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ABSTRACT Regaining the lost functionality of limbs is the top priority for people with motor skills
impairment as it directly affects their ability to execute activities of daily living and hence, worsens their
quality of life. In the last two decades, a great deal of research has focused on error-related potential (ErrP)
based brain-computer interfaces (BCIs). Many applications have been developed to assist motor-impaired
people in their rehabilitation and among these are robots, spellers, gesture recognition systems, and brain-
controlled wheelchairs. In this paper, we present a review of various ErrP based BCI that can potentially
aid motor-disabled people in their rehabilitation and execution of their daily activities. First, we describe
the ErrP phenomenon and its characteristics followed by a comprehensive application-driven discussion on
ErrP based rehabilitation and assistive strategies for motor-impaired people, including studies conducted
since the inception of ErrP to the current state-of-the-art applications. Lastly, we discuss the potential issues
and challenges being faced by current state-of-the-art applications as well as important future pathways and
research directions that might be adopted for advanced ErrP-BCIs used in clinical settings.

INDEX TERMS Assistive devices, brain-computer interface, electroencephalography, error-related poten-
tial, rehabilitation devices, stroke rehabilitation.

I. INTRODUCTION
Stroke is the second leading cause of death and the third
leading cause of disability in the world [1]. Stroke survivors
suffer from various types of body functional disability, such
as motor impairment, cognitive impairment, speech, and lan-
guage impairment [2]. Motor impairment results in a limited
ability to perform physical activities known as activities of
daily living (ADLs) [3].

Brain-computer interface (BCI) has gained recent attention
as a tool for rehabilitation and assistance to enable stroke
survivors to recover from motor disability. Several studies
have reported BCI-based exoskeletons [4], [5], prosthetics
[6], spellers [7], [8], robotic systems [9], [10] and functional
electrical stimulation (FES) devices [11], [12] for post-stroke
rehabilitation and assistive technology. For the implemen-
tation of these approaches, electroencephalography (EEG)
signals are utilized to translate human brain-activities into
actions that the user can control. EEG is currently the most
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popular technique to analyze the human brain due to its tem-
poral resolution, low-cost, ease of use, and non-invasive pro-
cedure [13]. However, non-stationary, non-linear, and noisy
characteristics of EEG signals along with small datasets,
especially in the case motor-impaired subjects, decrease the
performance of EEG-based BCIs [14]–[16].

A typical BCI provides an alternative path of communi-
cation to a disabled person with the aim of decoding their
intention through their neurophysiological signals recorded
using EEG [13], [17]. Misclassification of the user’s intent
results in an erroneous condition which elicits an error-
related potential (ErrP) signal in the human brain following
the perception of the error [18], [19]. The ErrP signal can
be integrated with conventional BCIs to form a hybrid-BCI
system that can take corrective action on the detection of
ErrP to prevent the erroneous action from being executed and
ultimately improving the efficacy of the BCI [20]–[22]. ErrP
can also be used as a feedback mechanism to an adaptive
BCI system that learns from its mistakes, thus, reducing
the probability of misclassification of a user’s intentions
[23]–[26]. ErrP signals have proven to be inherent intrinsic
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human feedback mechanism, which means that ErrP signals
can be implicitly generated in the human-brain following an
erroneous condition without any training [27]. The passive
conduct of the ErrP makes it easier to combine with other
active-BCIs in which users consciously modulate their brain
activity in order to control an application or in response to
a cue/event [28]. Extensive research has shown that an ErrP
signal can be reliably detected in a single-trial and can form
part of a real-time BCI system [21], [29]–[31].

Motor-impaired people face difficulty in executing ADLs
and communicating with the external world. In the last two
decades, a great deal of research has focused on ErrP-BCI
based robots, P300 spellers, gesture recognition systems,
brain-controlled wheelchairs for assisting motor-impaired
people and aiding their rehabilitation. This article aims to
provide an application-driven review of existing error-related
potential based brain-computer interfaces that can potentially
aid motor-disabled people in their rehabilitation and execu-
tion of daily activities. This paper has been divided into four
sections. The second section provides a general view of ErrP
signals. Then the third section sums up ErrP driven reha-
bilitation and assistive techniques for motor-disabled people
since the inception of ErrP to the current state-of-the-art
approaches. Lastly, in section four, the current challenges in
this field and possible future directions are discussed.

II. ERROR-RELATED POTENTIALS
Error-related potential (ErrP) signal was first reported in the
early 1990s in an experiment in which participants committed
errors in the speeded choice reaction task [32], [33]. The
ErrP has been reported to be a difference waveform (error
minus correct) of an error-related negativity (ERN) signal
and a correct-related negativity (CRN) signal [34]. The error-
related negativity (ERN) is an event-related potential (ERP)
signal which is measured as an electrical activity in the brain
using EEG. It occurs when an individual makes or perceives
an error while performing or observing experimental tasks,
including, choice reaction task, Go/Nogo reaction task and
Eriksen task [34]. The ERN signal is characterized by a neg-
ative deflection (Ne, see Fig. 1) over the frontocentral scalp
areas of the brain at approximately 50-200 ms following the
error and, subsequently, a centroparietal positive deflection
(Pe, see Fig. 1) at approximately 200-500 ms [34]–[37]. On
the other hand, the correct-related negativity (CRN) has been
observed in the brain following the correct responses with
a morphology similar to the ERN; however, with a smaller
amplitude [35], [37].

The existing body of research on the ErrP suggests that
ErrP signal is elicited under certain task situations. Response
ErrP occurs when the subject is asked to respond as quickly as
possible (e.g., choice reaction task) [36]–[38]. Feedback ErrP
occurs when the subject realizes an error upon given feedback
on a task [39, 40]. Interaction ErrP occurs when the subject
is interacting with a machine, and the machine misinterprets
an instruction given [41], [42]. Observation ErrP occurs when

FIGURE 1. Typical characteristics of error-related negativity (ERN) signal:
a first negative deflection (Ne) followed by a positive activity (Pe). The
0 ms time represents the event of perception of an error.

the subject recognizes an error made by a machine or external
system [11], [43]. Recently, three new types of errors: target,
outcome, and execution ErrPs have been reported [44], [45].
The vast majority of studies, with a focus on ErrP-BCI for
rehabilitation and assistance to motor-impaired people in
ADL, have utilized interaction and observation ErrP in their
BCIs [6], [27], [30], [31], [46]–[49].

It is worth noting that, although an ErrP signal has an initial
negative deflection followed by a positive deflection, many
variations have been observed in this regard. In an experi-
ment of observation of robot operation, Iturrate et al. [50]
reported the opposite polarity of an ErrP signal, i.e., positive
deflection followed by a negative deflection. Consistently,
Zhang et al. [4] and Zhang et al. [51] found a similar pat-
tern in the left and right-hand motor imagery task. Interest-
ingly, many studies have reported more than two peaks in
the ErrP with dissimilar latencies as well [39], [41], [43],
[52]–[55], and this pattern continues even in studies with
similar tasks [43], [52], [53]. Irrespective of the peaks’
polarities and latencies, ErrPs have exhibited similar fron-
tocentral and centroparietal scalp signal distributions (see
Fig. 2(c, f)) [18], [41], [56]–[58]. Many sLORETA based
source localization studies [59] have estimated the anterior
cingulate cortex (ACC) as the primary neural source of the
ErrP signal [30], [40], [50], [55], [60], the phenomenon
which also has been supported by many functional magnetic
resonance imaging (fMRI) based studies [61]–[63]. On the
other hand, despite incoherence of temporal features of the
ErrP signal, spectral-domain features have shown consistency
across tasks [64]. Specifically, activity in θ-frequency band
(4-7 Hz) increases post-erroneous response [65]–[67];
α-band activity (10-14 Hz) increases and then decreases
post-correct response in a quadratic manner, a trend which
has been absent following error response [68]; stronger
β-modulations post-erroneous trial in comparison to the cor-
rect trials [69]. Nevertheless, the combination of temporal and
spectral domain features has shown the best overall perfor-
mances in terms of classifying error-potentials [45].
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FIGURE 2. Primary and secondary ErrP signals evoked when a human observes a robot performing a binary object selection task. Primary ErrP elicits
when the robot selects a wrong target between the two choices and secondary ErrP elicits when the robot misinterprets human feedback, i.e., failed to
recognize the primary erroneous signal or misclassify the primary correct signal as an erroneous signal. The left & right column of figures show the
characteristics of primary & secondary ErrP signals, respectively. Feedback onset in the picture shows the reference point for ErrP detection. (a & d) depict
the electrode activity of 48 electrodes. (b & e) depict the average EEG activity at FCz electrode location (as per extended 10-20 international system).
(c & f) depict the interpolated EEG activity across the scalp. Republished with permission from Salazar-Gomez et al. [43], 
2017 IEEE.

Due to non-stationary and non-linear characteristics of
EEG signals along with the external artifacts and the limi-
tations of data recording techniques, the signal to noise ratio
of EEG signals is often very low [14]. Nevertheless, the ErrP
signal has been demonstrated to be a robust signal. Firstly,
the ErrP waveform has been shown to be steady over a
significantly long period (>600 days), and the ErrP classifier
recognition rates have been shown to be stable even when
tested on data recorded several months after training data
without recalibration [41], [54], [70].

Furthermore, there is a large number of published studies
that manifest the detection of ErrP in a single trial in a variety
of tasks [30], [50], [71]–[73]. Also, ErrP signals are shown
to be time-locked to the event of perception of error which
makes it easier to interpret and visualize even with meth-
ods as simple as averaging multiple trials [20], [43], [74],
[75]. Moreover, ErrP signals have been shown to be highly
correlated (r ≈ 0.70) and consistent when recorded using
different EEG hardware [76]. Together these features play a
key role in developing a reliable ErrP-BCI for rehabilitation
and ADL assisted functions. Besides, ErrP has been observed
in children as young as five years old [77], young and older
adults [78], [79].

It is interesting to note that the ErrP has been shown to be
affected by fatigue [80], [81], motivation [82], [83], anxiety
[84], [85], personality traits [86], [87], age [78], [79], [88],

ethnicity [89] and even gender [89] that increases the inter-
trial and inter-subject variability. Remarkably, the variability
of the ErrP signals due to the traits mentioned above has
led to the use of ErrP signals in a variety of fields. Firstly,
ErrP signals are being increasingly used in clinical psychol-
ogy and psychiatry for analysis of various mental disorders,
including attention-deficit/hyperactivity disorder (ADHD),
depression and other anxiety disorders [76], [90], [91]. In
particular, larger ERN signals have been observed in people
with obsessive-compulsive disorder (OCD) and other anxiety
disorders [90], [92], [93]; whereas, ADHD and substance
use disorders (SUDs) have been linked to reduced ERN
[94]–[96]. Secondly, the ErrP signal has also found its way in
performance monitoring due to its relationship with motiva-
tion levels, stress regulation, and cognitive-control processes
[35], [97]–[99]. Accordingly, Hirsh and Inzlicht [100] linked
larger ERN amplitudes with better grades in undergraduate
students. Furthermore, due to the association of ErrP with
mental states, it can be utilized in neuromarketing and con-
sumer behavior research as well. A full discussion of the
effects of personality and biological traits on ErrP lies beyond
the scope of this study. We refer the interested reader to [76],
[89], [101], [102], among others.

The studies presented thus far suggest that the ErrP signal
has robust features that enable its faithful detection in a
single trial in a variety of tasks. The next section describes
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various rehabilitation and assistive approaches that utilize
error-potentials.

III. ERROR-RELATED POTENTIALS BASED BCI FOR
MOTOR IMPAIRED POPULATION
Table 1 presents a summarized overview of ErrP based BCIs
for the motor impaired people, grouped by targeted applica-
tion. Detailed discussion is as follows.

A. ROBOT CONTROL
Robots have considerable potential for rehabilitation and in
improving the quality of life for motor-disabled people. A
great deal of previous research has focused on the inte-
gration of the ErrP-based correction mechanisms in robot
control. Iturrate et al. [50] showed that the error detection
mechanism of the brain is active when a group of four
healthy participants observed the operation of a real robot.
The experiment employed observing the operation of a five
degrees-of-freedom (DOF) robotic arm, while the robotic
arm performed erroneous or correct reaching tasks to five
predefined positions. The authors reported an average sen-
sitivity and specificity of 78.97% and 82.58% respectively in
classification of the ErrP signal, which suggest the possibility
of detection of error and correct robotic behaviors in a single
trial.

Another interesting study utilized a shared-control strat-
egy and used an ErrP signal as feedback for controlling a
robot in a real 2D-movement task [52]. Without prior train-
ing, the robot reached the participant chosen goal in less
than 120 seconds by utilizing the ERN and CRN signals.
Penaloza et al. [104] used a similar strategy in a navigation
task and utilized the ERN signal as an emergency signal
to stop the robot’s navigation due to any perceived threat.
In another study, Penaloza et al. [46] used human error
perception to evaluate a robot’s learning performance in an
object manipulation task. In their framework, the authors
teleoperated the robot and utilized a probability-based object
selection task which selects the second-best action if the
first action causes an ERN signal to be elicited. Notably,
Penaloza et al. [104] used a low-cost commercially available
EEG headset, Emotiv EPOC in their study [46], [104] and
reported an ERN classification rate as high as 82%. A step
further, Salazar-Gomez et al. [43] reported how a secondary
ErrP signal can be elicitedwhen the systemwrongly classifies
the ERN signal as the CRN and vice versa and can improve
the performance of a robot performing a binary choice task.
Using an offline analysis, they further reported that integrat-
ing the secondary ErrP mechanism can boost the classifica-
tion performance of the system by over 20%. Interestingly,
the reported secondary ErrP signal (see Fig. 2(d, e, f))
possesses more robust characteristics and has been shown
to be easier to classify than the primary ErrP signal (see
Fig. 2(a, b, c)) [43].

So far, we have focused on robotic control, in which
the participant’s task was to observe the robot’s behavior
passively, and the robot uses the ErrP signal as feedback

to perform/reach the desired goal. Let us now consider the
active control of robots. Bhattacharyya et al. [9] reported a
positional control of a robotic arm to reach a target using three
different EEG signals: sensorimotor rhythm (SMR), P300,
and ErrP. ErrP was used to undo any misclassified motor
imagery (MI) action and to align the arm with the target in
case it misses the target. The authors reported a reaction time
in the order of 1 sec. In [42], the authors implemented a fixed-
order continuous control mechanism for a three-link robotic
arm using SMR and ErrP signals. After the selection of a
robotic link usingMI, the linkmoves at a constant speed in the
selected direction until ERN is elicited. As the links follow a
predefined sequence of activation, participants would have to
wait for the required link to become active before trying to
control them. As a result, a time taken to reach the intended
‘‘goal position’’ will increase, which makes the sequential
control of the robotic links a limitation/drawback of these
studies. More recently, Rakshit et al. [10] integratedMI, ErrP,
and steady-state visually evoked potentials (SSVEP) for a
three-link robot control. They utilized three different LEDs
flickering at 8Hz, 10Hz, and 13Hz for random order control
of the three robotic links instead of the sequential control that
would considerably improve the usability of the robotic arm
control. Again, ErrP was used to align the robotic arm with
the target position in case of misalignment.

Other studies have provided further support to the feasi-
bility of using ErrP for robotic control. For instance, Ehrlich
and Cheng [24] employed an ErrP signal for the co-adaptation
of a robot’s gaze behavior pattern in the object selection
task, in which a user tried to estimate the object that the
robot would select from its gazing patterns. Unlike previous
studies [43], [46], [50], [52], [104], in which the participant
is the master and the robot must adapt according to the user
perspectives, in this study, the optimal behavior of the robot
was negotiated between the user and the robot in a co-adaptive
fashion.With this approach, the efficacy of correct estimation
of the robot’s behavior increased from the initial chance-level
(∼33%) to 70–90% within 10–40 trials. Surprisingly, none
of the reported studies tested their approach on the motor
impaired population.

B. BCI SPELLERS
P300 is an event-related potential signal that is elicited in
response to a relevant stimulus in an oddball paradigm. The
ErrP signal has been widely used as a correction mechanism
in P300 based BCI-spellers. In these spellers (see Fig. 3(a)),
on the detection of the ErrP, the system can cancel the cur-
rently selected character and select the character with the
second-highest probability instead. Dal Seno et al. [105]
demonstrated the use of the ErrP signal in P300 spellers
with two participants. However, in this study, the use of the
ErrP in a speller showed little to no improvement. A major
problem in their experiment was the low ErrP classification
accuracy that may have led to the poor performance of the
speller. Combaz et al. [106] tested the performance of the
Mind Speller with nine participants to figure out the effects of
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TABLE 1. Overview of error-related potential based brain-computer interfaces for motor impaired population.
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TABLE 1. (Continued.) Overview of error-related potential based brain-computer interfaces for motor impaired population.
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TABLE 1. (Continued.) Overview of error-related potential based brain-computer interfaces for motor impaired population.

FIGURE 3. Error-related potentials based BCI. (a) User display for P300 based BCI speller. Upper: Rows and columns of the matrix display are randomly
intensified. Participant’s task is to focus on the character of interest. Below: The identified character is displayed on the screen as feedback. Republished
with permission from [103], 
2010 IEEE. (b) Participant sitting in a car simulator and driving in a virtual reality environment while simultaneously EEG
data are being recorded. Republished with permission from [58], 
2013 IEEE. (c) Gesture recognition system setup using magnets, reed switches,
accelerometers, and light barrier frame, while simultaneously EEG, EOG, and EMG signals are being recorded for offline analysis. Republished with
permission from [23], 
2010 IEEE.

the ErrP integration. With the assumption of the perfect ErrP
classification, they concluded that up to 15% improvement in
typing performance can be achieved. Combaz et al. [103] also
proposed the selection of the second-best character based on
the classifier’s ranking along with an iterative ErrP mecha-
nism to detect the second ErrP if the second-best character is
also wrong.

Finally, Schmidt et al. [31] assessed the improvement of
the speller performance with the incorporation of ErrP. With
twelve participants, they reported an increase of 49% in the
spelling speed compared to the casewithout the ErrP. Interest-
ingly, this study observed a negative correlation between the
accuracy of a P300 decoder and the performance improve-
ment due to the ErrP detection on which Margaux et al. [8]
showed a disagreement. It is worth noting that the studies

undertaken so far were focused on and included healthy
participants only.

In 2012, Spuler et al. [107] conducted experiments
with six severely motor-impaired subjects along with eight
age-matched healthy participants. A performance improve-
ment of 0.37 bits/trial in the motor-impaired subjects and
0.73 bits/trial in the age-matched healthy participants was
observed. It is worth mentioning here that Spuler et al. [107]
reported similar ErrP patterns in the motor-impaired partic-
ipants and healthy counterparts, which supports the use of
the error correction mechanism in BCI spellers for disabled
people as well.

Whereas the approaches so far employed the ErrP sig-
nal for deletion of the wrong character, a natural progres-
sion would be to implement the automatic error correction.
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Margaux et al. [8] and Spuler et al. [107] led the work and
employed the automatic error correction system (ECS) in
their BCI speller. More recently, Zeyl et al. [19] employed a
two-step row-column speller and reported a 13.67% improve-
ment in selection accuracy for 2.54 symbols/minute with the
ECS.

A potential hurdle in improving the BCI speller perfor-
mance is the false positives in ErrP detection. Higher P300
decoder accuracies leave a narrower room for improvement
through the ErrP correction mechanism. In such cases, ErrP
false positives deteriorate the speller performance instead of
improving it and establishes a state of equilibrium. Recently,
Cruz et al. [20] implemented the iterative ErrP detection idea,
which was proposed by Combaz et al. [103] to counter the
ErrP false positives. On the detection of ErrP, the authors’
system selected the character with the second-highest prob-
ability and presented it to the user, if the second character
again elicits an ErrP, the authors treated the first ErrP as
false positive and thus, re-selected the first selected charac-
ter. The authors reported a performance of 2.92 effective-
symbol/minute which was the highest among reported studies
and an information transfer rate of 14.19 bits per minute,
which was again the highest reported.

C. PROSTHETICS AND EXOSKELETONS
Prosthetic devices add value to the lives of the population
that have missing body parts. These devices utilize the neural
activity of the motor cortex area of the brain to determine the
intended movement of the user [108], [109]. However, due to
the non-stationary properties of these signals, re-learning pro-
cedures are required to keep-up the efficacy of such devices.
Rotermund et al. [6] presented a model that makes use of a
hypothetical neural error signal to automatically adapt pros-
thetic devices to the non-stationary EEG signal and eliminate
the requirement for tedious supervised re-learning. In their
simulation study, the participant task was only to intend for
an action to occur and observe the movement of the prosthetic
arm. The model characteristics were adapted based on the
hypothetical error signal which is assumed to be correlated
with the mismatch in the perceived and the intended move-
ment of the prosthetic arm. Kreilinger et al. [47] employed a
combination of occasional discrete and continuous feedbacks
for the movement of an artificial arm using the upper-limb
MI. The main limitation of the experimental method is that
the ERN elicited due to a series of discrete feedbacks using
LEDs needed to be correctly classified especially for more
prolonged armmovements, otherwise, the performance of the
approach suffers considerably.

Zhang et al. [4] proposed the MI-based lower limb
exoskeleton. They made use of the upper-limb MI for the
left and right lower limb movements. Similar to the study
of Rotermund et al. [6], Zhang et al. [4] also gave only
a conceptual idea and did not implement it on the real
exoskeleton. Previous studies have pointed out the difficulty
of manipulatingMI signals as well as its slower reaction time,

which can be a potential issue in the application of MI-based
exoskeletons.

D. GESTURE-ENABLED BCI
In a typical BCI system, participants are asked to limit their
physical movements in order to avoid artifacts. However,
in partially motor-disabled stroke patients, a residual limb
movement can be utilized for sending a command to the sys-
tem. Gestures of such patients are often misclassified due to
weak muscle control; nevertheless, the ErrP signal can assist
in these gesture-based human-computer interactions (HCI).
Recently reported studies have suggested applications of the
hybrid-BCI systems that combine the use of muscle activities
for sending commands and ErrP signals as a feedback for
interpretation of such commands [23], [113].

Chavarriaga et al. [23] presented a sophisticated gesture
recognition system that uses magnets and reed switches to
recognize the gestures of seven healthy participants while
they were playing a memory game (see Fig. 3(c)). ErrP sig-
nals were used to recognize any errors in command interpre-
tation. Participants gesture movements were combined with
the ErrP feedback to accomplish a user-specific recalibra-
tion that improved the gesture recognition rates by 6.4%.
Putze et al. [113] extended the work further and developed an
inertial-measurement unit (IMU) based gesture recognition
interface that can recognize six different classes. Theymainly
compared the performance of three ErrP-based correction
strategies: Manual, Reprompt, and 2nd-best, and showed
that self-correction-based strategies improve the efficacy of
the gesture recognition system and have greater acceptance
among participants compared to the manual correction. A
significant problem with these experimental methods is that
as the number of actions/gestures increases, the system com-
plexity increases significantly and consequently, the system
performance will suffer. Recently, Kim et al. [27] demon-
strated the reinforcement learning based human-robot inter-
action system in which the robot repeats gestures made by the
user. Due to the inherent property of the reinforcement learn-
ing, the number of gestures is not limited in this approach.
Moreover, the authors achieved 90% accuracy in the ErrP
detection in an asynchronous manner.

E. CURSOR CONTROL
BCI systems can decode user intent using his/her neural
signals of the brain to control the screen cursors, which can
assist disabled people in communication. The literature iden-
tifies three key strategies to accomplish this task: 1) using µ
and β-rhythms, 2) combination of monitoring the cursor and
ErrP signals, and 3) using joysticks or stylus. The physically
impaired population’s flimsy movements are error prone in
joystick control; similarly, manipulating µ and β-rhythms
is also prone to error. ErrP signals are utilized to work out
misclassifications and false responses. Let us now discuss the
three strategies:
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1) MOTOR IMAGERY
MI-based cursor controls ask participants to modulate their
sensorimotor rhythm (SMR) brain waves that comprise µ
and β-rhythms. Schalk et al. [114] indicated the presence
of the ErrP signal in an experiment in which four healthy
participants were controlling the vertical movement of a
1-D cursor using their µ and β-rhythms. The ErrP was
elicited following erroneous cursor movement.
Ferrez et al. [30] carried out a similar experiment with six
healthy participants, in which participants were controlling
the horizontal movement of a cursor using two-class motor
imagery - the cursor moved in discrete steps. The authors
showed that the ERN elicited whenever the cursor moved
opposite to the targeted direction and achieved an average
classification rate for the ERN and CRN signals of 76.2%
and 81.8% respectively and a recognition rate of 73.1% for
the participant’s intended cursor direction. Interestingly, this
finding implies that it is possible to extract neural information
of motor imagery and ErrP signal at the same time in a single
trial. Zhang et al. [51] and Mousavi et al. [115] also studied
the ErrP elicited in a cursor controlling task using left and
right-hand motor imagery.

2) MONITORING CURSORS
To learn how to modulate the SMR requires weeks of training
and SMR are often misclassified, which makes the cursor
control difficult. Chavarriaga andMillán [54] presented a dif-
ferent approach, in which, instead of continuously engaging
in generating control commands through MI, the participants
were asked only to monitor the movement of the cursor which
was supposed to follow a target on a screen. Any incorrect
movement of the cursor which was controlled by an external
autonomous agent elicited an ErrP which was ultimately uti-
lized to tailor the agent behavior to the participant’s necessity
and preferences. In this six-subjects’ experiment, the agent
learned the optimum behavior of the cursor control from the
participant perspective in less than 50 trials for almost all
participants. One limitation of this approach is that the target
location is selected by the system itself, which may reduce
its usability. More recently, Iturrate et al. [116] presented
an autonomous-agent based 2-D cursor control. Notably, in
this study, the participant can select the target location for
the cursor to reach. The experimental results showed that the
cursor could reach any location on the 5 × 5 grid in only 23
movements based on the ERN and CRN signals. A significant
advantage of this approach is that the system does not require
any calibration procedure and can be purely self-calibrated
[25], however, it does affect the efficacy of the system in the
initial warm-up period.

3) JOYSTICK CONTROLLED
In many reported studies, the ErrP was elicited by joystick-
controlled cursors [118]–[120]. This strategy of cursor con-
trol can be used with the motor-impaired population that
has residual muscle activity. Krigolson and Holroyd [118]

showed that controlling a cursor using a joystick elicits ERN
signal when the execution is erroneous. An idea which was
supported by Krigolson et al. [119], Demchenkoet al. [127]
and Lopes Dias et al. [120] as well. Lopes Dias et al. [120]
reported the occurrence of an ERN signal in the incorrect
execution of a continuous cursor control task. The task was to
hit the target using joystick control. Surprisingly, unlike other
cursor control studies, when the cursor did hit the target, i.e.,
a correct execution, no event-related potential was elicited.

F. WHEELCHAIR CONTROL
Wheelchairs have been proven to be a mobility-aid for the
physically disabled population. Various types of brain sig-
nals, specifically, P300, SSVEP, SMR, muscle potentials
have been used to control the brain-controlled wheelchairs
(BCW) [128]. Similar to other BCI applications, BCW
are prone to errors in identifying human intent; there-
fore, the ErrP signal can be used to improve its efficacy.
Perrin et al. [49] proposed the use of error-potentials in brain-
controlled semi-automatic wheelchair system. To assess the
viability of the ErrP usage in this application, they per-
formed an experiment in which the participants monitored
navigation of a robotic wheelchair in realistic simulation
as well as a real environment. Reportedly, the ErrP was
elicited when the semi-automatic wheelchair made a wrong
move that restrained it from reaching a predefined target.
Taeb et al. [121] also confirmed the existence of the ErrP
signal in a simulated brain-actuated wheelchair experiment
which involved ten healthy participants. The ErrP signal was
elicited following feedback that indicated erroneous response
from the BCI system.

G. MISCELLANEOUS
Several studies have highlightedmany other ErrP-based reha-
bilitation and ADL assistance techniques. Roset et al. [11]
demonstrated an MI driven functional electrical stimulation
(FES) devices for post-stroke rehabilitation. They employed
the ErrP signals as passive feedback in a reinforcement learn-
ing loop to continuously adapt the FES device in response to a
participant’s brain’s MI activity. Reportedly, one healthy and
one spinal-cord injury (SPI) patients participated in the study;
however, the authors did not assess their rehabilitation over a
time period.

Zhanget al. [58] presented the feasibility of using ErrP
signals to predict a participant’s intended turning direc-
tion in a realistic car simulator that consisted of the accel-
erating pedal, braking pedal and steering (see Fig. 3(b)).
Zhang et al. [122] further tested this approach in a real
car environment with eight participants. In their experiment,
before the car reached an intersection, a directional cue was
shown on a screen and following the cue, an ErrP signal was
elicited when the directional cue did not match with the par-
ticipant’s intended direction at the intersection. They reported
0.733± 0.150 maximum online classification accuracy in the
real car experiment.
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Movement-related cortical potential (MRCP) signals have
capability for use in detecting motor movement using neural
signals before the start of actual motor movement. Several
studies have shown its applications in stroke rehabilitation
programs. Similar to other EEG signals, MRCP signals suffer
performance degradation due to non-stationary properties of
EEG as well. Artusi et al. [26] utilized ErrP signals to address
this problem in the MRCP multiclass classification problem.
In the experiment, six healthy subjects were asked to perform
motor imagination of the right arm flexion at a slow or fast
pace with a similar frequency. With the use of ErrP, the initial
average bit transfer rate improved by 76% and the global
error rate reduced to 14% compared to 26% without ErrP.
However, MRCP is often used to detect motor movement
before the actual movement starts and the ErrP signal elicits
after the actual movement has been performed, therefore,
the integration of the ErrP and MRCP poses a fundamental
problem which must be considered.

Gaze-based-keyboards are used for typing using eye-gaze
data; specifically, in this approach, users have to focus their
eyes on a character (on a digital keyboard) they want to type.
Commonly, eye-trackers are used to register the eye-gaze
data. Kalaganis et al. [18] proposed a hybrid BCI system inte-
grating a gaze-based-keyboard with ErrP signals and showed
how a regular gaze-based-keyboard can be improved in terms
of typing speed with incorporation of ErrP. In an online
experiment with ten healthy subjects, authors implemented an
error detection system and showed that with the error-aware
typesetting, typing speed improved by 9.3% and participants
required 2.7sec less to write a sentence compared to a regular
gaze-based-keyboard. Notably, it can be a good alternative to
P300 spellers for the disabled population.

IV. POTENTIAL ISSUES AND CHALLENGES
The published studies reviewed in this article support the idea
that the ErrP signals have the potential to improve the current
state-of-the-art BCI rehabilitation and assistive approaches.
Nevertheless, several challenges need to be overcome before
the motor-disabled population can use such applications in
real life.

A. INCLUSION OF MOTOR-DISABLED POPULATION
Rehabilitating and assisting disabled population form the
central focus of BCI applications. However, only a few
research studies have included disabled people in their
experiments. Surprisingly, none of the studies that were
targeting robot control, motor imagery, prosthetics, and
exoskeletons included disabled participants. Nevertheless,
Spuler et al. [107] have shown that ErrP patterns in healthy
subjects are similar to those observed among the disabled
population, and the experiments performed on healthy people
can be directly applicable and translated to disabled people.
However, in the case of rehabilitation, it is the other way
around; the effectiveness of a rehabilitation technique cannot
be assessed on healthy people and instead requires a longi-
tudinal study on the motor-disabled population. Moreover,

the inclusion of the motor-disabled population in the stud-
ies will allow us to identify problems and requirements in
BCIs, which may not be easily identifiable with healthy
participants.

B. HIGHER ERRP CLASSIFICATION RATES
With the advent of machine learning techniques and powerful
computational resources, classification rates of neural signals
have improved substantially [129]. With the integration of
the ErrP automatic error correction mechanism in BCIs, it
is expected to advance further. However, the low ErrP clas-
sification rates, especially the false positives (misclassifying
correct events as errors events) in ErrP classification, have
posed a major challenge. As an example, Dal Seno et al.
[105] reported little to no improvement in their P300 speller
with the ErrP integration due to the low ErrP classification
rate. Also, Putze et al. [113] reported that participants found
the automatic correction strategy more confusing and unpre-
dictable in comparison to the Reprompt strategy. Further-
more, Margaux et al. [8] reported that a majority of users that
were even having reasonable ErrP detection rates preferred
the use of P300 speller without corrections because they
perceived no benefit from it. Clearly, it is vital to develop
confidence among users for the use of ErrP-BCIs, which
highly depends on the detection rates.

A good rule of thumb is that the classification rate of
error events must be higher than the accompanying BCI
signal (e.g., P300, SSVEP, MI); otherwise, the overall per-
formance will degrade [20]. One of the reasons for the low
performances of ErrP detectors is the small dataset. Unlike
other BCI interventions, BCIs for rehabilitation and assistive
devices require the user to perform a physical activity repet-
itively. Over such a period, development of muscle fatigue
limits the experiment length and with it, the size of the data
as well. Moreover, higher BCI classification rates introduce
a class-imbalance problem in error and correct trials, which
further reduces the erroneous events classification rates. A
number of studies have been using the false-feedback tech-
nique in which they deliberately label the correct event as an
error event to collect more error trials [24], [48]. However,
the false feedback technique can be counter-productive if the
error-rates are chosen to be high as the patients can lose con-
fidence in using the BCI. In another approach, Combaz et al.
[103] reduced the number of repetitions in P300 BCI speller
to increase the error rates in spelling a character to achieve
more error trials. Indeed, reducing the number of repetitions
will help in collecting more error trials and can also reduce
the time required to spell a character; however, with the
reduced repetitions, the accuracy of P300-BCI speller itself
will reduce which can in turn impact the overall accuracy of
the system.

The problem even worsens with the motor-disabled pop-
ulation, as weak muscle control results in fewer trials that
further decrease the size of the data. Kim et al. [130] demon-
strated a classifier transfer approach in which the feasibility
of classifying interaction ErrPs is tested on a classifier trained
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on the observation ErrPs data. This approach can decrease
the calibration time; however, the overall accuracy of the
detector is being affected and was shown to be decreased
[130]. Notably, in observation ErrPs experiments that employ
flanker task [36] and cursor monitoring [54], it is easier to
record large datasets with minimal physical efforts. Iturrate
et al. [131] also presented a delay-correction algorithm for
classifier-transferring across different observation tasks to
reduce calibration time. Nevertheless, the performance of this
technique will be decreased as the morphology of the test
signal changes in comparison to the base signal.

Each of the techniques discussed above has pros and cons
associated with them. Further studies with more focus on
higher ErrP classification rates are therefore suggested.

C. ASYNCHRONOUS AND CONTINUOUS BCIS
Event-related potentials are time-locked events - after
a certain period following the event, the participant’s
brain responds in a specific manner depending on the
event/stimulus. In stimulus-locked synchronous BCIs, due
to the use of cues, the time-locked event is easily known.
However, a large number of rehabilitation and assistive BCIs
are continuous in their operation; consequently, detection of
the ErrP becomes difficult due to the absence of otherwise
evident time-locking events. Moreover, with the possibility of
the untimely realization of error in asynchronous approaches
as in [27], [120], a brain’s error-response mechanism may
trigger prematurely. As a result, a variation in latencies of
ERPs will occur in subsequent trials, which will reduce the
signal-to-noise ratio of evoked event-related potential result-
ing in ineffective temporal features and lower ErrP decoding
performance [45]. A potential method to investigate is uti-
lization of spectral features instead of time-domain features.
Notably, there is evidence that shows that θ -band power
increases post-erroneous response [65]–[67]. Furthermore, a
greater extent of non-phase locked θ-activity was observed
post-error-event in comparison to phase-locked activity [67],
which reportedly remains stable across tasks as well [64]. As
an example, Spüler et al. [45] reported considerably higher
performance with spectral features in the asynchronous ErrP
BCI. The use of spectral features can be promising in reha-
bilitation and assistive BCIs, which identifies this as an area
for further research.

D. PERFORMANCE EVALUATION METRICS
Another potential issue of concern is the lack of stan-
dard evaluation metrics in assessing the performance of
ErrP-BCIs. Many different metrics such as information trans-
fer rate (ITR) [20], classification accuracy [8], utility metric
[132], effective-symbol per minute (ESPM) [20] have been
reported in the literature for the evaluation of ErrP-BCI.
Each of these evaluation metrics explain different aspects of
the performance of a BCI, e.g., ITR defines the maximum
information-carrying capacity of a BCI communication chan-
nel in bits/minute, classification accuracy defines the number
of correct predictions made by a classification model over the

total number of predictions, utility metric can be defined as
the average benefit a user gets by using a BCI divided by the
average time required to get it [132] and ESPM defines the
number of symbols communicated in a minute without errors
in a BCI [20]. Clearly, due to the usage of different evaluation
metrics and consequently lack of a standard framework, a
comprehensive objective comparison among the studies is
difficult to make. More recently, Kalaganis et al. [124] have
reported a new evaluation method, the so-called Inverse Cor-
rect Response Time (ICRT), to quantify the performance of
BCIs that employ ErrPs. ICRT combines the performance
gain in BCI due to the integration of the ErrP as well as the
cost introduced due to it and provides a single reliable metric
for the evaluation of the ErrP-BCI. In future investigations,
it will be beneficial to provide a comprehensive assessment
of ErrP-BCIs using various metrics to facilitate comparison
among different studies.

V. FUTURE DIRECTIONS
In terms of directions for future research, a number of pos-
sible pathways have been identified that can be adopted in
order to design more reliable and usable ErrP based BCIs for
motor impaired people.

A. CONSIDERATION OF PSYCHOLOGICAL
AND COGNITIVE STATES
Participants’ mental fatigue, attention level and other psycho-
logical traits affect their EEG responses, which increases the
inter-subject variability that deteriorates classification rates.
Only a few studies have investigated the relationship of the
above with the ErrP signal [81], [82], [84], [100]. The par-
ticipant’s engagement level in the task can be calculated in
real-time [133], [134], however, assessing other traits such
as mental workload, motivation level, awareness of error is
difficult and requires challenging approaches. Therefore, fur-
ther research is required to establish methods for determining
the participant’s psychological traits in real-time. With the
advent of new methods, a genuinely versatile interface can
be developed that can alter its characteristics dynamically
in response to changes in a participant’s psychological and
cognitive states.

B. ITERATIVE ERRPS
In detecting the ErrP signal, various strategies are employed
to handle the erroneous condition, such as Reprompt, Selec-
tive Reprompt and 2nd-best [113]; however, all of these strate-
gies suffer from troublesome false positives. Utilization of
the iterative ErrP can be a potential approach in reducing
false positives [103]. The idea behind an iterative ErrP is to
search for the secondary/second ErrP signal that can poten-
tially be evoked if the participant realizes that the detection
of primary/first ErrP signal is a false positive and then take
the corrective actions. As an example, Salazar-Gomez et al.
[43] and Cruz et al. [20] showed how the implementation of
the iterative ErrP can reduce the false positives and increase
the overall performance in robotic control and BCI-speller,
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respectively. However, the applicability of such techniques is
yet to be tested on the disabled population. Therefore, future
studies with more focus on iterative ErrPs are recommended.

C. MULTIMODAL BCI
Besides EEG, error-related potential signals have also been
observed in Magnetoencephalography (MEG) [135] and
Electrocorticography (ECoG) [44], [136]. fMRI based stud-
ies have also shown discriminable patterns for differenti-
ating the error from the correct response [63]. However,
each of these techniques has its own set of disadvantages
when it comes to BCIs. Several studies have highlighted
the use of multimodal brain-computer interfaces, which
combines multiple single-mode BCIs to achieve higher
performance [137]–[139]. Moreover, ECoG, MEG, and
surface-Electromyography (sEMG) signals have also
shown promising results when it comes to decoding
real-time complex limb-movements from physiological
signals [140]–[144]. Summarizing, a multi-model ErrP based
BCI can form an effective strategy for assistance as well as
rehabilitation applications. Nevertheless, future studies are
suggested to establish the viability of such approaches.

D. ASSIST-AS-NEEDED APPROACH
Regaining the upper-limb movement is the top-priority of
people with quadriplegia as it directly affects their abil-
ity to execute ADLs [3], [145]. Post-stroke, stroke patients
undergo a rehabilitation procedure in which they perform
physical exercises using their affected limb that accelerates
the brain’s natural process of recovery from the aftermaths of
stroke [5]. Several studies have highlighted the significance
of the intensive, repetitive and active participation of the
patients in performing the rehabilitation exercises to promote
motor recovery [5], [146], [147]. However, due to their motor
impairment, stroke patients cannot perform the rehabilitation
exercises repetitively and actively [3, 148]. Robotic devices
and exoskeletons can assist them in performing the rehabili-
tation exercises; however, to date, there has been no reliable
evidence for any such ErrP-based approach for rehabilitation
in motor-disabled people.

Recently, assist-as-needed (AAN) robot therapy-based
rehabilitation programs have gain popularity [3], [146]. In
AAN based robot therapies, assistance is provided to the
patient in performing the rehabilitation exercise when a par-
ticipant is unable to perform it on his/her own and vice
versa. Several strategies have been used to implement the
AAN approach [3], [148]. ErrP can serve as a useful measure
for the modulation of assistance level in the AAN methods.
However, the existence of the ErrP has not been confirmed
in methods that employ stroke patients performing rehabili-
tation exercises. This is an important issue to be addressed in
future research.

Recently, the study led by Rodgers et al. [149] compared
robot-assisted training using MIT-Manus robotic gym with
enhanced upper limb therapy (EULT) and with usual care
for stroke patient upper-limb rehabilitation. Interestingly, the

assist-as-needed robot-therapy (RT) did not show any sig-
nificant gain of upper-limb function defined using Action
Research Arm Test (ARAT) scores in comparison to EULT
and usual care when delivered at the same frequency and
duration. We propose and believe that by including the ErrP
signal as a feedback loop in AAN RT designs, RT based
training programs can be made more engaging and minimal
assistive and thereby improving state-of-the-art rehabilitation
methods.

VI. SUMMARY
ErrP signal has emerged as a reliable event-related potential
signal that intrinsically serves as a brain-feedback loop and
describes the perception of an error. ErrPs can be measured
using a variety of brain-imaging techniques in a single-trial
and be integrated with conventional BCIs to form hybrid-
BCIs for performance improvement. Psychological, physi-
cal, and other cognitive aspects in affected individuals have
introduced variability in the ErrP that has given it a broader
meaning in the field of clinical psychology and performance
monitoring, amongst others. ErrPs have been increasingly
utilized in the development of rehabilitation applications for
motor-disabled people which is evident from the reasonably
large number of studies that have been reviewed in this article
which describes a diverse range of rehabilitation and assis-
tive applications including robotic devices, BCI spellers and
motor-imagery BCIs. Nevertheless, several aspects remain
to be further investigated, including improvement in the
classification of ErrPs in hybrid BCIs, legitimately han-
dling erroneous events, iterative ErrPs, multimodal BCIs and
managing asynchronous ErrP approaches. More importantly,
longitudinal studies, including motor-disabled people, must
be undertaken for the identification of optimal parameters
for rehabilitation and assistive techniques from the end-user
perspective. Lastly, we believe that collaborations across dis-
ciplines will provide new insights in the utility of ErrPs and
lead to the development of integrated ErrP-BCIs that can be
used in clinical settings.
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