARIMA) methods have been extensively employed
in traffic prediction problems [12]–[14]. Other conventional
machine learning methods are utilized. Sun et al. [15] exploit
a constructed Bayesian network to employ adjacent road
links to analyse the impact of the cause node (data utilized
for forecasting) to the effect node (data to be forecasted).
Chen et al. [16] apply a Markov random field to identify
traffic congestion locations to solve the uncertainty and low
resolution of geographic locations. A fuzzyBayesian network
[17] is also employed in the spatiotemporal prediction field.
However, these methods fail to capture the complicated and
dynamic spatiotemporal correlations in the data.

Recently, deep learning methods have gained numerous
successes in many fields, such as computer vision [18],
speech recognition [19] and natural language processing [20].
CNN and LSTM have achieved success in the image process-
ing area and sequence prediction area, respectively. In the
trend of spatiotemporal prediction methods, an increasing
number of people combine CNN, LSTM and other mod-
ules, such as a deep residual network (ResNet) [5], [21],
an attention mechanism [22], [23], graph convolutional net-
works (GCN) [24], [25], and a deep belief network [26] to
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construct a hybrid model to capture intricate spatiotemporal
correlations. Khodayar and Wang [27] build a scalable graph
convolutional deep learning architecture (GCDLA) to solve
the wind speed forecasting problem. The GCDLA effectively
processes noise while capturing the spatiotemporal features.
He et al. [28] proposes the STANNmodel, which contains an
encoder-decoder architecture with the attentive mechanism.
The model is indicated to be active in traffic speed predic-
tion. In literature [29], a sequential graph neural network is
invented to replace the CNN in the traffic flow prediction
problem. Concentrating on the connectivity of congestion
road segments, rather than their spatial proximity, the model
gains a better extraction of spatial features. Zang et al. [30]
use a deep generative network that is based on residual decon-
volution to solve the long-term traffic flow prediction prob-
lem. In addition to directly splicing the CNN module and the
LSTM module, the two models can be merged into one mod-
ule that is named Convolutional LSTM (ConvLSTM) [31].
Le Nguyen et al. [32] utilize a ConvLSTM-based archi-
tecture to solve the traffic matrix prediction problem and
adequately model the spatiotemporal patterns. Due to the
vast memory usage and computation cost of LSTM module,
Ziru Xu et al. [33] invent the novel model PredCNN, which
is an entirely CNN-based architecture. Using a multiplicative
cascade unit that provides relative correlations from previous
correlations, the PredCNNmodel is capable of predicting the
future image without any recurrent chain structures.

The performance of the majority of these methods is bet-
ter than traditional methods, and these methods are rapidly
evolving. In these studies, the spatial correlations among
regions are based on one perspective and disregard the differ-
ent importance of each time interval. Wu et al. [34] propose a
DNN based traffic flow prediction model (DNN-BTF) which
combines CNN, LSTM, and an attention mechanism. How-
ever, our model exceeds DNN-BTF’s capability of capturing
spatial relationships.

Our proposed model explicitly handles the spatial rela-
tions in multiple different scales of convolutional layers, and
the dynamic temporality is depicted via an attention LSTM
module.

III. PRELIMINARIES
In this section, we propose the problem definition and dis-
cuss some basics about the attention mechanism and LSTM
module in our model.

A. PROBLEM DEFINITION
Based on previous studies [5], we split the whole city into
a P × Q grid map with n regions, where n = P × Q and
a grid represents a region. Measurements for spatiotemporal
prediction problems are diversiform, including air quality
[35], weather, taxi order, and bike rent/return. Here, we use
the crowd flows (including inflow and outflow) as the object
of our study. The whole period is divided into K equal time
intervals, and the crowd flows are recorded in the form of the
collection of trajectories P. For the grid (p, q) at the k th time

FIGURE 1. Inflow heat map in Beijing.

interval, the inflow and outflow of this region can be defined
as:

x in,p,qk =

∑
Trk∈P

|{i > 1 | gi−1 /∈ (p, q) , gi∈(p, q)}| , (3.1)

xout,p,qk =

∑
Trk∈P

|{i ≥ 1 | gi∈(p, q) , gi+1 /∈ (p, q)}| , (3.2)

where gi denotes a geographic coordinate, gi ∈ (p, q) indi-
cates that the point gi lies in region (p, q); Trk :g1 → g2 →
· · ·→ gk represents the trajectory at the time interval k(k =
1, 2, . . . ,K ); and function |�| denotes the cardinality of a set.

If treating the gridmap as an imagewith lengthP andwidth
Q, the inflow and outflow of all regions at the k th time interval
can be denoted as the two-channel image Xk ∈ R2×P×Q

where (X k )0,p,q = x in,p,qk and (X k )1,p,q = xout,p,qk . As shown
in Figure 1, the bar on the right side denotes the relationship
between the colour and the number of people in the flow.
The horizontal axis and vertical axis are used to determine
a specific coordinate.

With these notations, we can define the crowd flows pre-
diction problem as follows:
Definition 1 (Crowd Flows Prediction): Given the history

crowd flows data {Xt |t = 1, 2, . . . ,K }, predict XK+1.

B. ATTENTION MECHANISM
As one of the most influential ideas in the deep learning
community, the attention mechanism aims to overcome the
drawback that the autoencoder structure satisfies a loss of
information due to the fixed length of the middle vector when
the length of the input sequence is relatively long. Focusing
on certain parts of the input, the attention mechanism was ini-
tially designed for the seq2seqmodel in the Natural Language
Process (NLP) and then quickly applied to other fields. The
output of the attention mechanism can be written as:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V , (3.3)

where U = XWU ,U ∈ {Q,K ,V } and X is the input, WU
are learnable matrices, dk denotes the dimension of keys, KT

is the transpose of the matrix K . softmax (·) is an activation
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function that is defined as softmax (xi) = exi∑
j
exj

where xi

is the ith dimension of the N-dimensional vector x(i, j =
1, 2, . . . ,N ).

C. LONG SHORT-TERM MEMORY
In traditional sequence prediction models, a simple recur-
rent neural network (RNN) suffers from the gradient
vanishing or exploding problem when calculating the back-
propagation gradient if the layers of the RNN are deep.
Therefore, RNN sometimes fails to capture the long-
term dependency in a sequence, otherwise RNN should
be able to do in theory. Hence, Long short-term mem-
ory is invented to solve this problem by recursively
applying a transition function to the hidden state of the
input.

LSTM retains a cell state Ct in the time interval t to
stably learn sequential correlations. LSTM utilizes three
gates—input gate, forget gate, and output gate—to control
the information flow. In each time interval, LSTM considers
Ct−1, ht−1 and xt as an input, and the input gate it decides
whether the previous information (ht−1 and xt ) is passed to
the cell state. If the forget gate ft is activated, the network
will forget the previous memory cell Ct−1. The output gate
ot controls the output of the memory cell. The whole process
of the LSTM unit is formulated as:

ft = σ
(
Wf � [ht−1, xt ]+ bf

)
, (3.4)

it = σ (Wi � [ht−1, xt ]+ bi) , (3.5)

Ĉt = tanh (WC � [ht−1, xt ]+ bC ) , (3.6)

ot = σ (Wo � [ht−1, xt ]+ bo) , (3.7)

Ct = ft ∗ Ct−1 + it ∗ Ĉt , (3.8)

ht = ot ∗ tanh (Ct) , (3.9)

where ht denotes the hidden state of the LSTMunit at the time
interval t , ∗ represents the element-wise multiply operation,
tanh is the hyperbolic tanh function, and σ is the sigmoid
activation function. Wv, bv(v∈{f , i,C, o}) are parameters to
be learnt.

The structure of LSTM units is shown in Figure 2.

IV. ST-DCCNAL MODEL
In this section, we provide the implementation details for
our proposed ST-DCCNAL model. Figure 3 shows the
main architecture of the model. The implementation of the
three components in the ST-DCCNAL model, spatial part,
external feature part and temporal part of the model are
described.

A. OVERVIEW OF ST-DCCNAL
Treating the crowd flows in every region of the city at the time
interval t as an image of shape (2,P,Q), some techniques that
are extensively employed in computer vision areas, such as
CNN, can be employed to address the picture. First, we utilize
a densely connected convolutional network to extract the

FIGURE 2. The structure of the LSTM unit.

spatial features. The purpose of the DenseNet architecture
is to assist the CNN module to better capture spatial infor-
mation as it can convey information between arbitrary CNN
layers. When the spatial patterns have been obtained, they
are reshaped into a vector and then fed into a fully-connected
(FC) layer. The output of the FC layer is concatenated with
the extract external features, which are transformed into the
same shape. Thus, we can obtain the global feature of the
crowd flows for the whole city at time interval t . To better
obtain the temporal correlations of crowd flows at different
time intervals, an attention-based LSTM is applied to handle
global feature series. The generated spatiotemporal features
are reshaped and fed into an activation function to obtain the
prediction. An overview of the model is shown in Figure 3.

B. SPATIAL PART
A big city can be divided into many regions corresponding
to different spatial locations. We intuitively know that the
crowd flows in nearby regions may affect each other. Thus,
this effect can be effectively handled by a CNN, which has
shown its powerful ability to hierarchically capture the spa-
tial structural information. For instance, a crowd may flow
into a specific region from its adjacent regions. Due to the
development of various means of transportation such as bus
and subway, correlations exist among distant regions. As we
previously mentioned, including regions with weak corre-
lations, predicting a target region hinders the performance
and the central feature of a CNN are wasted. To address
these issues, we leverage a DenseNet module to capture the
spatial correlations among all regions. Our idea is motivated
by Huang’s work [9], during which the module retains a
connection between each convolutional layer.

As shown in Figure 4, at the time interval i, we treat all
regions as an image of the shape (2,P,Q) and the chan-
nels denote the inflow and outflow during this time interval.
We leverage the same padding to maintain a constant width
and height. We implement the DenseNet structure by trans-
mitting all outputs of the i−1 layers to the ith layer. As a result,
we obtain an image as the tensor (has two channels) Xt for
each time interval t , Xt∈R2×P×Q. Considering Xt as the input
X0, we feed it intoK convolutional layers. The transformation
at each layer k is defined as:

Xk = σ
((∑l=k−1

l=0
Xl

)
∗W (k)

t + b
(k)
t

)
, (4.1)
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FIGURE 3. Architecture of ST-DCCNAL model. (a). The spatial part employs a DenseNet module to capture the spatial
dependency among regions. (b). The external feature part extracts external features from auxiliary information, such
as weather, event, and weekend information using FC layers. (c). The temporal part utilizes an attention-based LSTM
module, the inputs of which are the concatenations of part (a) and part (b), to learn the temporal patterns.
An activation layer and a reshape layer are used to generate predictions. Conv denotes CNN; Fea denotes feature, and
FC represents fully-connected.

FIGURE 4. Structure of the densely connected convolutional network.

where ∗ denotes the convolutional operation, and σ (�) is an
activation function. In this paper, we use the rectifier function
as the activation function, i.e., σ (x) = max(0, x). W (k)

t and
b(k)t are two sets of parameters in the k th layer to be trained.
The

∑
(�) operation denotes concatenating the input ten-

sors by the first dimension (concatenate the channel dimen-
sion of images).

After K densely connected convolutional layers, we
reshape the output Xt∈R2×P×Q into the feature vector
Jt∈R2PQ for all regions at time interval t . To reduce the feature
dimension, a dense layer is leveraged to generate the final

spatial feature St which can be written as

St = σ
(
Jt ∗W

sf
t + b

sf
t

)
, (4.2)

where W sf
t and bsft are two learnable parameter sets at time

interval t . For each time interval t , we obtain St∈Rdim for all
regions where dim denotes the dimension of the output of the
DenseNets module.

C. EXTERNAL FEATURE PART AND FUSION
This part is an optional part depending onwhether the original
data contains auxiliary information such as weather, holi-
day, and event information. External features can provide
global information which is always favorable for crowd flows
prediction. To transform the auxiliary information into func-
tional external features, we use a one-hot encoding mech-
anism to encode features that are nonnumeric. Information
about a numeric class is normalized and then concatenated
with the former to form the final external feature Et at time
interval t .
To generate the fused feature Ft of all regions at time

interval t , the spatial feature St must be fusedwith the external
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FIGURE 5. Sample of attention-based LSTM module.

feature Et . The fusion process can be defined as:

Ft = tanh(W S_fuse
t � S t +W

E_fuse
t � E t + b

fuse
t ), (4.3)

where W S_fuse
t , WE_fuse

t and bfuset are learnable parameters.
Considering that the model may overfit, we exploit a

dropout layer after Ft to produce the eventual global feature
Gt . For all regions at each time interval t , we obtain the global
feature Gt .

D. TEMPORAL PART
An attention mechanism is, to some extent, motivated by
how we pay visual attention to different regions of an
image or words in one sentence. Introducing this mechanism
into the LSTM network simplifies the selection of the inputs
of previous layers that are crucial for each subsequent step.
Treating the global feature Gt at each time interval t as the
input, Figure 5 exhibits an attention-based LSTM module in
which the length of the input sequence equals 5. We address
the perturbation of the temporal patterns. We select L time
intervals and leverage it to predict the next crowd flows.
Combining the previous introduction of attention and LSTM,
the extracted spatiotemporal feature ST in L selected time
intervals is expressed as:

ST t+1 = f (ST t ,Gt ), (4.4)

where f (�) denotes an LSTM network, and Gt is the global
feature at time interval t . The final feature by the attention
mechanism is defined as:

Feafinal =
∑j=L

j=1
atjhj, (4.5)

where weight atj measures the importance of the time interval
j ∈ {1, 2, . . . ,L, hj denotes the hidden state in the LSTM
module at time interval j. The importance value atj is derived
by comparing the learned spatiotemporal representation with
a previous hidden state. The value is defined as follows:

atj = softmax
(
score

(
ST j, hj

))
. (4.6)

In this formula, the score(�) function is regarded as a content-
based function, which is defined as:

score
(
ST j, hj

)
= V T � tanh

(
WA � hj + UA � St−1 + bA

)
,

(4.7)

Algorithm 1 ST-DCCNAL Training Algorithm
Input: Input : Historical observations:

{X1,X2, . . . ,XT };
external features: {ε1, ε2, . . . ,εT };
sequence length: L.

Output: Output : ST-DCCNAL model.
// generate samples from historical data

1. Dsample← ∅

2. for t ∈ {1,T − L} do
3. put the following training sample
4. ({(X t , εt ), {(Xt+1, εt+1), . . . , {(Xt+L−1, εt+L−1)},

Xt+L) into Dsample
5. end
6. divide Dsample into Dtrain and Dtest

// train the model
7. initialize all the parameters θ in ST-DCCNAL
8. repeat
9. randomly choose a batch of samples Dbatch from

Dtrain
10. find θ by minimizing the objective (3.8) with

Dbatch
11. until stopping criteria is met
12. output the learned ST-DCCNAL model

where WA, UA, and bA are learnable parameters, and V T is
the transpose of V .

E. LOSS FUNCTION
We reshape the final spatiotemporal feature Feafinal and feed
it into an activation function to generate the prediction ŷi of
the crowd inflow and outflow. Let yi be the real crowd flows
in all regions. The loss function is defined as:

L (θ) =
1
N

∑N

i=1

(
yi − ŷi

)2
, (4.8)

where θ denotes all parameters in the ST-DCCNAL model
and N represents the number of samples.

Algorithm 1 outlines the training process of the
ST-DCCNAL model. We construct the sample set Dsample
from the historical observations (lines 2-5) and then divide
Dsample into the training set Dtrain and the testing set Dtest .
The former is used to train the model, and the latter is utilized
to test it. During each iteration, we optimize the objective
function (4.8) on the chosen batch of training samples Dbatch
(lines 8-11).

V. EXPERIMENT
A. DATASETS DESCRIPTION
In this paper, we evaluate our proposed model using two
large-scale real-world datasets from New York City and Bei-
jing. Each dataset contains trajectories as follows:
•BikeNYC: The bike trajectory data were collected from

New York City in 2014 [5], from 04/01/2014 to 09/30/2014
(183 days). Although it does not provide auxiliary informa-
tion, the dataset contains inflow and outflow data and their
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corresponding times. The time interval is set to 1 hour, and
the whole city is divided into a 16 × 8 grid map. In the
experiment, we choose the last 10 days as the testing data
and the remaining days as the training data.
•TaxiBJ: The whole dataset contains inflow and outflow

data in Beijing for four separate periods: July-Oct. 2013,
March-June 2014, March-June 2015 and Nov. 2015-
April 2016. The auxiliary information contains data on hol-
idays and weather conditions, such as temperature, weather
type, and wind speed. The city is divided into a 32× 32 grid
map while the time interval is half an hour, which produces
the set of spatiotemporal images Xt ∈ R2×32×32. We choose
data from the last four weeks as testing data and select all data
before this time as training data.

The two datasets can be easily accessed at
https://www.jianguoyun.com/p/DesHv2UQs-HRBxi5gtYB.

B. EVALUATION METRIC
We use the rooted mean square error (RMSE) to evaluate the
model performance, which is defined as:

RMSE =

√
1
M

∑M

i=1

(
vi − v̂i

)2
, (5.1)

where v̂i and vi are the predicted value and the ground truth
respectively, andM denotes the total number of all predicted
values.

C. BASELINES
In the experiment, we compare our model with four tradi-
tional models and four deep learning-based models as previ-
ously mentioned:
•HA [37]: The historical average (HA)method predicts the

crowd flows by calculating the average values of the same
region in a previous time interval. For instance, to predict the
crowd flows in a specific region on Monday from 5:00 pm-
6:00 pm, we can use all historical periods from 5:00 pm-
6:00 pm in the same region on all Mondays as the actual
data to generate the prediction. In this experiment, we employ
historical data from the past seven days to obtain the current
prediction. The HA model is easy and manageable but some-
what imprecise.
•ARIMA [38]: The autoregressive integrated moving

average model (ARIMA), comprised of the autoregressive
and moving average, is a typical model that is extensively
applied in the time series prediction filed. In this experiment,
we regard crowd flows prediction as a series of independent
time series prediction problems.
•SARIMA [39]: A seasonal ARIMA (SARIMA) model is

formed by including additional seasonal terms in the ARIMA
models as previously mentioned. SARIMA is applied to han-
dle the trend and seasonality of data. In this model, we use
the seasonal difference for one or more times to eliminate the
periodic variation. SARIMA appears to bemore efficient than
ARIMA model.
•VAR [40]: Vector auto-regression (VAR) is a model with

a stochastic process that is used to estimate the dynamic

TABLE 1. Comparison between our model and baselines.

relation of joint endogenous variables (multiple time series)
and is capable of predicting spatiotemporal data. In this exper-
iment, we regard the regions in the city as a vector. The inner
correlations inside the vector and the temporality are learnt.
•ST-ANN [41]: This model extracts spatial (placing the

region to be predicted in the centre of a 3×3 cell) and tempo-
ral (series of previous time intervals) features, which are fed
into an artificial neural network. In this experiment, we set
the number of previous time intervals to 8, and the number of
units in the last dense layer is twice as the number of regions
in a city.
•DeepST [4]: DeepST is an end-to-end prediction model

for spatiotemporal data. Multi-source auxiliary information
is utilized in this deep neural network-based model to capture
spatiotemporal correlations. In DeepST, the data are sampled
at three different time intervals, which represent the temporal
closeness, period and seasonal trend, respectively. Moreover,
the three sequences are subsequently fed into a convolutional
neural network and fused.
•ST-ResNet [5]: ST-ResNet is a deep learning model that

uses convolutional neural networks and residual networks to
predict citywide crowdflows. Features from a different length
of views (closeness, period and trend) are fused, and external
information such as weather conditions and events informa-
tion are leveraged to improve the performance. Via utilizing
convolution-based residual networks, ST-ResNet adequately
models the spatial patterns.
•PredCNN [33]: PredCNN is an entirely CNN-based

architecture that models the dependencies between the next
frame and the sequential video inputs. PredCNNwas initially
invented to handle the video prediction problem, which is
an essential topic in spatiotemporal learning. Using a multi-
plicative cascade unit that provides relative correlations from
previous correlations, the PredCNN model is capable of pre-
dicting a future image without any recurrent chain structures.

Subject to whether the spatial, temporal, and external fea-
tures of data are considered, we conduct a brief comparison
between our model and other baselines, as shown in Table 1.

D. PREPROCESSING AND PARAMETERS
For all regions, we leverage the Max-Min scaler to normalize
crowd flow values that are nonnegative numbers to [0, 1].
For auxiliary information, we exploit the one-hot encoding
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method to transform the discrete features (e.g., weather, and
holidays) and use Max-Min normalization to scale continu-
ous features such as wind speed and temperature to [0, 1].
The linear transformation of the original data is shown as:

x∗i =
xi − xmin
xmax − xmin

, (5.2)

where xi is a sample from the original data; xmax and xmin
denote the maximum values and minimum values in the data,
respectively; x∗i is the transformed data. When we obtain
predictions from the model, we re-scale them to generate the
real predicted values.

We run all experiments on a cluster with eight NVIDIA
1080Ti GPUs. The python3.5 environments with Tensor-
Flow and Keras [42] are used to build our models. The
DenseNets part contains 3 layers of convolution, and 16 fil-
ters of size (3, 3) in each convolutional layer. Batch nor-
malization is employed in the CNN. For the temporal part,
the sequence length L for LSTM are set to 12, and the
units in the LSTM layer is set to 256. After the dense
layer, we add a dropout layer with a dropout rate of 0.5 to
maintain the generalization capabilities of our model. We set
the batch size to 64, and use Adam [43] with a learning
rate of 0.001 to optimize our model; The decay of the
learning rate is 0.001. In the training process, we choose
90% data to train and the left 10% as the validation set.
We set the maximum training epoch to 300, and apply early
stopping with a patience of 20 to prevent the model from
overfitting.

E. PERFORMANCE COMPARISON WITH BASELINES
Table 2 shows the performance of the proposed method com-
pared with other competing baselines. ST-DCCNAL achieves
the lowest RMSE with BikeNYC (5.41) and TaxiBJ (15.84),
which is a 14.53% improvement and 5.01% improvement,
respectively, over the best performance in baseline mod-
els. We observe that the HA model shows a poor perfor-
mance compared with other models (i.e., RMSE of 11.76 and
57.69 for BikeNYC and TaxiBJ, respectively), as it only relies
on historical data while disregarding spatial correlations and
other external information.

Efficiently exploiting more data and information, deep-
learning-based models perform substantially better than con-
ventional methods, such as HA,ARIMA, andVAR.As shown
in Table 2, ST-ResNet and DeepST outperform ST-ANN.
A potential reason is that ST-ResNet and DeepST utilize
CNNs to capture spatial information and consider the tempo-
ral periodicity. PredCNN outperforms ST-ResNet, but does
not perform as well as our model. Although the cascade
multiplicative unit (CMU) in PredCNN can transmit the inter-
mediate results of the previous time intervals, it loses some
historical information.

Using DenseNet and attention LSTM to capture
spatiotemporal patterns among regions, our proposed
ST-DCCNAL model outperforms the previously mentioned
methods.

TABLE 2. Comparison with different baselines on BikeNYC and TaxiBJ (to
accelerate the experiments, some baseline results are cited from [5]).

F. PERFORMANCE COMPARISON WITH MODEL VARIANTS
We also study the effect of different components proposed in
our model to confirm their effectiveness. As the model con-
sists of three parts, we verify each part by deleting or replac-
ing it to form relatively complete comparison results. Due
to the limitations of dataset BikeNYC (does not contain any
external supplementary information), we decide to conduct
these experiments using dataset TaxiBJ. The model and its
variants are described as follows:
•CNN: For this variant, we only use a simple CNNs with

inputs to evaluate the CNNs’ capability of extracting spatial
correlations among regions and provide a baseline for other
variants. To maintain a constant shape of the output image,
we use the same padding mechanism.
•CNN + Concatenate: In this variant, the information in

the middle CNN layers is efficiently utilized. The output of
each convolutional layer is concatenated in the last convolu-
tional layer; therefore, the hidden information can be properly
reused.
•DenseNets: For this variant, normal CNNs are replaced

with a DenseNets structure. We want to demonstrate that
DenseNets can model complex spatial relations better than

normal CNNs.
•DenseNets + LSTM: This variant considers both spatial

information and temporal information to generate the predic-
tion. The input is fed into the DenseNets to extract the spatial
relations, and then an LSTM is applied to extract the temporal
pattern.
•DenseNets + LSTM + Attention: This variant differs

from DenseNets + LSTM as we add an attention part
before the LSTM module. The Attention mechanism helps
the LSTM module to better capture the temporality.
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TABLE 3. Comparison with different baselines for BikeNYC.

FIGURE 6. The effect of sequence length L on RMSE.

•ST-DCCNAL: Our proposed model, which combines
DenseNets, LSTM, the attention mechanism and external
feature, can combine the advantages of each module and
obtain a better prediction.

Table 3 shows the performance of ST-DCCNAL and its
variants for TaxiBJ. During the process of the spatial feature
extraction, the DenseNets module achieves a lower RMSE (a
reduction of 24.79% and 22.49% compared with CNN and
CNN with Concatenate, respectively). The results demon-
strate that the effectiveness of connecting all CNN layers.
The DenseNets module can better capture spatial relations
than normal CNN and Concatenating CNN. Furthermore,
adding an LSTM module to DenseNets improves the per-
formance of DenseNets, which confirms the effectiveness
of the temporal part. As shown in Table 3, DenseNets with
attention LSTM outperforms DenseNets with LSTM, which
proves that the attention mechanism enables LSTM to better
capture temporal patterns. When adding the external part to
form our proposed model ST-DCCNAL, we discover that the
prediction performance improves as well. Thus, the external
feature from auxiliary information facilitates the prediction.

G. INFLUENCE OF SEQUENCE LENGTH OF ATTENTION
LSTM
In this section, we conduct the parameter sensitivity anal-
ysis for the experiment to address the uncertainty of the
data. We explore how the sequence length of LSTM in
the temporal part influences the prediction performance.
In the sensitivity analysis experiment, we adjust the value of
the sequence length of the attention LSTMmodule and main-
tain constant hyperparameters. The value of the sequence
length L varies in the range of {4, 5, 6, 8, 9, 10, 11, 15}, and
we observe the RMSE of the predictions. Figure 6 shows
the prediction RMSE with different sequence length L.

The RMSE error initially decreases at first and then increases.
The variance and the mean of the error are 0.1051 and
5.76, respectively. When the sequence length is 8 hours,
the ST-DCCNAL model achieves the best performance. The
RMSE decreases as the length increases, considering the tem-
poral dependency. Furthermore, when the sequence length
exceeds 10 hours, the performance gradually worsens. When
the sequence length is longer, the model becomes consid-
erably more complex and may overfit, which hinders the
performance.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel spatio-temporal predic-
tion model that is based on densely connected convolu-
tional networks and long short-term memory with Attention
(ST-DCCNAL) for crowd flows prediction. Our approach
exploits a DenseNetmodule to capture the spatial dependency
and then fuse it with external features. An attention LSTM
module is applied to extract temporal patterns. We innova-
tively combine these deep learning techniques to form a novel
traffic flows prediction model. The proposed model is capa-
ble of extracting the deeply hidden complex spatiotemporal
features. We evaluate our model using two real-world crowd
flows datasets, and the experimental results demonstrate that
the ST-DCCNAL model significantly outperforms several
competing methods. We discover that the DenseNets mod-
ule models the spatial relations better than norm CNNs and
the attention mechanism improves the ability to capture the
temporality of LSTM. Furthermore, the external feature from
auxiliary information can improve the accuracy of prediction.

In the future, we plan to further investigate the dynamic
correlations among regions using deep learning techniques
such as graph neural networks (GNN) [24], [44]. In most
real situations, the division of a city does not conform to
the regular image and GNN can show and unearth more
complex correlations than CNN. Thus, the GNN is an effec-
tive method and CNN should be replaced with GNN in
this domain. As interpreting deep learning methods is often
challenging, understanding what contributes to the improve-
ment is essential. We plan to further interpret the model and
obtain the corresponding actual interpretation of the predic-
tion. A model that can be updated in real-time is needed to
handle the changing situations in many real cases. There-
fore, we introduce the online learning mechanism [45], [46]
to spatiotemporal sequence prediction problems, which is
capable of providing a real-time prediction and updating
the model. Everyone can easily access all data and code at
https://github.com/liweiowl/ST-DCCNAL.
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