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ABSTRACT The seminal work on Affective Computing in 1995 by Picard set the base for computing that
relates to, arises from, or influences emotions. Affective computing is a multidisciplinary field of research
spanning the areas of computer science, psychology, and cognitive science. Potential applications include
automated driver assistance, healthcare, human-computer interaction, entertainment, marketing, teaching
and many others. Thus, quickly, the field acquired high interest, with an enormous growth of the number of
papers published on the topic since its inception. This paper aims to (1) Present an introduction to the field of
affective computing though the description of key theoretical concepts; (2) Describe the current state-of-the-
art of emotion recognition, tracing the developments that helped foster the growth of the field; and lastly,
(3) point the literature take-home messages and conclusions, evidencing the main challenges and future
opportunities that lie ahead, in particular for the development of novel machine learning (ML) algorithms in
the context of emotion recognition using physiological signals.

INDEX TERMS Affective computing, emotion recognition, machine learning, physiological signals, signal
processing.

I. INTRODUCTION
Affective computing was defined by Rosalind Picard as the
computing that relates to, arises from, or influences emo-
tions [1]. This emerging field focuses on better understanding
the psychophysiological phenomena underlying the ways in
which humans recognise, interpret and simulate emotional
states [2]. Therefore, it is a multidisciplinary field of research
spanning the areas of computer science, psychology, and
cognitive science. Emotions possess a nuclear role in human
behaviour, exerting a powerful influence in mechanisms such
as perception, attention, decision making and learning. Thus,
understanding emotional states is essential to understand
human behaviour, cognition and intelligence [1].

The field of affective computing presents applications in
many areas, including automated driver assistance- through
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alert systems monitoring the user sentic state by means of
physiological signals. The system could be capable of warn-
ing the user if he is sleepy, unconscious or unhealthy to drive,
lowering the speed or stopping the car if necessary, towards a
more safe and secure driving experience. In a driving setting,
the user’s physiological signals could be read unobtrusively
and pervasively through non-intrusive techniques integrated
into components with which the driver naturally interacts
with, such as the steering wheel [3].

In healthcare, through wellness monitoring, one can envi-
sion the ability to create an individual profile identifying
causes of stress, anxiety, depression or chronic diseases. The
profile could be kept private or shared with a professional.
Another possible application includes teaching, enhancing
the human-computer interaction through the adaptation of the
study material and teaching velocity to the subject response
in each exercise, its personality and current mood; Recom-
mendation Systems- adapting the movie, TV series or music
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recommendation to the user likes and preferences according
to its pre-emotional responses.

Humans often communicate emotions and their current
sentic state via extraneous body expressions such as with a
smile or more physiological expressions, such as an increase
in heart rate (HR). These body expressions occur naturally
and subconsciously. Several theorists argue that each emotion
provokes its own unique somatic response [1]. Therefore,
the modulation of the motor system expressions, sentic mod-
ulation, can be used to infer the individual emotional state.

Physical manifestations are easily collected; however, they
present low reliability since they depend on the user social
environment, cultural background (if he is alone or in a group
setting), their personality, mood, and can be easily faked,
becoming compromised [4]. On the other hand, these con-
straints do not apply to physiological signals, such as the HR,
perspiration, pupil dilation, among others. Alterations in the
physiological signals are not easily controlled by the subject,
presenting a more authentic look into the subject emotional
experience. For this reason, in this paper, we will focus on
the recognition of human emotions based on physiological
signals.

This survey aims to showcase the evolution and current
landscape of emotion recognition systems based on physi-
ological signals. We start by including a solid overview of
fundamental theoretical concepts, providing a review of state-
of-the-art publications and current researchers (see Fig. 1,
where a histogram of the number of publications surveyed
for this document per year of publication is displayed). Then,
from the surveyed papers, the most relevant results, chal-
lenges, and the most promising future possibilities are dis-
cussed as a guide to new and current researchers with a focus
on each part of an emotion recognition system from emotion
elicitation to decision.

FIGURE 1. Histogram of the number of publications surveyed for this
document per year of publication.

The remaining of this paper is organised as follows: In
Section II the theoretical concepts needed to contextualise the
reader are presented, with essential principles applied in the
field of affective computing. Then, in Section III, we describe
the key main steps required for the development of a novel

Machine Learning (ML) algorithm for emotion assessment.
In Section IV, the emotion recognition state-of-the-art liter-
ature is discussed and its main take-home messages iden-
tified. Lastly, the main conclusions and challenges derived
from literature are described, along with recommendations
for further work on the field.

II. THEORETICAL BACKGROUND
In this sectionwe provide essential theoretical background for
the concepts needed to develop novel algorithms for emotion
recognition. We start by introducing the concept of emotion
and its two main forms of characterisation: continuous and
discrete in sub-sections II-A.1 and II-A.2, respectively. Then,
in sub-section II-B, the Autonomic Nervous System (ANS)
is introduced and its correlation with emotion generation
explained. Next, in sub-section II-C, common state-of-the-
art sensors used in affective computing and their correlation
to sentic state assessment is described. Benchmark datasets
used in emotion recognition are presented in sub-section II-F
and, lastly, literature assessment methods are presented in
sub-section II-E.

A. EMOTION MODELS
The first question in order to recognise emotions should be to
define the concept of emotion. What is an emotion? Theorists
from multidisciplinary fields such as neuroscience, philoso-
phy and computer science have tried to answer this question
and define a universal definition of emotion. However, with
discord, thus, there is no single widely acknowledged defini-
tion. In ML, a definition of emotion is especially important
since it is necessary to establish the targeting criteria of
success. A common approach to mitigate this problem is to
define emotions according to two models. One decomposes
emotions in continuous dimensions and the second in discrete
categories [1].

1) DISCRETE EMOTION SPACES
Since the ancient of times, emotion and feelings have been
the thought of many philosophers. Per example, Cicero and
Graver [5] back in the Roman empire organised emotions in
four basic categories: Fear, Pain, Lust, Pleasure. Meanwhile,
for Darwin [6], along with the theory of natural selection,
emotions have an evolutionary history and are shared across
cultures. Ekman [7] continued his work and argued that emo-
tions are shared between cultures, thus, able to be universally
recognised. Ekman described emotions as discrete, measur-
able and physio-related, arising from evolutionary evolved
physiological and communicative functions. Hence, physio-
logical expressions deriving from emotions functioned as a
warning, sometimes separating life and death scenarios [8].
Ekman enumerated six basic emotions: Happy, Sad, Anger,
Fear, Surprise and Disgust, with more complex emotions
created as a combination of these basic emotions.

Plutchik [9] proposed a taxonomy to classify emotions
in the form of a wheel model (Fig. 2) incorporating eight
basic emotions: Joy, Trust, Fear, Surprise, Sadness, Anger,
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FIGURE 2. Plutchik wheel theory of emotion [9].

Disgust and Anticipation. In his taxonomy, once again, emo-
tions can be mixed to form complex forms, personality traits
and psychopathology. However, his taxonomy differs through
the incorporation of intensity levels, as shown in Fig. 2,
where stronger emotions occupy the centre, while weaker
emotions occupy the extremities. Then, in [10], [11], Izard
suggested 10 basic emotions: Interest, Joy, Surprise, Sadness,
Fear, Shyness, Guilt, Angry, Disgust and Contempt. Izard
advocated that emotions are the result of human evolution,
and each emotion is correlated to a simple brain circuit where
a complex cognitive component is not involved.

Lastly, Damasio [12] defined emotion as a neutral reaction
to a certain stimulus, which can be categorised as primary
(deriving from innate fast and responsive ‘‘flight-or-fight’’
behaviour) or secondary (deriving from cognitive thoughts).

In all the aforementioned theories of emotion, human
emotional experiences are described in words. However,
a discrete qualification of emotions can present difficul-
ties, since complex mixed emotions can be difficult to
precise and different individuals/cultures may describe a sim-
ilar experience with different words. In order to overcome
these difficulties, many authors have adopted the concept of
continuous multi-dimensional space models. In a continu-
ous multi-dimensional space model, emotions are measured
along a defined axis, thus, simplifying the process of compar-
ison and emotion discrimination.

2) CONTINUOUS DIMENSIONS
A continuous description of emotionmust address two issues:
The possibility to describe correlation among different emo-
tional states, for example, Grief vs Sadness, Admiration vs
Trust; and the quantification in a given state, for example,

FIGURE 3. Valence-arousal model of emotion [14].

very sad vs sad vs not sad. A first approach was proposed
by Schmidt et al. [8], where emotions were described as a
single point in a pleasure-displeasure, excitement-inhibition,
tension-relaxation three-dimensional space.

Following Wundt, Schmidt et al. [8] suggested a
valence-arousal two-dimensional model where different
emotions are described. The valence axis denotes how pos-
itive (pleasant) versus negative (unpleasant) the emotion is,
while the arousal axis indicates its activation/intensity level.

Similarly, Lang [13] described emotions in two-
dimensions: Valence (negative/positive) and Arousal (calm/
excited). Fig. 3 displays the mapping of several emotions on
the two-dimensional valence-arousal space.

Mehrabian [15] added a new dimension to describe the
consciousness of the emotion, denoted as dominance (Fig. 4),
facilitating the discrimination between emotions such as
Fear vs Anger [4]. From all the aforementioned models,
the valence-arousal is the most commonly applied due to
its low simplicity of integration into an emotion assessment
questionnair and low complexity in the modelling of ML
algorithms, attaining overall good results.

B. AUTONOMIC NERVOUS SYSTEM
According to Levenson [17], emotions were preserved across
natural selection due to the need for an efficient mecha-
nism able to mobilise and organise the selection of quick
responses from highly differentiate and disparate systems
when environmental stimuli pose a threat to survival. Thus,
in order to give a quick response to life-threatening situations,
the emotion system is able to override high cortex function-
alities, with quick, automated responses coordinated by the
ANS. Levenson’s theory has been supported by many theo-
rists, however, they lack consensus on how many different
emotional states are associated with distinct patterns of the
ANS [17].
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FIGURE 4. Mehrabian three-dimensional space theory of emotion [16].

On one hand, a few theorists defend that there are only two
ANS patterns: The ‘on’ status and the ‘off’ status. Others the-
orists postulate that there is a large number of patterns of ANS
activation, each associated with a different emotion [17].

The ANS is mediated by the two branches of the ANS. The
‘on’ status is mediated globally by the Sympathetic Nervous
System (SNS) and the ‘off’ by the Parasympathetic Nervous
System (PNS) [17]. The SNS is activated during physically
or mentally stressful situations, thus, controlling the body
responses to threats. The SNS is responsible for the increase
in HR due to the increase in the sino-atral (SA) stimulation
and for increasing the strength of contractions due to an
increase in the propagation velocity of the depolarisation
wave that travels through the heart, bronchial tubes dilation,
muscles contraction, pupils dilation, decrease in stomach
movement and secretions, decrease in saliva production and
lastly, release of adrenaline. On the other hand, the PNS
is responsible for homeostasis, i.e. the maintenance of the
internal bodily milieu while at rest: slowing down the HR,
decrease in the blood pressure and increase in the digestive
system activity, bronchial tubes constriction, muscles relax-
ation, pupils constriction, increase in stomach movement
and secretions, increase in saliva production and increase in
urinary output. The SNS is often referred to as the ‘‘fight-
or-flight’’ response, i.e. the activating and energising system;
while the PNS is referred to as the ‘‘rest-and-digest’’ system.
However, although this metaphor might fit the heart, for the
remaining systems of the ANS the same is not verified, since
the PNS causes increased activation in salivary glands, tear
ducts, and the stomach and intestinal activity [17].

The ANS is responsible for many functions: serving as
regulator, through the homeostasis, maintaining our internal
bodily milieu within strict limits so as to minimise damage
and maximise functioning; as an activator, allocating body
resources in order to better respond to internal or external

stimulus; as an coordinator, organising a continuous bidirec-
tional flow of data between the somatic and brain systems;
and, lastly as a communicator, through body responses with
discernible dynamic variations for conspecifics [17].

This multi-dimensional functionality of the ANS increases
notably the difficulty of correlating a subject emotional state
with their current physiological signals, since, when a certain
change in a physiological signal occurs, such as increase of
the HR or respiration, it is more likely to have resulted from
one of the several ANS non-emotional functionalities than
from an emotional one [17].

C. PHYSIOLOGICAL SIGNALS
As stated, emotional states are associated with discernible
ANS physiological responses. These responses can be read
through body-worn physiological sensors such as the ECG,
EEG, EDA, and BVP, which are briefly described below.
The figures displayed in this section were obtained using
the BioSPPy library [18], a Python library for physiological
signals processing.
(a) Electrocardiography (ECG): is a numerical recording

of the potential differences that are propagated to the
skin surface resulting from the electrical activity of the
heart (arising from the contraction and relaxation of
the cardiac muscle when electrically stimulated). The
heart’s contraction and relaxation rate is the result of
three main components: (a) The action of the SA node,
localised in the right atrium at the superior vena cava,
which receives inputs from both branches of the ANS
to initiate the cardiovascular activity with an intrin-
sic frequency of 100-120 bpm [17]; (b) PNS fibres
modulated by the vagal nerve, slowing down the HR
to approximately 70 bpm; (c) SNS fibres modulated
by the post-ganglionic fibre, increasing the HR during
an emotional episode or non-emotional ANS modula-
tion [17]. This complementary modulation between the
two branches of the ANS system is known as sympa-
thovagal balance. Thus, theHR is a function of theANS
activity, which in turn is dependent on emotional stim-
uli, therefore, information about the emotional state can
be inferred from the ECG data [19]. The ECG should
be sampled with high-frequency rate (500-1000 Hz)
in order to be possible to more accurately determine
the instants when the heartbeats occur and use these
instants to calculate and modulate the HR. The ECG
signal presents amplitudes between 10uV (fetal) to
5mV (adult). Fig. 5 displays an ECG and some of its
main characteristics, namely, the R peaks and HR.

(b) Electrodermal Activity (EDA)/ Galvanic Skin
Response (GSR): provides a measure of the resistance
of the skin by passing a negligible current or voltage
through the body and measuring the voltage or current
variation between the two sensor leads, respectively.
Thus, the skin is considered to be equivalent to a vari-
able resistor. When given a known voltage or current,
the other is measured and the skin conductance level
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FIGURE 5. Raw Electrocardiography (ECG) sensor signal, filtered signal,
heartbeats waveform templates and its main data characteristics
(R-peaks and heart rate (HR)).

derived from G = 1/R;R = V/I . Fig. 6 displays
a common EDA signal and its main characteristics.
As observed, the EDA signal is characterised by a
baseline, from which, phasic perturbations arise in
response to certain events. Thus, an EDA signal can be
decomposed in two main components: a baseline tonic
component of low bandwidth (f < 3Hz) expressing the
thermal regulation activities denoted as Electrodermal
level (EDL), and an Electrodermal Response (EDR)
phasic component expressing psychological-related
responses when an SNS regulatory activity occurs. The
mean value of the EDA signal enables to infer the level
of arousal and activation of SNS system since the EDR
response is usually observable in a stressful or surprise
event when an increase of perspiration decreases the
skin resistance [20], [21]. Ionic sweat is more con-
ductive than dry skin, hence, causes an increase in
conductivity proportional to the amount the glands
have filled coordinated by the sympathetic activation
due to external sensory or a cognitive stimuli [19].
Thus, the EDA provides a non-intrusive look into ANS
activity through the EDR psychological response to
certain stimuli. The EDA electrodes are usually placed
at areas of high sweat glad density, such as on the 2nd

phalanx of the index and middle fingers, the index and
ring fingers, the hand or feet palms [8]. The EDA data
has been used to study emotion-related PNS activity
with applications such as deception, stress, frustration,
arousal and anxiety detection [8].

(c) Photoplethysmography (PPG) or Blood Volume
Pulse (BVP): a photodiode measures the amount of
backscattered light by a skin voxel. Thus, in a BVP sig-
nal, the amount of light that returns or passes through
the finger to a BVP sensor is proportional to the volume
of blood in the tissue. Hence, it is possible to detect
the heartbeats through the pulse local maximum by the
passage of blood, indicating each cardiac cycle from
which the HR can be inferred. The sensor is usually
placed in the subject index finger.

FIGURE 6. Raw Electrodermal Activity (EDA) sensor signal, filtered signal,
Electrodermal Response (EDR) amplitudes and its main data
characteristics (onsets, peaks, recovery rates).

FIGURE 7. Raw Blood Volume Pulse (BVP) sensor signal, filtered signal
and its main data characteristics (onsets and HR).

The BVP sensor data is highly prone to noise with its
quality depending on the sensor location, motion, exter-
nal light artefacts and subject dependent physiological
characteristics, such as: level of tan, skin absorption
properties, skin structure, the blood oxygen saturation,
blood flow rate, skin temperatures and the measuring
environment [8], [22]. Fig. 7 displays a BVP signal and
some of its main characteristics.
As stated in Section II-B, the ANS is responsible
for dilating or contracting the blood vessels diameter.
Hence, changes in BVP amplitude reflect instantaneous
sympathetic activation such as in high arousal and
pleasant situations where the SNS increases the blood
pressure and heart rate variability (HRV), both possible
metrics to be deduced from the BVP signal in order
to modulate the user sentic state. For example, when
a person relaxes, vasodilatation usually occurs which
is reflected as an increase in the blood flow volume,
consequently affecting the BVP amplitude; when anx-
ious or fearful, the opposite is verified [23]. Generally,
the BVP sensor data is recorded using sampling rates
below 100Hz [8].

(d) Respiration (RESP): usually in the form of a chest
belt worn in the thorax or the abdominal area, it is
used to measure the respiration pattern, namely, how

140994 VOLUME 7, 2019



P. J. Bota et al.: Review, Current Challenges, and Future Possibilities on Emotion Recognition Using ML and Physiological Signals

FIGURE 8. Raw Respiration (RESP) sensor signal, filtered signal and its
main data characteristics (zero-crossings, respiration rate).

deep and fast a subject is breathing [8]. During a res-
piration cycle, the thorax expands and constricts in
the inhalation and exhalation of air resulting in the
stretching and de-stretching of the chest belt. From
this movement, the respiration rate and volume can be
derived [8]. Regarding emotion recognition, the respi-
ration rate with fast and deep breathing can indicate
high arousal such as anger, fear, or joy, rapid shallow
breathing can indicate tense anticipation, such as panic,
fear or concentration, slow and deep breathing indi-
cates a relaxed resting state while slow and shallow
breathing can indicate states of withdrawal, passive like
depression or calm happiness [24]. In the literature,
a few papers have proposed ECG-derived respiration
techniques allowing to obtain the respiration waveform
from an ECG signal, namely from the RS-decline quan-
tified by central moments, respiratory sinus arrhythmia,
R-wave amplitude, QRS area, RS-distance and maxi-
mumRS-slope [25], [26]. Fig. 8 displays a RESP signal
and some of its main characteristics.

(e) Skin Temperature (Temp) or (SKT): can be
measured using an infrared thermopile or a temperature-
dependent resistor at the skin surface. The temperature
of the human skin can change for numerous reasons
correlated with main functions of the ANS such as
physical exercise, physiological conditions, environ-
mental conditions and emotional reactions through
mechanisms such as sweating, shivering, vasocon-
striction or vasodilatation. For example, sweating and
vasoconstriction decrease the body temperature, while
vasodilation and shivering, increase the heat production
in the muscles, thus, increasing the skin surface tem-
perature [23]. When the muscle contracts or relaxes,
vasoconstriction or dilatation occur, respectively. The
smooth muscle contraction is regulated by the SNS,
which is linked to emotion. Hence, SKT can provide
a look into the ANS system. For example, in a ‘fight-
or-flight’ response mediated by the SNS, the muscles
under strain show high vascular resistance and increase
the arterial flow. The blood flow to the extremities

FIGURE 9. Raw Electromyography (EMG) sensor signal, filtered signal and
event onsets.

becomes restricted in favour of increased blood sup-
ply to the vital organs, decreasing the temperature of
the extremities [8], [19]. The literature describes the
use of temperature, however, in theory, it should take
several minutes for a change in the body temperature
to be noticeable, displaying overall small amplitude
variations.

(f) Electromyography (EMG): measures the skeletal
muscle electric activity with a skin surface electrode
or with a needle electrode. Upon a muscle contraction,
there is an amplitude rise in the EMG signal from an
electrical potential difference that appears between the
interior and the exterior of the muscle cell. The differ-
ence is short-lasted and is denoted as an action poten-
tial. The EMG signal presents amplitudes between
50uV-30mV and bandwidth between 2-500Hz. The
surface EMG sensors placement can be directed for
emotion recognition of both facial or body expressions
in order to capture the subject facial expression or
stress. Common placements are the on trapezoid and
the Zygomaticus major to modulate head movements
and tension; laugh or a smile, respectively. Fig. 9 dis-
plays a raw and filtered EMG signal.

(g) Electroencephalography (EEG): is a measurement
of the electrical field from currents that flow during
neurons synaptic excitation in the cerebral cortex when
these are activated. All of the aforementioned sensors
record changes in the physiology of various organs
as a result of ANS adaptations; in contrast, the EEG
records the aggregate potential differences from active
neurons, thus, capturing an electrical perspective on the
local source of the ANS activity from the CNS. The
EEG signal presents amplitudes between 2-100uV on
the scalp and a dynamic range between 0.5-60Hz. The
brain is the main control unit for all the functions of
the organism, including the control of the body move-
ment, sensory processing, language and communica-
tion, memory and emotions. Therefore, EEG can be
used to correlate emotion generation and brain regions.
Fig. 10 displays a raw and filtered EEG signal.
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FIGURE 10. Raw Electroencephalography (EEG) sensor signal and filtered
signal.

(h) Eye Gaze: Measured through Electrooculography
(EOG), Infrared Reflection Oculography IROG) or
photoelectric techniques; the EOGmeasures the resting
potential of the eye and its variations derived from hor-
izontal and vertical eye movements. The EOG works
based on the fact that the eye act as an electrical dipole
between the positive potential of the cornea and the
negative potential of the retina, maintained by means
of active ion transport. Therefore, an electrode placed
in the vicinity of the eye will become more positive
when the eye rotates towards it, and less positive when
it rotates in the opposite direction [27]. Other com-
mon techniques are the Infrared Reflection Oculog-
raphy IROG) and the photoelectric techniques, which
rely on the fact that the white sclera reflects more
light than the pupil and the iris. Hence, when the eye
moves to one side, less infrared light is reflected to the
detector on one side of the eye and vice-versa. These
approaches are based on videooculography and Purk-
inje eye-trackers, which uses head-mounted minia-
turised video cameras to track the image of the pupil or
of the light reflexes [27]. The amount of light entering
the eyes is regulated by radial and circulatory fibres
innervated by the PNS and SNS systems, respectively,
regulating the dilation and constriction of the muscle
fibres. Thus, by an EOG or using an eye tracker, infor-
mation about the ANS can be deduced. The literature
shows that the pupillary responses, frowns and blinks
have distinct patterns according to different human
emotional states, however, with conflicting results. Per
example, the rate of blinks and saccades is found to
provide information regarding fatigue or anxiety, while
the focus on a point indicates high attention. Fig. 11
displays a raw and filtered EOG signal.

Fig. 12 displays a histogram with the number of sensors
used in each publication surveyed for this document. As it
is possible to observe the GSR, ECG, and Resp sensors are
the three most commonly applied in literature; in contrast
to the EOG, BVP and ACC. The ECG, EDA, EMG, SKT

FIGURE 11. Raw Electrooculography (EOG) sensor signal and filtered
signal.

FIGURE 12. Histogram of the number of publications surveyed for this
document per sensor.

and RESP present the advantage of being easily introduced
in wearable systems with great comfort to the user. Lastly,
inertial sensors such as the Accelerometer (ACC), Gyroscope
(GYR), Barometer (BAR) and Magnetometer (MAG), gen-
erally used for human activity recognition, could be used
to correlate each emotional state with certain activities and
derive contextual information about the daily living, likes-
dislikes, and preferences of the subject.

D. EMOTION ELICITATION MATERIAL
Due to the high subjectivity and variability in emotion elici-
tation, it is important to use a set of pre-validated emotional
stimuli in order to ensure the expression of a wide spectrum
of emotions and of high intensity each. In literature, this is
performed by selecting the elicitation material from different
affective categories presenting the most consensual and reli-
able self-ratings across different subjects.

Within the state-of-the-art, affect elicitation is commonly
performed via pictures [28], films [29], VR videos [30],
games [31]–[36], music videos [21], sound [37], [38], words
[39], recall [40]–[43] or in well controlled settings, although
real-world scenarios have started to be explored [44].
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(a) Images: The International Affective Picture System
(IAPS) [28] by University of Florida Center for the
Study of Emotion and Attention (CSEA), provides a
large set of standardised colour photographs for the
elicitation of attention and a wide range of emotional
experiences rated in terms of pleasure, arousal, and
dominance. Additionally, the Geneva affective picture
database (GAPED) [45] contains 730 pictures with
negative (spiders, snakes, immoral and illegal scenes),
positive (human and animal babies, nature sceneries),
and neutral (objects) content annotated in terms of
valence-arousal and congruence with moral and legal
norms. Thirdly, the Museum of Modern and Con-
temporary Art of Trento and Rovereto (MART), con-
tains 500 images of abstract paintings [46] labelled
according to their positive or negative content. Sim-
ilarly, the deviantArt dataset [46] contains 500 ama-
teur artworks of abstract art labelled according to
the positive or negative emotions evoked by the art-
works. Further image-based datasets are the Flickr
dataset [47], Artistic dataset (ArtPhoto) [48], Abstract
dataset (Abstract) [48], Emotion6 dataset [49], and the
Image-Emotion-Social-Net (IESN) dataset [50]. The
features that can be derived from images in order
to infer its emotional content can be categorised as
low, mid and high-level features. Low-level features
include colour (saturation, brightness, hue, hue, inten-
sity, and colourfulness), value (lightness or darkness),
line (amounts and lengths of static and dynamic lines),
texture (wavelet-based features, Tamura features, grey
level co-occurrence matrix and LBP features), shape
(roundness, angularity, simplicity, and complexity),
and space (distance or area between, around, above,
below or within things). Mid-Level features, in con-
trast to low-level features, are more interpretable by
Humans and include the image materials, surface prop-
erties, functions or affordances, spatial attributes and
the objects present in the image. Lastly, high-level
features are the semantic contents of the image,
such as facial expressions. For further information on
image content analysis, the authors refer the reader
to [48], [51].

(b) Video: In [52], the authors created a validated cata-
logue of film clips stimuli for emotion elicitation cov-
ering 24 articles and 295 film clips from four decades
of research. In addition, the LIRIS-ACCEDE Database
[53] is composed of 9800 video clips (8-12 seconds
long) extracted from 160 movies annotated according
to the valence-arousal scale. The authors in [54] present
70 film excerpts from 1 to 7 minutes long to elicit
emotions. The excerpts were validated according to
24 classification criteria: subjective arousal, positive
and negative affect (derived from the Positive and
Negative Affect Schedule (PANAS)), a positive and
a negative affect scores (derived from the Differen-
tial Emotions Scale (DES)), 6 emotional discreteness

scores (anger, disgust, sadness, fear, amusement and
tenderness), and 15 mixed feelings scores assessing the
effectiveness of each film excerpt to produce blends
of specific emotions. For the benchmark of violence
content, the Violent Scenes Detection (VSD2014) [55]
contains 31 movies and 86 web video clips (6 sec-
onds to 6 minutes long) retrieved from YouTube. The
videos are annotated according to their violent content
and to 10 high-level concepts for the visual and audio
modalities such as the presence of blood, fights, gun-
shots, screams, etc. Further available public databases
containing validated videos are the HUMAIN [29],
DEAP [21], EMDB [56] and MAHNOB-HCI [20],
explained in more detail in the next section. In order
to validate the video content for emotion elicitation,
the authors in [21], developed a method for video affec-
tive content analysis using retrieval by affective tags
from the last.fm website, video highlight detection, and
an online assessment tool to extract videos lying closest
to the extreme corners in the arousal-valence quadrants.
Audio and visual cues are usually tool elements used by
movie directors to elicit certain emotions in the view-
ers. Therefore, in [21], for the detection of 1-minute
video highlight: low-Level video and audio features
were extracted. Regarding the former, some of the
extracted features were colour variance, shadow pro-
portion, visual excitement, greyness and 20-bin colour
histogram of hue and lightness values in theHSV space.
Additionally, fast-moving scenes can be an indicator
for exciting scenes, thus, the average shot change rate
and shot length variance were extracted to characterise
the video rhythm. The literature has shown that certain
speech features such as speech energy, pitch, timing,
voice quality, duration, fundamental frequency, and
format, capture emotional information to discriminate
high and low valence, while loudness (speech energy)
and speech rate, are related to arousal [57]. For discrete
emotions, features like pitch levels can indicate feelings
such as astonishment, boredom, or puzzlement, while
speech volume is generally representative of emotions
such as fear or anger. Thus MFCC, energy, gormants,
time-frequency, pitch, zero-crossing rate and silence
ratio features were extracted. For further information
on video affective content analysis, the authors refer the
reader to [57].

(c) Sound: The International Affective Digitized Sound
system (IADS) [37] contains sets of standardised
acoustic stimuli across a wide range of affective cat-
egories rated in terms of pleasure, arousal, and domi-
nance. In the AuBT dataset [38], the authors used four
music songs targeting the emotion classes: joy, anger,
sadness and pleasure, handpicked by each subject to
induce special memories.

(d) Words/Text: The Affective Norms for English Text
(ANET) [58] and the Affective Norms for English Text
(ANET) [58] dataset contain sets of English words
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and brief texts, respectively, rated in terms of pleasure,
arousal, and dominance.

(e) Recall/Acting: The Interactive emotional dyadic
motion capture database (IEMOCAP) contains data
from ten actors in dyadic sessions with markers on the
face, head, and hands, which provide detailed informa-
tion about their facial expression and hand movements
during scripted and spontaneous spoken communi-
cation scenarios. The data was annotated using the
valence-arousal-dominance scale. The authors in [59],
with the help of pre-selected images, attempted to
feel and express the emotional states of no emotion,
anger, hate, grief, platonic love, romantic love, joy and
reverence.

(f) Video Games: In [60], it is presented a multi-modal
database containing peripheral physiological signals
(ECG, EDA, RESP, EMG, SKT), ACC and facial data
acquired by 50 subjects as they played FIFA 2016 (a
football video-game). The data is self-reported accord-
ing to the arousal-valence scale and categorically rated
according to happiness, frustration, proud, curious,
angry, fear, boredom and sadness. In [36] the authors
acquired HR, BVP and GSR data from 36 subjects
playing aMaze-Ball game to study the emotional states
of fun, challenge, boredom, frustration, excitement,
anxiety and relaxation.

(g) Social-evaluative andCognitive Stressors: Stress can
be defined as a non-specific response of the organism
to any pressure or demand, displaying a physiological,
psychological and behavioural responsewhen demands
exceed the individual’s ability to cope [61]. Accord-
ing to [8], stress-inducing events can be categorised
as social-evaluative, cognitive, or physical. A social-
evaluative standardised stressor protocol is the Trier
Social Stress Test (TSST) [62], where the subjects are
asked to deliver a free speech and perform mental
arithmetic in front of an audience. To induce cogni-
tive load, the Stroop Color and Word Test (SCWT) is
commonly applied [63]. In the SCWT, the subjects are
asked to read three different tables as fast as possible.
In two, the subjects are asked to read the names of
the colours printed in black ink and name the differ-
ent colour patches. On the other hand in the latter
table, colour-words are printed in inconsistent colour
ink, and the subjects are asked to name the colour of
the ink. In [21], cognitive and social-evaluative stres-
sors were applied with the authors simulating a job
interview where each subject was asked to perform a
5-minute speech on their personality traits, and count
from 2023 to 0 doing steps of 17 in front of a three
members panel.

(h) Standardised ANS Clinic Tests: As stated in Sub-
section II-B, the ANS is responsible for many func-
tions to maintain the body homeostasis, thus, several
tests have been developed and standardised in routine
clinical evaluations for the diagnosis of many diseases.

These entitle per example: the Deep breathing test, Iso-
metric handgrip test, Cold pressor test, Active standing
(orthostatic test) and Head-up tilt test [64].

To conclude, the use of images as elicitation material
presents the advantages of being user-friendly, low cost, easy
and fast to execute in a laboratory. However, images might
not be enough to evoke impactful, strong-lasting emotions,
enough to be consciously perceived by the user and physio-
logically observable [65]. On the other hand, music or music-
videos, although simple and low cost, might be constrained
to the evocation of a limited range of positive-negative
emotions, highly correlated with the subjects’ music taste
and the memories it invokes. Thus, films or short-duration
audiovisual video clips are the most applied methodology
in emotion-recognition [65], and have shown to be the most
reliable material for emotion elicitation. Under those circum-
stances, in this paper, we will focus on emotion recognition
usingmovies or films. A new approach for emotion elicitation
that has emerged in the last two decades, is the usage of
Virtual Reality (VR), as in the dataset obtained by [30].
VR allows a deeper immersion by the subject in the activity,
thus, increasing the reliability of the research study.

E. ASSESSMENT METHODS
The annotation of the individuals’ emotions can be accom-
plished resorting to internal or external methodologies.
In internal annotation (self-assessment), the subject directly
assesses its affective state. Although this seems to be a
very easy method to implement and replicate, it is not a
direct task since it is very difficult to infer one’s emotional
state and describe it into words. Additionally, self-assessment
can be felt to the subject as an intrusive process, evoking
a defence-mechanism with the subject filling an unreliable
report of their emotions both unconsciously or consciously
to preserve their privacy. A solution could be the imple-
mentation of data protection measures ensuring the subject’s
privacy and confidentially.

On the other hand, in an external annotation (implicit-
assessment), an external subject assesses the subject affective
state through the analysis of their externally observable
behaviour and physiological responses [66]. An external
annotator can be just as easily deceived, being dependent
on the user ability to externalising its emotional experiences,
which often correlated with the subject personality, environ-
ment and culture. Thus, external annotation is dependent on
multiple factors.

Given these considerations, self-assessment is widely the
most commonly applied methodology in affect recognition
state-of-the-art research, with self-reporting questionnaires
being presented to the user. To visualise the scales of emo-
tion dimensions, Self-Assessment Manikins (SAM) [67] pro-
vides a graphical interface for cross-cultural measurement
of emotional response through manikins along a continuous
nine-point scale. As displayed in Fig. 13, for the pleasure axis,
SAM ranges from a smiling manikin, denoting happiness
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FIGURE 13. Self-Assessment Manikin (SAM) self-report questionnaire for
valence (first row), arousal (second row) and dominance (last row) [67].

to a frowning figure, denoting unhappiness. Likewise, for
the arousal axis, SAM’s manikins range from an SLeepy
figure with eyes closed to an excited figure with eyes open,
denoting low activation and high activation, respectively.
Lastly, the dominance scale shows a manikin ranging from
a very small figure, representing a feeling of being controlled
or submissive, to a very large figure, representing in-control
or a powerful feeling.

A further technique is the Ecological Momentary Assess-
ment or Experience Sampling Method (EMA), where sub-
jects are asked to self-report their thoughts, feelings,
behaviours, and/or environment context questions. The sub-
ject reports can be either scheduled a few hours apart or event-
triggered. For a correct annotation, a trade-off between the
frequency of the questions, the length and complexity of the
questionnaires should be optimised. Additionally, the EMA
should be directed to the study goal and as brief as possible in
order to attain a good interpretation of the subject emotional
state with comfort without interrupting its daily routine.

A few applications have been developed to assist the con-
tinuous annotation of the subjects’ instantaneous mood, such
as in [68]–[70].

Affective experiences and, consequently, the elicited emo-
tional state in an experiment are modulated by both internal
and external factors. The first entitles the individuals’ mood,
personality, age and culture in which it was raised; the lat-
ter if the individual is alone or in a group setting. Hence,
an elicited emotional state might differ from subject to sub-
ject, presenting high subject-dependency, day-dependency
and localisation-dependency. These factors increase the chal-
lenge ofmapping and correlating physiological signals to uni-
versal emotional states in pre-defined emotional classes [65].

To access the subject personality, the Big-Five factormodel
is majorly utilised in literature [66], [71]. The Big-Five model
describes personality in terms of five dimensions: Extraver-
sion (sociable vs reserved), Agreeableness, (compassionate
vs dispassionate and suspicious), Conscientiousness (dutiful

vs easy-going), Emotional stability (nervous vs confident)
and Openness to experience (curious vs cautious). Com-
mon questionnaires measuring these dimensions are the Neu-
roticism, Extraversion and Openness Five Factor Inventory
(NEO-FFI), the Big-Five Marker Scale (BFMS) and the Big
Five Inventory (BFI).

On the other hand, to examine the subject mood, a positive-
negative scale is often inferred from the PANAS [72]. The
PANAS questionnaire consists of two 10-item mood scales,
in which the positive affect axis reflects enthusiasm, acti-
vation and alertness, while the negative affect axis reflects
distress and unpleasant engagement [66].

Regarding stress-detection, current methods consist on the
measurement of cortisol levels, involving an invasive, labo-
rious, not immediate process, or assessment questionnaires,
such as the Perceived Stress Scale (PSS) and the Stress
Response Inventory (SRI). Similarly, for anxiety and depres-
sion, commonly applied questionnaires are the Strait-Trait
Anxiety Inventory (STAI), the Hospital Anxiety and Depres-
sion Scale (HADS) [73] (see Fig. 14) and Patient Health
Questionnaire (Patient Health Questionnaire (PHQ-9)). The
aforementioned tests and further mental-health assessment
questionnaires are presented in Table 1. These rely on biased
responses from the individuals or the recognition and inter-
pretation of visual patterns by an expert. Worldwide, more
than 300 million people suffer from depression, with 20%
of the adult working population suffering from a mental
health problem [74]. Depression is highly correlated with
anxiety and stress, being the leading cause of disability and
greatly affecting the individual wellness and quality of life.
Therefore, effort must be performed in order to detect stress
as early as possible through accessible, objective, impartial,
and prompt methodologies, preventing it to reach its highest
level with serious implications to the individual’s wellness
and quality of life.

F. EMOTION ELICITATION DATASETS
Several datasets relying on movies for emotion recognition
using physiological signals are publicly available. These
allow for the benchmark of emotion recognition algorithms,
facilitating a direct comparison of the results of different
methodologies:

(a) DEAP [21]: contains EEG, GSR, RESP, SKT, EMG,
EOG, BVP data from 32 volunteers watching 40 one-
minute-long music videos. For 22 of the participants,
frontal face video was also recorded. The dataset was
self-annotated after each video in terms of arousal-
valence, like-dislike, familiarity and dominance by the
volunteers.

(b) MAHNOB-HCI [20]: contains facial video record-
ings, audio, eye gaze, ECG, EEG, SKT and GSR data
from 30 volunteers watching 20 film excerpts from
35 to 117 seconds long. The dataset was annotated
according to emotion keywords and arousal-valence-
dominance.
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TABLE 1. State-of-the-art questionnaires grouped by domain, name, brief description, number of questions (#), range and Cronbach’s α reliability (α).
Table adapted from [8].

(c) ASCERTAIN [71]: contains EEG, ECG, GSR and
video facial activity data while 58 volunteers watched
36 movie clips between 51-127s long. Each clip was
self-annotated in the form of arousal-valence, liking,
engagement and familiarity ratings. Additionally, a big-
five marker scale questionnaire was filled by each vol-
unteer allowing to correlate different personality traits
and affective states with physiological responses.

(d) Eight-Emotion [90]: contains BVP, EMG, EDA data
of one subject eliciting eight states: neutral, anger, hate,
grief, love, romantic love, joy, and reverence.

(e) EMDB [56]: contains Skin Conductance Level (SCL)
and HR data collected from 32 volunteers watching
52 pre-selected and edited film clips without auditory
content. Each film was validated and rated across dif-
ferent quadrants of affective space by 113 participants.

(f) AMIGOS [66]: contains full-body and depth videos,
EEG, ECG and GSR data from 40 volunteers watch-
ing 16 short videos; and 37 volunteers watching
4 long-videos. The dataset was both annotated by
self-assessment of affective levels (valence-arousal,

control, familiarity, like-dislike, and selection of basic
emotions) and external assessment of participants’
levels of valence. Additionally, for the study of the
participants’ emotions correlation with their person-
ality and mood, the participants were asked to fill
forms with Personality Traits and PANAS question-
naires. The dataset was created to study the users’
affect, personality traits and mood on an individ-
ual and group settings elicited by short and long
videos.

(g) DECAF [91]: contains near-infra-red (NIR) facial
videos, horizontal EOG (hEOG), ECG, and trapezius-
EMG (tEMG) peripheral physiological responses and
Magnetoencephalogram (MEG) sensor data of the
emotional responses of 30 participants to 40 one-
minute music video segments, and 36 movie clip.
The dataset contains the users’ self-assessment of
valence-arousal-dominance, and time-continuous emo-
tion annotations for movie clips from seven users,
which were used to demonstrate dynamic emotion
prediction.
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FIGURE 14. Hospital Anxiety and Depression Scale (HADS) self-report
questionnaire [73].

(h) Detecting Stress During Real-World Driving Tasks
(DSDRWDT) [92]: contains ECG, EMG (right trapez-
ius), GSR measured on the hand and foot, and RESP
data measured of 24 volunteers in rest position and
driving in city streets and highways. Self-report ques-
tionnaires were used to map the subject experiment into
low, medium, and high-stress levels.

(i) Real World Driving to Assess Driver Workload
(RWDADW) [93]: contains SKT, GSR and HR data
measured from 10 volunteers driving different road
types and obstacles in a real-world scenario. The driv-
ing test took around 20 minutes and posteriorly the
driver workload was annotated using post-hoc video
analysis.

(j) WESAD [94]: contains BVP, ECG, EDA, EMG, RESP,
SKT and ACC data recorded from both a wrist and
a chest-worn device from 15 subjects during a lab
study experience of emotional and stress stimuli. The
dataset contains three affective states (neutral, stress,
amusement) self-reported using state-of-the-art ques-
tionnaires: SAM, PANAS, Short Stress Scale Question-
naire (SSSQ), a shorter version of SSQ, and STAI.

The aforementioned information regarding the surveyed
public datasets for emotion and stress recognition based on
physiological signals is summarised in Table 2. The literature
review allowed to verify that most datasets are obtained in

a laboratory setting, with the few real-world scenarios [59],
taking place in a specific constrained scenario such as driv-
ing [92], [93]. The selection of in laboratory studies versus
in-real-world requires a trade-off between external validity
in the natural environment versus higher certainty in the
self-reported validation of the user emotion.

Regarding an in-laboratory setting, a few environment
parameters should be controlled namely: (1) The subject
should be kept isolated from the outside environment in order
not to be able to see the examiners or be disturbed from
the outside for an immersing experience eliciting a deep
response; (2) The room illumination and temperature should
be controlled to avoid the depolarisation of a non-emotional
ANS response adding bias to the physiological signals; (3) As
it was aforementioned, videos have been the preferred mate-
rial for emotion elicitation due to their good results; however,
a few parameters should be paid attention to, namely, their
duration. The videos should be short enough to facilitate their
annotation and prevent boredom and mixed emotions, but
long enough to elicit the desired emotion. Thus, the literature
recommends video lengths of 1-10 minutes for the elicitation
of a single emotion [65]. In [21], the authors recommend
the use of videos validated to induce single, primary emo-
tions; (4) To avoid bias in the recognition of the different
emotions, an equal duration of emotional eliciting videos and
in-between non-stimuli phases is preferred; (5) The imple-
mentation of rewards has shown to be a good practice, leading
to the participants motivation for a detailed description of
their emotional experiences and lasting enrolment; (6) Most
datasets rely on ECG and GSR data, sensors correlated to the
discrimination of high arousal states, so further modalities
should be tested for valence discrimination.

Lastly, it would also be very beneficial to have a publicly
available collection of signals acquired from the same users at
various interdependent sessions separated by significant large
time intervals over time, thus, allowing a contextual longi-
tudinal analysis of the user emotional experiences. In addi-
tion, a research line to explore concerns the exploration of
large-scale groups (in large audiences [95], [96]) versus indi-
vidual experiences, since individuals tend to respond differ-
ently if they are alone or in groups.

III. METHODS
This section describes the overall main steps required in
the development of an ML system for emotion recognition,
summarised in the diagram in Fig. 15.

A. SIGNAL PRE-PROCESSING
During the data acquisition protocol, many events may occur
causing the degradation of the sensor signal with noise and
external interference, namely, subject movement, electrodes
disconnection, unstable ambient temperature and humidity,
subject-dependent physiological dysfunctions, electrostatic
artefacts and other non-related user movements. Therefore,
signal pre-processing methodologies should be implemented
on the raw signal and it is usually the first step in the
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TABLE 2. Summary of the publicly available datasets for emotion and stress recognition specificities, namely, domain (Dom), number of subjects (#S),
number of stimuli (#Stimuli), location (Loc): lab(L); constrained (C); daily-living (F), purpose, annotations and acquired modalities. Table adapted from [8].

FIGURE 15. Schematic representation of a machine learning process for emotion recognition.

elaboration of an ML system. It consists of: synchronisation
of the different sensor’s signals; removal of data-loss and
null values; (generally, through linear interpolation); filtering,

noise, and outlier removal. The type of filter and its charac-
teristics depends on the type of sensor and the study goal,
as described next:
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(a) Electrocardiography (ECG): ECG data is commonly
contaminated with powerline interference (50-60 Hz),
electrode contact noise, motion artefacts, muscle con-
traction, baseline drift, instrumentation noise generated
by electronic devices and electrosurgical noise [97].
According to [98], the desirable bandpass to maximise
the QRS energy is approximately 5-15Hz. In [99], a 3rd

order Butterworth filter with 0.002 Hz and 100 Hz
cut-off frequencies was applied to remove the effects
of noise and baseline wander from the ECG data.
In the works of [20], [21], the trend of the ECG and
GSR signals was removed by subtracting the tempo-
ral low-frequency drift. The low-frequency drift was
computed for each sensor by smoothing the signals
with a 256 points moving average filter. In [100],
a 300 order bandpass Finite Impulse Response (FIR)
filter with a Hamming window, and cut-off frequencies
of 5Hz and 20Hz is developed. In [101], a 4th order
bandpass Infinite Impulse Response (IIR) Butterworth
filter between the frequencies of 2Hz and 30Hz. This
filter removes EMG activity noise and 50Hz noise that
could be induced by some badly filtered power supply.
The pre-processing step aims to clean the signal to
enhance its main characteristics, such as the R peaks
and QRS complex, from which features, such as HR
can be extracted. The easiest event to detect on an ECG
signal is the R wave component since it presents the
higher amplitude component. To detect the R-peaks
many algorithms can be applied, namely: Pan and
Tompkin’s algorithm [98], Hamilton’s [102], Christov
[103], Engelse and Zeelenberg [104], ECG Slope Sum
Function [105]. A detailed overview comparing the
aforementionedmethods can be found in [100]. In [19],
a Teager Energy Operator (TEO) was used to detect the
R-peak in the raw ECG signal. Posteriorly, if the base-
line drift was prohibitively high, a median filter was
used to estimate the baseline wander (low-frequency
flotation) to generate a baseline-removed signal. After
the R-peaks had been detected, the spikes train could
be transformed into a continuous-time signal called
HRV by interpolation and downsampling from which
frequency domain features were extracted.

(b) Electrodermal Activity (EDA)/ Galvanic Skin
Response (GSR): The GSR ANS signal data presents
low-frequency physiological patterns, thus, a low-
pass filter is often applied to remove high-frequency
noise. After noise removal, the filtered GSR signal can
be de-trended by smoothing the signal over a given
interval [8]. A further pre-processing technique is the
separation of the SCL and SCR components. In [19],
the SCL and SCR were separated by downsampling
the signal to 20 samples/s, differentiation and subse-
quent convolution with a 20-point Bartlett window. The
occurrence of the SCR was detected by finding two
consecutive zero-crossings, from negative to positive
and positive to negative. The amplitude of the SCRwas

obtained by finding the maximum value between these
two zero-crossings. The detected SCRs with amplitude
smaller than 10% of the maximum were excluded.
Further techniques can be found in [2], [106].

(c) Photoplethysmography (PPG) or Blood Volume
Pulse (BVP): is usually prone to low-frequency motion
artefacts caused by poor contact with the fingertip
photosensor, variations in temperature and bias in
the instrumentation amplifiers causing baseline drift.
Therefore, motion artefacts can be removed using a
high-pass filter [8], [22]. Additionally, high-frequency
powerline interference artefacts caused bymains power
sources interference can be induced onto the PPG
recording probe or cable and removed using a low-pass
filter. In [107], a 4nd order Butterworth bandpass filter
with 1-8Hz cut-off frequencies is used. After cleaning
the signal from noise to enhance its characteristics,
its maximum peaks are identified, corresponding to
the heartbeats, used to extract relevant features [22].
In [23], the derivative is computed and a threshold
is applied to determine the signal maximum peaks.
Zong et al. [105] developed an algorithm using a win-
dowed and weighted slope sum function to extract arte-
rial blood pressure waveform features. Then, adaptive
thresholding and search strategies are applied to the
weighted slope sum function of the signal to detect
arterial blood pressure pulses and to determine their
onsets.

(d) Respiration (RESP): Low-pass noise removal filters
are often applied. Additionally, if necessary the fil-
tered signal can be de-trended by smoothing the sig-
nal. According to [108], The dominant frequency of
the respiratory component is about 0.25Hz. In [109],
a 30 order FIR filter with frequency cut off 0.15 Hz
was applied. In [18] it is used a 4th order Butterworth
bandpass filter with a pass-band from 0.1-0.35Hz [94].
Similarly, as the previous signals, the RESP signal
can be de-trended using a moving average. From the
filtered signal, the respiration rate can be computed
from the zeros of the signal first derivative [18].

(e) Electromyography (EMG): The EMG signal ampli-
tude varies from a couple of mV up to tenths of mV
and its spectrum contains frequencies in the 10-500Hz
range. Thus, a high-pass filter with cutoff frequency
superior to 100Hz can be applied to remove noise and
heart-related information. The EMG data noise, on the
whole, consists of: inherent electronics equipment
noise (low-frequency noise), ambient noise (power
line interference), motion artefacts (1-10Hz), inherent
instability of signal (for signals with frequency compo-
nents ranging between 0-20 Hz), ECG artefacts, cross
talk, electrode-electrolyte-skin contact and baseline
shifts. In [94], the signal DC component was removed
by applying a high-pass filter. The filtered signal was
segmented into 5 seconds, windows from which sta-
tistical and frequency-domain features were extracted.
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Additionally, a low-pass filter with a cut-off frequency
of 50 Hzwas applied to the raw EMG signal. The signal
was segmented into 60 seconds-long windows, from
which temporal features were extracted.

(f) Skin Temperature (Temp) or (SKT): In SKT data,
low-pass filters are generally applied in order to
remove high-frequency noise. In [110], the signal was
down-sampled at 50Hz and then passed through a
low-pass filter to remove noise. In [94], the raw SKT
signal was used to extract the signal features. Likewise
in [19], with the signal being posteriorly segmented
in 50 seconds-long windows.

(g) Electroencephalography (EEG): In EEG data
common noise sources consist of poor contact of the
electrodes, perspiration of the patient (affecting the
electrode impedance with low-frequency artefacts),
baseline drift caused by variations in temperature and
bias in the instrumentation and amplifiers, power-
line noise from wires, fluorescents light and other
equipment. Many methodologies can be applied to
remove noise in EEG data and the signal-to-noise ratio,
namely Adaptive Filters, LMSAlgorithm or NLMSAl-
gorithm [111]. In [66], the EEG data was acquired
using a sampling frequency of 128Hz. The signals were
average-referenced and high-pass filtered with a 2Hz
cut-off frequency. The eye artefacts were removed with
a blind source separation technique. In [21], the EEG
data was downsampled to 256Hz, and then a high-pass
filter with a 2Hz cut-off frequency was applied.

(h) Eye Gase: The EOG signal information is mainly con-
tained in the low frequencies, degraded with the subject
movement and the equipment high-frequency noise.
In [112], the EOG signals were filtered in the band of
interest using a notch filter at 50Hz, and a 4th order
Butterworth bandpass filter with cut-off frequencies
of 0.2Hz and 30Hz.

Additionally, as previously stated in Sub-section II-C, iner-
tial sensors such as ACC and GYR, ambient sensors such as
BAR and MAG, usually applied in human activity recogni-
tion, can provide a deeper insight into the user context and
daily-living. These are usually at disposal in wearable fitness
bracelets and watches and can enable a deeper insight into the
subject goals, behaviour, cognition and emotions according
to their response to a certain activity. Daily-living activates
are generally below 20Hz, therefore, a low-pass filter with
15-20Hz cutoff frequency is often applied to inertial sensors.
In the ACC sensor, the gravitational and body component
can be separated using a high-pass filter with around 0.3Hz
cutoff frequency. After the signal is filtered, it is segmented
in static or sliding windows. The time between a stimulus
and its physiological response depends on the subject and the
signal modality and requires a trade-off between the window
resolution and the algorithm time and computational com-
plexity. Thus, the definition of the size of the windows is a
difficult task [8]. According to [113], emotional physiological
responses are generally averaged over 60- or 30-s intervals,

1/2- or 10- seconds intervals and 120-, 180-, or 300- seconds
intervals. In [94], segmentation of the sensor signals was
done for all signals but statistical and feature domain EMG
features, using a 60s sliding window with a 0.25 seconds
shift. The ACC features were computed with a window size
of 5 seconds. The aforementioned, statistical and feature
domain EMG features, were computed using a 5 seconds
window. In [19] 50s windows were used.

In a subject-independent algorithm andML distance-based
algorithms, in order to diminish the individual physiological
responses differences among the training subjects signals,
the data should be normalised [114]. Data normalisation is
usually performed with respect to the maximum and mini-
mum values of the respective participant data or through the
subtraction of the mean and division by its standard deviation
(STD) [110].

B. DATA REPRESENTATION
The recognition of emotional states can be performed based
on two different methodologies: (1) Feature-class repre-
sentation feature-dependent ML techniques; (2) Feature-
independent ML methodologies such as deep learning (DL)
approaches. Sub-section III-B.1 focus on the former, being
divided in Feature Extraction, Feature Selection and Feature
Fusion. On the other hand, Sub-section III-B.2 focus on
Feature-independent ML models.

1) FEATURE-CLASS REPRESENTATION
In general, when designing a traditional ML system, after the
signal is pre-processed, a feature engineering step is imple-
mented, in an attempt to maximize the informative content of
the subject physiological signals. After feature engineering,
the returned input is ready to be introduced into a classifier
from which an output identifying the subject emotion class
label is returned.

a: FEATURE EXTRACTION
Once the raw signal is cleaned and segmented in windows,
metrics describing the physiological signals can be extracted.
These metrics denoted as features, characterise the signal in
a compact manner and allow the comparison between differ-
ent signals in transformed dimensions enhancing informative
signals characteristics. The characteristics can belong to tem-
poral, statistical or spectral-domain, be linear or non-linear
features, and unimodal or multimodal features [8]. Table 3
presents some of the most commonly extracted features from
time-series grouped by their domain.

Most papers focus on the use of temporal, statistical and
spectral domain characteristics. However, physiological sig-
nals present non-linear characteristics, hence, at present,
the focus is on developing and extracting non-linear features.
A deeper insight into non-linear features can be found in
[115]–[118]. In the work of [116], a method using a recursive
graph and recursive quantitative analysis is used to extract
non-linear features from the EMG, SKT and RESP. In the
work, the extracted features achieved a superior classification
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TABLE 3. Overview of features commonly extracted from time-series signals grouped by their domain.

in comparison to traditional temporal and statistical features.
In [117], both traditional time and frequency domain The
HRV analysis together with nonlinear/complexity analysis
features from ECG data were combined to recognise states of
panic and pre-panic. The research concluded that the models
that combined domains via data fusion achieved the greatest
accuracy. Additionally, modality-dependent features can be
extracted, as displayed in Table 4, where modality-based
features are presented and grouped by their domain.

From the ECG data, as described in Sub-section III-A,
the R-peaks are generally identified, from which inter-beat
intervals, HR and HRV can be computed. The HRV describes
the temporal variation between consecutive heartbeats. The
HRV is modulated by the two branches of the ANS: PNS and
SNS in a cooperation known as sympathovagal balance. Thus,
HRV allows a deeper insight into the ANS system correlation
with emotional changes. In [21], it was observed that pleas-
antness of stimuli can increase peak HR response, with HRV
decreasing with fear, sadness, and happiness. Additionally,
spectral features derived from HRV were shown to be a
useful feature in emotion assessment [21]. From the R-peaks,
a new time-series signal can be interpolated, from which
various temporal, statistical and spectral HRV features can be
derived [8]. The NN20/50 and pNN20/50 metrics denote the
number and percentage of successive RR intervals differing
by more than 20ms and 50ms, respectively. The spectral
HRV features are computed from the Fourier transform of
the interpolated R-peaks signal, reflecting the SNS and PNS
responses of the ANS. The frequency-domain signal can be
decomposed in four different frequency bands: the ultra-low
frequency (ULF) (0 to 0.003Hz), very-low frequency (VLF)
(0.003 to 0.03Hz), low-frequency (LF) (0.03 and 0.15Hz) and
high-frequency (HF) (0.15 to 0.4Hz) bands. The LF band is
primarily correlatedwith the SNSwithmoderate PNS activity
influence. The HF band, on the other hand, is correlated
with the PNS. Thus, the LF/HF ratio is usually computed to
gather SNS to PNS influence on the cardiac activity [8]. From
the ECG histogram, additional geometric metrics can be
extracted, namely, the triangular interpolation index (TINN)

providing the baseline width of the RR interval histogram,
HRV triangular index, consisting of the integral of the RR
interval histogram divided by the height of the histogram, log
and differential index, the difference between the widths of
the histogram of differences between adjacent [115]–[118].

Regarding the EDA signal, temporal, statistical and spec-
tral features are generally extracted with the mean value of
the GSR signal being correlated to the level of arousal [119].
In [21], the following features were extracted from EDA
data: average skin resistance, average of derivative, average
of derivative for negative values only, proportion of neg-
ative samples in the derivative vs all samples, number of
local minimum average rising time, ten spectral power in the
[0− 2.4]Hz bands, zero-crossing rate of skin conductance
slow response (SCSR) [0− 0.2]Hz, zero-crossing rate of the
skin conductance very slow response (SCVSR) [0−0.08]Hz,
SCSR and SCVSR mean of peaks magnitude. As described
in Sub-section II-C, the EDA signal can be decomposed in
two components: SCL and SCR. The SCL is the baseline
tonic component, whose degree of linearity has been proved
to be a useful feature for emotion recognition [8], [106].
On the other hand, the SCR consists of the ANS response to a
stimulus. From the SCR further temporal, statistical, spectral
and morphologic modality-based features can be extracted,
namely, frequency-phasic response rate, amplitude (onset-
peak amplitude difference), latency between stimulus and
onset, rise time (onset-peak time difference), half-rise time
(time between onset and 50% amplitude), 50/63% recovery
time (time between peak and 50/63% amplitude), respec-
tively, number of SCR events, sum of SCR startle magnitudes
and response duration, SCR/SCL ratio, std of SCR/SCL ratio
[92], [94], area under the identified SCR events. Additionally,
in [21], 10 spectral power values in the 0− 2.4Hz frequency
bands features were extracted from the EDA signal.

For the respiration data, the authors in [94], [120] extracted
the signal breathing rate, inhalation (I) and exhalation
(E) duration, the ratio between I/E, stretch (the difference
between the peak and the minimum amplitude of a respi-
ration cycle), and the volume of air inhaled/exhaled. These
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TABLE 4. Overview of modality-based features commonly extracted from physiological signals grouped by their domain and modality [8].

metrics allowed to reach a deeper insight into the sub-
ject breathing cycles [8]. In addition, the authors in [92]
calculated four spectral power features by summing the
energy in the sub-bands (0-0.1Hz, 0.1-0.2Hz, 0.2-0.3Hz and
0.3-0.4Hz). Lastly, the respiratory sinus arrhythmia (RSA)
can be extracted. In [21], the authors extracted the following
features: band energy ratio (logarithm of the energy between
the lower (0.05-0.25)Hz and the higher bands (0.25-5)Hz,
average resp signal, mean of derivative, STD, range or great-
est breath, breathing rhythm (spectral centroid), breathing
rate, 10 spectral power in the bands from 0 to 2.4Hz, average
peak-to-peak time, and median peak-to-peak time. Similar
features were extracted in [20].

For the EMG signal, traditional temporal and statistical
features are often extracted. In [94], mean and STD of the
EMG signal dynamic range, absolute integral, median of
the EMG signal 10th and 90th percentile mean, median and
peak frequency, energy in seven bands, number of peaks,
mean and STD of the peak amplitudes and normalised sum
of peak amplitudes were computed. The spectral energy
was computed in seven evenly spaced frequency bands from
0 to 350Hz. Most of the power in the spectrum of an

EMG during muscle contraction is in the frequency range
between 4 and 40Hz. Thus, in [21] the muscle spectral
activity was obtained from the energy of EMG signals
in this frequency range, along with the signal mean and
variance.

The SKT is a low-frequency slowly varying signal, hence,
traditional temporal and statistical features can be extracted
providing useful information [65]. In [94], mean, STD of
the SKT minimum and maximum dynamic range and slope.
Similarly, in [20], the average, average of its derivative and
spectral power in the bands [0-0.1]Hz and [0.1-0.2]Hz.

From the EOG sensor, the authors in [20], [21] extracted
the eye-blinking rate, energy, mean and variance of the signal.
For further eye gaze data, we refer the reader to [20], where
features based on the pupil diameter, gaze distance, eye link-
ing, and gaze coordinates were extracted.

Regarding EEG data, in [21], power spectral features were
extracted, namely, the logarithms of the spectral power from
theta (4-8Hz), slow alpha (8-10Hz), alpha (8-12Hz), beta
(12-30Hz), and gamma (30+Hz) bands, and additionally,
the difference between the spectral power of all the symmet-
rical pairs of electrodes on the right and left hemisphere in
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order to measure the asymmetry in the brain activities due to
emotional stimuli.

b: FEATURE SELECTION AND DIMENSIONALITY REDUCTION
After feature extraction, ideally, the resulting feature vector
expresses the data quality and will modulate the classification
performance. If the emotions were not induced, the degree
of emotion elicitation is distinct between different subjects,
the data presents high sensor noise or motion artefacts, and/or
the data contains outliers [110], resulting in a poor classifica-
tion performance.

The recognition of human emotions is usually a
multi-modal problem, thus, prone to the curse of dimension-
ality, since the feature vector will have a high dimension
due to the high number of features. In order to solve this
issue, feature selection techniques are generally applied to
decrease the data dimensionality. These can be divided into
wrapper, filter and embedded methods. Filter methods select
variables independently of the model and choose subsets of
variables to detect independence among all the features. Thus,
in filter methods, first the features are ranked according to
a criterion and then the features with highest rankings are
selected for the nextML step. Common criteria for the feature
selection in emotion recognition are the Fisher Score [121]
methods based on mutual information [122] and ReliefF
[123], [124]. Per example, in [121], an algorithm using Fisher
Score was used to select optimal features for Thai Speech
Emotion Recognition. The algorithm was able to reduce the
use of 14 to 7 features with a high reduction of computing
time.

However, filter methods ignore the effects of the selected
features subset on the performance of the ML classifi-
cation algorithm. Wrappers methods solve this issue by
using a classifier to evaluate the quality of the differ-
ent features and the resulting different features subsets.
Example of wrapper methods are forward selection and back-
ward elimination. In [125], a recursive feature elimination
and margin-maximising feature elimination feature selection
methods were performed. In [126], the interactive Feature
Selection method based on reinforcement learning was devel-
oped and compared against random selection and Sequen-
tial Forward Selection (SFS) and Genetic Algorithm Fea-
ture Selection (GAFS), showing an SLight increment in the
performance.

To implement a wrapper method it is necessary to perform
an exhaustive search over all features, which can result in
high computational complexity and become impractical for
a reliable real-life solution. Embedded methods solve this
issue, being more computationally efficient through the com-
bination of both aforementioned techniques. In Embedded
methods, first, it is implemented the filter method, decreasing
the size of the search space and then the wrapper method is
implemented on a lower dimensionality space in comparison
to its raw form. For further information on feature selection,
we refer the reader to [127].

The aforementioned methods are highly time consuming
and prone to overfitting, thus, many authors prefer to use
dimensionality reduction transformations such as Principal
Component Analysis (PCA) [128] (projects the data into a
reduced dimensionality space preserving the large variability
of the data) or Fisher Linear Discriminant [38], [66], [71],
[92] (projects the data into higher variance between different
classes and smallest within each class). For further informa-
tion on dimension reduction algorithms, the authors refer the
reader to [129]. In [128], the introduction of PCA to an SVM
classifier as a pre-processing step enabled to increase the
emotion recognition performance by 3.1%.

c: FEATURE FUSION
The literature has shown that the classification performance
improves with the simultaneous exploitation of different sig-
nal modalities [21], [130]. Modality fusion can be performed
at two main levels: feature fusion [23], [131], [132] and clas-
sifier fusion [21], [71], [130], [133]. In the former, features
are extracted from each modality and latter concatenated
to form a single feature vector space, to be used as input
for the ML model. On the other hand, in decision fusion,
from each modality, a feature vector is extracted to form a
classifier prediction. Hence, with n modalities, n classifiers
will be created and n predictions obtained and combined
to yield a final result. Additionally, feature fusion requires
normalisation of features; on the other hand, the merging of
classifiers can be done with parallel processing architectures,
reducing the computation time.

In [71], decision fusion was implemented estimating a
per-sample weighting α for the different modalities where
the final decision is a weighted sum of the outputs from
the classification of the individual modalities. In [131],
a feature fusion approach is proposed and compared with
decision-level fusion and non-fusion approaches used as
input to hidden Markov models (HMM) for predicting emo-
tions using the DEAP dataset. The developed fusion approach
showed significant improvements in the model’s accuracy.
The authors in [134], combined both methodologies, using
first feature fusion to independently combine the features, and
then decision fusion to combine the results of each classifier
for a final recognition classification.

Thereupon, while feature fusion is simpler and has lower
computational complexity to compute, it is unable to deal
with poor data and requires for the different modalities to
be synchronous, which decision fusion does not. A further
difference is that decision fusion allows the use of weights
to adjust the contribution of each modality to the final pre-
diction output [21], while feature fusion is constrained to an
use-ignore method.

2) DEEP LEARNING IN EMOTION RECOGNITION
On a second methodology, instead of representing an object
by a feature-based representation, the input for the MLmodel
can be a distance matrix or a cleaner/raw version of the
physiological signal.
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On the latter methodology, a common approach is to use an
autoencoder as a signal pre-processing methodology before it
is provided to a model classifier. An autoencoder is an unsu-
pervised learning (UL) approach trained by back-propagation
with an input layer, hidden layers and an output layer. The
input layer is equal to the output layer and the hidden layer
usually has smaller dimensionality than the input layer. The
hidden layer minimises the reconstruction error between
the data input and the data output reconstruction. Thus,
an autoencoder forces a data dimensionality reduction and
enhances the most salient characteristics of the input data.
Many different variants of the general autoencoder architec-
ture exist with the overall objective of obtaining cleaned,
meaningful, information of the input data. The authors
of [35] assessed the emotional manifestations of relaxation,
anxiety, excitement, and fun, embedded in GSR and BVP
data to compare a Convolutional Neural Network (CNN)
approach against ad-hoc feature extraction methodologies.
An autoencoder is used to denoise the signal and lower its
dimensionality. The experimental results showed that the
model outperforms the standard feature extraction across all
affective states examined.

In [60], an effective pre-processing method is proposed as
an alternative to traditional feature extraction methodologies.
In the proposed method, a hybrid neural network combines a
CNN and a Recurrent neural network (RNN) to discriminate
emotion states by learning a compositional spatial-temporal
representation of raw EEG data. The experimental results
show that the proposed pre-processing method increases the
emotion recognition accuracy by approximately 32%, attain-
ing a mean accuracy of 90.80% and 91.03% on valence and
arousal classification, respectively.

The autoencoders can be used having as input the physio-
logical signal or a set of extracted features as in [135], [136].
For example, in [135], the authors applied a Bi-modal Deep
AutoEncoder to extract shared representations of EEG and
eye movement data. The proposed model was able to reach
a mean accuracy of 91.01% and 83.25% on the SEED and
DEAP datasets, respectively.

An autoencoder can be an alternative to PCA and the
aforementioned data reduction methodologies, presenting the
advantage of being able to learn non-linear complex data
representations.

C. CLASSIFICATION
Traditional model-based ML methodologies are divided in
supervised, unsupervised and semi-supervised methodolo-
gies. In supervised learning (SL), a model is created from
a training set mapping the physiological signal features to
its labels. Examples of SL algorithms are Naive-Bayes (NB)
[137], k-Nearest Neighbour (K-NN) [137], [138], Support
Vector Machine (SVM) [137], [139], Linear Discriminant
Analysis (LDA) [138], Quadratic Discriminant Analysis
(QDA) [138] and many more. The SVM classifier is the
most commonly applied in the literature (see Fig. 16). For
example, in [139], an SVM method on ECG and RESP

FIGURE 16. Histogram of the number of publications surveyed for this
document per classifier.

data was applied to recognise joy, sadness, anger, and plea-
sure, achieving a recognition accuracy of 81.82%, 63.64%,
54.55%, and 30.00%, respectively. In [137], the recognition
performance of a Random Tree (RT), Decision Tree (DT)
J48, NB, K-NN, SVM, and Multilayer Perceptron Neural
Networks (MPNN) classifier using HR, GSR and SKT data
was tested. TheK-NN classifier attained the best performance
with an average accuracy of all the personalised models of
97.78%.

In [138] a K-NN, LDA, QDA, and Radial Basis Function
Network (RBFN) classifier was implemented on respira-
tory and facial muscle activity data for the assessment of
the fearful, sad and neutral emotion states. The experi-
mental results showed that the K-NN model was the best
for both subject and stimulus-dependent, and subject and
stimulus-independent classification; while the RBFN model
was the best for subject-independent classification, and the
LDAmodel for stimulus-independent classification. In [117],
Passive Aggressive (pA), Gradient Boosting (GB), DT,
Ridge, SVM, Random Forest (RF), K-NN, Logistic Regres-
sion (LR) classifiers were analysed for ECG data for panic
and no-panic assessment. The RF classifier achieved an accu-
racy of 97.2% and 90.7% for panic and pre-panic recogni-
tion, respectively. For further information on SL algorithms,
the authors refer the reader to [140].

On the other hand, in UL, only the signal features are
provided and a model is created from the unlabelled data
structure. Usually, the data’s structure is found in the form
of clusters maximising intra-class similarity and minimis-
ing inter-class similarity. Example of UL algorithms are the
k-means, affinity propagation, spectral clustering, hierarchi-
cal clustering, density-based spatial clustering of applications
with noise (DBSCAN), Gaussian mixture models (GMM)
and many more.

For example, in [141], the authors used a GMM-based
model to classify the EDA data into arousal-not arousal,
presenting an accuracy of 74.3%. In [142], EDA, HR and
SPO2 data was used to create an unsupervised GMM model
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able to accurately separate relaxation, physical, emotional
and cognitive stress status with an accuracy greater than 84%.
For further information on UL algorithms, the authors refer
the reader to [143].

Lastly, Semi-Supervised Learning (SSL) is a hybrid form
between both aforementioned methodologies, creating an SL
classifier on labelled data and posteriorly incorporating fur-
ther information from the unlabelled data. Examples of SSL
algorithms are Self-Training (ST) and Active Learning (AL).
In [144], an SSL on EEG data for affective state recognition
using DL. The experimental results show that the proposed
model surpasses extensive baselines in classification and the
proposed reinforced process outpaces random annotation. For
further information on SSL algorithms, the authors refer the
reader to [145].

Additionally, many works have applied DL feature-
independent methodologies such as CNN [35], [146]–[149],
RBM [135], [150], [151], autoencoder [35], [135], [152],
[153], and deep belief networks (DBNs) [151], [154], [155],
Long short-term memory (LSTM) [136], [156]–[158], prob-
abilistic neural network (PNN) [124] and many others.
In [151], a DBN was applied for emotion recognition using
EEG, GSR, EMG and EOG data achieving an accuracy
of 78.28%, 70.33%, 70.16% for valence, arousal and dom-
inance, respectively. In the presented methodology, fea-
tures are extracted using a DBN and are used as input
to a Restricted Boltzmann Machine (RBM). The presented
methodology is an SSL approach, thus, able to reduce sig-
nificantly the amount of labelled data required for learning
the model and uses a DBN instead of feature engineering
techniques. In [146], a CNN is used to extract features from
ECG and GSR data, then, through fully connected network
layers, the emotional assessment on arousal and valence is
obtained. The CNN in comparison with the classic algo-
rithms of ML demonstrated a better performance in the
emotion detection and a large number of instances showed
to directly influence the emotion prediction performance.
For further information on DL, the authors refer the reader
to [159], [160].

To conclude, the high accuracy results support the hypoth-
esis of the correlation between emotional states and phys-
iological data. The SL methodologies although achieving
great results, present the disadvantage of requiring a high
amount of labelled data to train the model. The UL methods
allow to solve the issue of data annotation, however, at the
cost of lower prediction accuracy and lost of the class labels
information. Additionally, traditional model-based ML clas-
sifiers require the data to be previously pre-processed and
transformed into a feature vector which can present high
complexity in a multi-modal approach as emotion recogni-
tion. The DL approaches remove the requirement for sig-
nal pre-processing and feature engineering, the latter, being
one of the most time-consuming parts of an ML system.
Instead, DL uses denoising and dimensionality reduction
techniques such as auto-enconders, which have been applied
for emotion recognition with great results. The literature

suggests that the DL methodologies are highly appropriate
for affective modelling and ad-hoc feature extraction can be
redundant for physiology-based modelling [35]. However,
the DL approaches present the disadvantage of behaving like
a black box, which, once applied, do not show the relationship
between the physiological signals and each emotion [110],
require large amounts of data, and are extremely computa-
tionally expensive to train.

D. VALIDATION
Once defined the classifier, and trained (learned its hyperpa-
rameters) on the input data, the final step in anML framework
is the validation of themodel in order to obtain an overall view
of how the model will perform on never-before-seen data,
as in a real-world scenario outside of laboratory constraints,
i.e. the model must be able to generalise into new unseen
data and avoid overfitting on the training set data. Hence,
the model must find an equilibrium, fitting the training data
well but with relative variability so it avoids overfitting and
is able to generalise. A solution to have both input data and
new never-before-seen data is to divide the data into a training
set and an independent test set; or in a training set (to train a
model), a validation set (to tune the model hyperparameters
on unseen data) and a test set (to obtain evaluate the model
performance). The test set should yield some characteristics
to return meaningful results, namely: should take a consid-
erable size, be representative of the entire data, and not be
repeated in the train set.

A common methodology found in the literature to ensure
a meaningful validation and is to perform k-fold Cross-
Validation (CV). In k-CV, k iterations are performed with
the data being partitioned into k equally-sized folds. In each
iteration, k-1 folds are used for training and 1 fold for testing
so a fold is used for testing only once. The results of the k
iterations are then averaged and a final overall performance
computed. The Leave-one-subject-out (LOSO) and leave-
one-out (LOO) techniques are a specification of k-fold CV
where k is set to one user and one sample, respectively.
The LOO technique introduces the highest variability and
returns themost pessimist classifier in comparisonwith k-CV.
However, at the cost of high computational power, therefore it
is used generally when there is a small amount of data. On the
other hand, the LOSO validation tests on an independent
subject from the training set, thus, returns user-independent
generalised results. To obtain a measurable evaluation of the
model performance, the metrics presented in Table 6 are
often applied: Accuracy- percentage of correctly classified
samples; Precision- proportion of actual positives instances
among the classified positive instances; Recall- proportion of
positives correctly identified among the existing ground truth
positives; Specificity- proportion of actual negatives cor-
rectly identified among the existing ground truth negatives;
F1-score- the harmonic mean of precision and recall; mean
square error-average squared loss per example over the whole
dataset. For a visual interpretation and comparison between
the classification results for each class, a confusion matrix is
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TABLE 5. Illustration of a Confusion Matrix. (Nomenclature: TP:
True-Positive samples, FN: False-Negative, FP: False-Positive and TN:
True-Negative samples.

TABLE 6. Evaluation metrics for a binary classification.

often used (see Table 5). A confusion matrix is a n×n matrix,
n being the total number of classes. Each cellCij is filled with
the total number of predicted samples belonging to the class
label i and predicted with the label j.

IV. DISCUSSION
Table 7 displays a summary of state-of-the-art research stud-
ies in the field of emotion recognition. Comparing the per-
formance of the research papers is a difficult task since they
often differ in the classifiers, the datasets used to train and test
the model, form of validation and the extracted features and
signal modalities used. Notwithstanding, an overall analysis
of the current emotion recognition state-of-the-art can be
performed, as follows:

(a) Elicitation Material: As observed in Fig. 17, display-
ing the number of publications surveyed for this doc-
ument per elicitation material, video and films are the
most commonly used elicitation material, namely the
DEAP (music videos) and the IAPS (images) datasets.

(b) Constrained vs. Unconstrained setting: Most studies
are performed in a lab setting, and these, on average,
achieve higher accuracy. This observation arises from
the fact that in-lab experiments are devised to elicit
specific emotions, pre-validated and easily acquired
and replicated in an elevated number of subjects with
quality ground-truth annotation. Additionally, often the
subjects are asked to remain still, thus, minimising
movement artefacts (high source of error).

FIGURE 17. Histogram of the number of publications surveyed for this
document per elicitation material.

FIGURE 18. Histogram of the number of publications surveyed for this
document per number of subjects in the datasets used.

(c) Number of Subjects: As it can be seen in Fig. 18,
the vast majority of the surveyed publications reported
the use of data between 1 and 50 subjects.

(d) Subject-dependent vs. subject-independent: Subject-
dependent algorithms achieve on average higher
results than subject-independent since subjects show
high inter-dissimilarity with their elicitation emotions
biased by the subject’s physiological internal and exter-
nal factors.

(e) Emotion Models: Most works focus on the imple-
mentation of binary classification techniques, sepa-
rating arousal from valence and stress from no-stress
activities.

(f) Modalities:Most research studies agreed that the clas-
sification performance increased with the increment of
the number of signal modalities.

(g) Classifiers:Most works focus on using SLmethodolo-
gies, namely SVM, kNN, DT, RF, AB, LDA, QDA, LR,
NB and BN. However, SL algorithms rely on annotated
data. Data annotation is time expensive, costly and very
difficult since the users show difficulty describing the
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TABLE 7. Summary of state-of-the-art research studies in the field of affect recognition and its main characteristics in terms of: author, year, stimulus,
localisation, number of subjects (#), subject dependency (SD), emotion labels (Labels), modalities, classifier, validation method (Val) (leave-1-out (LOO);
leave-1-subject-out (LOSO); 10-fold cross-validation (CV) and recognition rate (Rec Rate). Table adapted from [4], [8].
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TABLE 7. (Continued.) Summary of state-of-the-art research studies in the field of affect recognition and its main characteristics in terms of: author, year,
stimulus, localisation, number of subjects (#), subject dependency (SD), emotion labels (Labels), modalities, classifier, validation method (Val)
(leave-1-out (LOO); leave-1-subject-out (LOSO); 10-fold cross-validation (CV) and recognition rate (Rec Rate). Table adapted from [4], [8].
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TABLE 7. (Continued.) Summary of state-of-the-art research studies in the field of affect recognition and its main characteristics in terms of: author, year,
stimulus, localisation, number of subjects (#), subject dependency (SD), emotion labels (Labels), modalities, classifier, validation method (Val)
(leave-1-out (LOO); leave-1-subject-out (LOSO); 10-fold cross-validation (CV) and recognition rate (Rec Rate). Table adapted from [4], [8].
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emotion they are feeling, thus, introducing bias to the
recognition results. The SVMmethod is the most com-
monly applied algorithm showing good results and low
computational complexity. In literature, non-traditional
DL techniques use mainly EEG data.

(h) Dimensionality Reduction: Data representation
highly influences the classification performance. Sev-
eral works, suffering from the curse of dimensionality
apply feature selection and data dimensionality reduc-
tion algorithms. These allow to increase the classifica-
tion performance, however, at the expense of increased
time and computational cost.

(i) Validation Techniques: To avoid overfitting many
works apply k-CV, LOO, LOSO-CV techniques
and subsequents. However, CV techniques lead to
subject-dependent evaluations, thus, a LOSO-CV
should be applied for generalised results.

(j) Evaluation Metrics: Accuracy is the most commonly
applied metric to evaluate the model’s performance.
Metrics such as F1-score, Precision and Recall can also
be found in the literature.

(k) Arousal vs. Valence: Physiological signals are directly
the output from the SNS, as well as the arousal dimen-
sion, thus, generally classified with higher accuracy
than the valence axis.

V. CONCLUSION AND FUTURE WORK
Although relatively young, the field of affective comput-
ing has experienced enormous growth and accumulation of
knowledge since its inception in 1995, with many papers
published in the field (more than 2k according to IEEE
Xplore search results). This paper starts by introducing the-
oretical background key concepts needed to understand the
concept of emotion and the connection between the ANS
and physiological data. We present benchmarked datasets for
emotion recognition using physiological signals, validated
elicitation materials and assessment methodologies. Thirdly,
we describe the main steps required for the development
of a novel ML algorithm for emotion recognition. Lastly,
we analyse the current state-of-the-art of emotion recogni-
tion, pointing its main achievements, take-home messages,
challenges and possible future opportunities.Within the state-
of-the-art, several challenges and opportunities have been
identified, towards the development of a framework for emo-
tion recognition which must be addressed [4], [8]:

(a) Experimental Design: The design of the experimental
setup for emotion elicitation can be both induced or
obtained genuinely, i.e. in a constrained lab setting or a
daily-living unconstrained scenario. Daily-living solu-
tions present additional variables and challenges, such
as an increase in the difficulty of emotion awareness,
ground-truth data annotation, and a decrease in the
signal-to-noise ratio due to uncontrolled subject move-
ments. Thus, daily-living algorithms generally present
lower prediction scores. Further variables show impact

in the subject response such as its environment, i.e.
if the subject is alone or in a group setting (audience),
its current mood, personality, gender, background, age
and culture. Thus, in order to ensure the study validity,
reliability, and generalizability, the experiment should
focus on unconstrained scenarios and be performed by
a large number of individuals with all of the afore-
mentioned characteristics in order to approximate the
algorithm to a reliable real-life solution. Moreover,
the subject’s mood changes throughout the day, hence,
further research should focus on a continuous eval-
uation of the subject response to different stimuli
along the day, correlating the elicitation material to
the subject environmental context, personality, mood,
and whether the content can influence its emotions,
cognition and behaviour. To reduce the volunteers’ bias
in the ground truth annotation, it might be beneficial to
inform the goal of the study to the subject only after the
study is performed.

(b) Elicitation Material: Short films are low cost,
easily scalable, goal-oriented, and able to trigger
high-intensity emotions in the subjects, thus, have
shown to be a reliable elicitationmaterial. These should
focus on the elicitation of a single emotion and should
be validated in order to ensure its reliability. To validate
the elicitation material further research should focus
on the definition of metrics to assess the elicitation
material emotional content, i.e. what kind of narrations,
images and sounds will arouse the subject attention and
interest and how to measure it.

(c) Emotion Dimensions: Current studies focus pri-
marily on the recognition of emotions in a binary
valence-arousal, stress-no stress scenario. Additionally,
the arousal axis has been classified with high accu-
racy, however, the valence axis, still lacks a reason-
able performance. Further research lines could focus
on the development of new metrics and dimensions
for emotion assessment and classification of complex
emotions.

(d) EMAs: The subject self-annotated reports should be
simple, quick, goal-oriented and include a reward sys-
tem. The latter has shown to maintain the subject moti-
vated and more likely to deliver quality ground truth
data.

(e) Person-independent vs. Person-Dependent: Person-
independent algorithms are generally outperformed
by subject-dependent algorithms since even for the
same emotion-eliciting materials, the elicited emo-
tions depend on the subject environment, culture, cur-
rent mood, personality and perception. Thus, further
research must be implemented to obtain more gener-
alised algorithms.

(f) Data Annotation: The SL algorithms rely on anno-
tated data. Data annotation is a costly, difficult, time
consuming and error-prone task, since awareness and
description into works of emotions at all times is

141014 VOLUME 7, 2019



P. J. Bota et al.: Review, Current Challenges, and Future Possibilities on Emotion Recognition Using ML and Physiological Signals

challenging, requiring high-quality ground truth data.
Thus, focus should be given to UL algorithms or in
facilitating the ground truth annotation in an in-loco all-
times annotation setting.

(g) Classifier: The feature and modality-dependent nature
of previous works resulted in the increase of the
model time and computational cost for a real-life reli-
able solution. The DL approaches and dimensionality
data reduction algorithms can be a viable solution
to this problem, both as data denoising and as a
feature-independent modality to learn unobservable
data information. Current works using deep-learning
for emotion recognition focus mostly on EEG data,
therefore further work can be explored using DL
in a multi-modal setting. A further approach, to the
best knowledge of the authors, yet to be applied to
Emotion Recognition in a multi-modal physiological
signal-based context, is Dissimilarity-based Classifica-
tion, based on the hypothesis that objects that are simi-
lar present close representations. For the calculation of
the object’s similarity, many similarity metrics can be
used namely the Euclidean distance, Cosine similarity,
and many others.

(h) Sensor Modalities: Most papers have reported an
increase of recognition rate with the increase of the
number of data modalities, namely EEG, ECG, EDA,
EMG, RESP and SKT data, however, there is still no
clear evidence of which feature combinations of which
physiological signals are the most relevant. Moreover,
there are limited public datasets for emotion recog-
nition considering all possible modalities in uncon-
strained daily-living scenarios.

To conclude, in the past 13 years, improvements in the
fields of affective science and emotion science, computer
science and electronics have endured the growth for affective
computing theory and research through a deeper knowledge
of emotion theory, the development of accurate ML algo-
rithms, and the creating of ubiquitous, fast and pervasive
wearable technology [161], [162]. These new technologies
have become a part of our daily life, contributing to continu-
ously improved life quality, and allow the acquisition of high
amounts of data that can be used for the development of com-
plex ML models for reliable emotion recognition algorithms.
Over these years, many methodologies have been developed
in affective computing, culminating in the emergence of new
research questions, challenges and opportunities, bringing the
recognition and knowledge of emotion one step further.
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