
Received July 31, 2019, accepted September 14, 2019, date of publication September 26, 2019, date of current version October 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944119

Design Quality Metrics to Determine the
Suitability and Cost-Effect of Self-*
Capabilities for Autonomic
Computing Systems
ABDUL JALEEL , SHAZIA ARSHAD, MUHAMMAD SHOAIB,
AND MUHAMMAD AWAIS
Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Lahore 54890, Pakistan

Corresponding author: Abdul Jaleel (abduljaleel@uet.edu.pk)

ABSTRACT Every software in the universe requires maintenance and management during its life cycle.
The manual management of software is costly and sometimes error-prone. The other solution is autonomic
computing that induces self-management capabilities, ‘‘self-*services’’, in software systems with the help
of autonomic managers. The design quality of a self-management capability affects the computing infras-
tructure regarding processing load, the memory requirement, data channel demand and performance of
perturbation restore. It is critical to assess the design quality of a self-management capability to determine
its effect over the computing infrastructure when it gets invoke against some anomaly or perturbation.
Moreover, there are two possible host environments for an autonomic manager to offer a self-management
capability as a self-* service: the local environment and the cloud environment. A criterion is needed to
decide which environment is more suitable and cost-effective to run the service. However, the literature
lacks in the assessment of the design quality metrics on self-management capabilities and the suitability and
cost-effectiveness of the execution environment. In this work, we have proposed a suite of design quality
metrics to determine the design quality of self-management capabilities. We validate the proposed metrics
with a stock trade & forecasting system that was designed as an autonomic computing system with self-
management capabilities. The proposedmetrics were applied to define functions that identify the suitable and
cost-effective execution environment for the self-* service. The results proved that these metrics are useful
in determining the design quality, suitability, and cost-effectiveness of a self-* capability for an autonomic
computing system. The proposed metrics can be used to compare differently designed autonomic solutions
for complexity, efficiency, performance, understandability, and maintainability.

INDEX TERMS Autonomic computing, design qualitymetrics, self-management capabilities, self-* service,
stock trade forecasting.

I. INTRODUCTION
During the life cycle of software, a significant amount of
human effort is required to control and manage the soft-
ware. In the case of complex IT systems, an increased num-
ber of skilled IT professionals are required for configu-
rations, installations, maintenance, and operation of these
systems [1]. Autonomic software management facilitates in
minimizing the IT budget by reducing human efforts required

The associate editor coordinating the review of this manuscript and
approving it for publication was Malik Jahan Khan.

to install, maintain and operate an IT system. By shifting the
human task of software controlling to just policy and rules
defining, autonomic computing automates the manual task
of management and introduces self-management capabilities
like self-configuration, self-healing, self-optimization, self-
protection, and others. These are collectively termed as self-*
capabilities [2].

The motivation behind this work is that the design qual-
ity of a self-management capability (SMC) can be used to
indicate how an SMCwill affect the computing infrastructure
in terms of processing load, the memory requirement, data

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 139759

https://orcid.org/0000-0002-0886-7819
https://orcid.org/0000-0002-2738-4927


A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

channel demand and performance of perturbation restore.
Therefore, it is critical to assess the design quality of a
self-management capability to determine its effect over the
computing infrastructure when it invokes against some per-
turbation.Moreover, there are two possible host environments
for an autonomic manager to offer a self-management capa-
bility as a self* service: the local environment and the cloud
environment. Thus, a criterion or metric is needed to decide
which environment is more suitable and cost-effective to run
the service.

However, most of the previously defined metrics [2]–[4]
of autonomic computing systems are not applicable to design
phase output except the work of kaddoum et al. [2]. The
primary drawback of the kaddoum’s work is that it does not
measure the complexity and cost of autonomic logic embed-
ded inside the computing system. Also, the literature lacks in
studies that select a cost-effective execution environment for
a self-management capability when the option of both local
and cloud environment is available. Therefore, it is necessary
to define metrics that measure the design quality of self-*
capabilities and thus of the autonomic computing systems.
Also, these metrics should be useful to identify whether the
local environment or cloud environment is better to run the
SMC service.

The main goal of this research is to define a suite of design
quality metrics to calculate the perturbation complexity and
performance of SMC at design time, so that two autonomic
computing systems can be compared and the execution envi-
ronment of an autonomic computing system can be identified.
More specifically, we have asked the following questions.

(1) How an autonomic computing system can be formally
represented in terms of self-management capabilities?

(2) What quantitative measures can be defined for design
quality assessment of a self-management capability consid-
ering different design quality aspects?

(3) How to determine a cost-effective and suitable execu-
tion environment for the self-* service?

(4) How to compare differently designed SMC solutions
for complexity, efficiency, performance, understandability
and maintainability?

While addressing these research questions, we used IBM’s
autonomic computing model as reference architecture and
draw a schema interaction graph for autonomic systems in
terms of self-management capabilities (SMCs). The graph
adds formality in the architectural model of the IBM which
was required to develop metrics based on the formal def-
initions. Then, we proposed a suite of metrics to evaluate
the design quality of self-management capabilities. These
metrics quantify the complexity, recovery time, bandwidth
cost, memory requirements, and data traffic load incurred
by an SMC. By using the defined metrics, we devised a
method to select the most appropriate execution environment
(local, cloud) for the application. A ‘Stock Trading and Fore-
casting System’ was designed as a self-managing applica-
tion with high-availability to validate the proposed metrics
and methods. The proposed method successfully determines

the most appropriate execution environment (local or cloud)
of the application based on four characteristics: data chan-
nel requirement; network load for perturbation resolving;
incurred cost for memory; and time for perturbation resolv-
ing. Finally, we map the metrics to ISO-9126 design quality
parameters to compare different design solutions for com-
plexity, efficiency, performance, understandability, andmain-
tainability. We conclude that the proposed metrics are use-
ful for quantitative assessment of the design quality of an
autonomic computing system in terms of its self-management
capabilities. A measure of complexity, performance, and
efficiency of a self-management capability at design time
facilitates judging its behavior before actual implementation
and execution.

The paper is divided into seven sections including the
introduction section. In section II, we review the previ-
ous work related to autonomic computing and related met-
rics. Section III formally describe autonomic computing and
self-management capabilities. Section IV is entitled to the
proposed design quality metrics for the assessment of a self-
management capability. Evaluation of the proposed metrics
over the design of a highly available self-managing applica-
tion is given in section V. Section VI is about discussions.
Finally, the research is concluded in section VII.

II. RELATED WORK
The idea of autonomic computing is to make computing
systems self-managing, behaving and controlling themselves
just like the human nervous system to handle the increas-
ing complexity of IT systems [1], [5]. IBM’s blueprint for
autonomic computing systems [6] is recognized as the most
appropriate model for autonomic computing. An autonomic
computing system has two kinds of behaviors: the functional
behavior representing actual systems, and the self-* behav-
ior enabling the system to handle unexpected dynamics and
perturbations [7]. A perturbation in autonomic computing
is ‘‘a deviation of the computing system or process from
its regular or normal state or path, caused by an outside
influence’’ [8]. The anomaly behavior of the computing
resource or its environment is characterize-able by a set of
context attributes [9]. A resource, to be managed, has to
shares its running state in the form of context attributes
via its touchpoints. Autonomic managers are the software
modules that implement the self-* capabilities via feedback
control loop with the help of sensors and effectors. Sensors
and effectors inside the resource touchpoint act as ‘Set’ and
‘Get’ methods for context attributes [10], [11]. A sensor
senses anomalies and informs the autonomic manager(s).
An effector receives commands and data from the autonomic
manager(s) and triggers an action to manage the system
state.

A broad literature analysis was performed in [12] to
apply autonomic computing concepts over cloud resource
provisioning and management with QoS considerations.
Reference [13] uses the concept of autonomic computing
for QoS-aware cloud resource provisioning and scheduling

139760 VOLUME 7, 2019



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

which improves the resource utilization and user
satisfaction.

McCann et al., 2004, describe a set of metrics to compare
and evaluate the performance of autonomic systems in terms
of quality of service, cost, failure avoidance, time to adapt,
reaction time, sensitivity, and stabilization [4]. The software
quality model (ISO 9126-1) identifies the six software quality
characteristics/factors as functionality, reliability, usability,
efficiency, maintainability, and portability [3], [14], [15].
Tayagi et al., 2013, allocated different software quality fac-
tors as metrics to major characteristics of an autonomic com-
puting system [16]. Shazia et al., 2011, defined design quality
metrics for web-based applications and shows the importance
of measurement at design time [17]. Omid mola, 2011, has
given formal specifications for the managed object, auto-
nomic manager, policies, and communication model of an
autonomic system [18]. Raibulet, et al., 2014, grouped adap-
tivity domain metrics into architectural, structural, interac-
tion, and performance categories [19]. Xavia etcheves, 2010,
defined qualitative and quantitative metrics for autonomic
systems based on the ISO 9126-I standards [20]. Sukhpal
singh and inderveer chana, 2014, identified different cloud
workloads and defined a set of metrics to allocate appropriate
workload to appropriate cloud resources in IAAS for QoS
based cloud resource management [21].

Kaddoum et al., 2009, describe the evaluation criteria for
self-* systems without actually running the system which
is based on the intrinsic characteristics like communication
complexity (number of exchanged messages), decentraliza-
tion, the requirement of local algorithms, and influence of the
number of agents [2]. Kaddoum et al., 2010, defined metrics
for six different measurements criteria of autonomic features:
i.e., for methodological, architectural, systems growth, intrin-
sic characteristics, influences of the adaptive logic, and for
automation of the human tasks [22]. Paul Lin et al., 2005,
divides quality metrics for autonomic computing framework
into anticipatory and openness [23]. Anticipatory charac-
teristic is further subdivided into context-awareness, self-
awareness, and self-management which is further subdivided
into self-healing, self-configuration, self-protection, and self-
optimization. Authors have just inlined the quality metrics,
and their quantifications are not given.

After a comprehensive literature survey, it is identified that
most of the existing metrics are qualitative covering func-
tionality, reliability, usability, efficiency, maintainability, and
portability characteristics [1], [24]–[26] but the researches
have not described how to measure them. Moreover, the met-
rics already defined [1], [4], [16], [19] for autonomic com-
puting systems are not applicable to design output, except [2]
which also does not measure complexity and cost of auto-
nomic logic embedded inside an autonomic computing sys-
tem. It is identified that few works have defined quantitative
metrics and very few of them evaluated their proposed met-
rics. Also, no metric has been defined to measure complexity,
cost, and strength of autonomic logic from the design of an
autonomic computing system.

III. AUTONOMIC COMPUTING AND SELF-MANAGEMENT
CAPABILITIES
This work is based on IBM’s concept of autonomic comput-
ing. In IBM’s layer model [6], [27] of the autonomic com-
puting systems, a managed resource (MR) is at the bottom
layer. MR implements a touchpoint (TP) as its manageability
interface [10]. Autonomic managers (AM) above managed
resources act as controlling agents using touchpoint interface
of the resource. Orchestrating autonomic managers (OAMs)
in the next layer facilitates interaction among autonomic
managers. An AM can control one or more MRs. Simi-
larly, an MR may be controlled by one or more AMs [9].
A manual manager (MM) at the top layer provides an inter-
face to users/experts to input data and the commands when
OAMs or AMs have no solution for a situation. Managers
implement theMAPE-K (monitor, analyze, plan, execute, and
knowledgebase) feedback control loop, except MM where
actions are asked from users/experts. In this bottom-to-top
approach, a perturbation is handled by an AM with the help
of OAMs, and MM. Thus an autonomic computing system
consists of a set of manager modules (M) and resource mod-
ules (R). The interaction between modules is a connection
over which data/message transmits. The required sequence
of interactions (between modules of the system) against a
specific anomaly can be determined at design time. We used
IBM’s model as reference architecture and draw a schema
graph for autonomic systems in terms of self-management
capabilities.

A. SCHEMA REPRESENTATION OF AN AUTONOMIC
COMPUTING SYSTEM IN TERMS OF SELF-
MANAGEMENT CAPABILITIES
A self-management capability corresponds to an autonomic
behavior of the computing system. We define an SMC as
a collection of interactions between modules of an auto-
nomic system, with each interaction initiating from a man-
ager or a resource inside the autonomic computing system
(ACS). These interactions activate sequentially to counter an
abnormal activity. A schema interaction graph of an exam-
ple autonomic computing system is depicted as a directed
multi-graph in Fig. 1. The required sequence of interactions
(between modules of the system) against a specific anomaly
can be determined at design time using this graph. This is
required for design quality assessment of SMCs and in turn,
of the ACS.

The managers and resources of an ACS are taken as nodes
of the schema interaction graph. A directed edge represents
either a sensor-monitor interaction or an executor-effector
interaction between manager-resource or manager-manager
modules. Let k and k ′ be some integer values. The weight
of k th interaction initiating from a manager node Mi is
represented as αkMi

and the weight of k ′th interaction initiating
from a resource node Rj is represented as αk

′

Rj . Both are
quantified as the size of data (in bytes) transferred over
one-time activation of the interaction. Fig. 1 depicts three

VOLUME 7, 2019 139761



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

FIGURE 1. A schema interaction graph for an example Autonomic Computing System based on IBM’s
concept [6], [7], [27] of Autonomic Computing.

self-management capabilities SMC1, SMC2, and SMC3where
the contributing edges of each SMC are distinguished
by *, +, and ˆ symbols, respectively. The sequence of exe-
cution of interactions for each SMC is given in the tabular
form in the upper right corner of Fig. 1.

We formally write an SMC as (1), in terms of the mod-
ules involved in the interaction graph and related interaction
weights.

SMC = {(DMi ,wMi , α
k
Mi
)|1 ≤ i ≤ p} ∪

{(wRj , α
k ′
Rj )|1 ≤ j ≤ q} ∪ wRe (1)

• Here DMi represents the average decision complexity of
a manager, quantified in Section IV-D

• Whereas wMi and wRj represents the memory complexity
weights of mangerMi and resource Rj, respectively. Both
are quantified in Section IV-F

• Also, ‘p’ and ‘q’ represent the number of managers and
resources, respectively, each contributing an interaction
inside the SMC.

All managers Mi and resources Rj inside an SMC originate
an interaction, except the last resource Re where SMC ends.
Thus, the length of an SMC is the number of interactions
it consists of. The simplified form of an SMC, in terms of
interaction edges originating from nodes of the schema graph,
is defined as (2).

SMC = {αkMi
|1 ≤ i ≤ p} ∪ {αk

′

Rj |1 ≤ j ≤ q} (2)

An SMC initiates from a resource and ends at the
same or some other resource. The self-manageability index
of an autonomic computing system is the number of distinct
SMCs inside the system.

IV. DESIGN QUALITY METRICS FOR ASSESSMENT
OF A SELF-MANAGEMENT CAPABILITY
In this section, we define design quality metrics which focus
design quality assessment of an SMC from its schema inter-
action graph. These measurements cover perturbation com-
plexity, decision complexity, perturbation resolving load, per-
turbation resolving time, related data channel and memory
requirements of an SMC.

A. PERTURBATION RESOLVING INTERACTIONS
COMPLEXITY (PRIC) METRIC
The restoring effect against a perturbation can be determined
by calculating the length of a self-management capability
from the schema graph. PRIC metric calculates the length of
a self-management capability. By taking weight value α = 1
for the interactions involved in a perturbation, PRIC value can
be calculated using (3).

PRICSMCy = LengthSMCy =
p∑
i=1

αkMi
+

q∑
j=1

αk
′

Rj (3)

The PRIC value for an SMC is simply calculated to be
‘p+q’, for each αkMi

= αk
′

Rj = 1.
More value of PRIC shows an increase of complexity

which effects understandability & maintainability. Complex-
ity scale for PRIC is defined considering Chidamber’s [28]
work on software complexity. PRIC scale is drawn with the
following ranges.

Low ≤ 5 > Medium < 10 ≥ High

In general, more length of an SMC means restore will take
more time. Hence, latency will be observed during recov-
ery. Each extra interaction costs time to waste and delay.

139762 VOLUME 7, 2019



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

PRIC value can be reduced by combiningmultiple extra inter-
actions into a single interaction. PRIC metric helps to choose
a better option amongst the number of available solutions
against an anomaly.

B. DATA CHANNEL REQUIREMENT (DCR) METRIC
Data channel requirement of an ACS is based on identifying
the maximum interaction weight from all of the interactions
of all SMCs. DCR metric chooses maximum interaction
weight value from two sets of interaction weights
(i.e. M set of interactions consisting of all interactions origi-
nating from manager modules, and R set of interactions con-
sisting of all interactions originating from resource modules),
as given in (4). The maximum interaction weight value shows
the maximum size of data that may transfer inside ACS.

DCR = max(max(αkMi
),max(αk

′

Rj )) (4)

DCR calculations help to determine the bandwidth required
in distributed systems and paging size in local systems. More
value of DCR means an increased cost of bandwidth pur-
chase. DCR metric helps to decide either we can afford the
cost of a self-management capability or not. While calculat-
ing DCR, one can identify any extra information being sent
over the most costly link and can reduce it. Miscalculations
in DCR effects efficiency of the ACS.

C. PERTURBATION RESOLVING DATA LOAD (PRDL)
METRIC
PRDLmetric calculates network traffic generated by an SMC
against a perturbation. It guesses burden over the system
in terms of the size of messages generated for each SMC,
as given in (5). The worst case is when all SMCs activate
concurrently, given in (6).

PRDLSMC =
p∑
i=1

αkMi
+

q∑
j=1

αk
′

Rj (5)

PRDLACS =
N∑
y=1

SMCy (6)

Recovery Performance of an ACS is inversely proportional
to PRDL. More value of PRDL means the system will go
slow or even can be stuck, if the traffic load is too high than
the system capacity. PRDL can be controlled by checking
if there is any extra information being sent in a message,
otherwise system resources has to be increased to keep the
system working.

D. RULE-BASE COMPLEXITY AND DECISION
COMPLEXITY METRICS
For traditional software, the control flow graph is used to
determine the number of available decision paths. In the case
of a rule-based system, the physical order of rules firing is
determined by the inference engine. The rule-based system
establishes more dynamic search paths as compared to con-
ventional software [29], [30]. To find the number of available

logical paths at design time, Kiper [29] suggested sketching
of logical path graph (LPG) of rule-base and extended the
work of McCabe [31], [32] to cover AND/OR combinations
of rules while sketching LPG. LPG is the rule-base equivalent
of a program’s control flow graph. Once the LPG of a rule-
base is sketched, the rule-base complexity of the autonomic
manager is computed as the number of logical paths present
in the LPG. The rule-base complexity is measurable using
McCabe’s cyclomatic complexity metric, as given in (7).

Rulebase Complexity = nPRS = E − N + 2 (7)

• nPRS is the number of paths in rule-base of an Auto-
nomic Manager.

• E is the number of edges and N is the number of decision
nodes inside the LPG.

By determining the number of paths in the LPG of a rule-set,
the rule-base complexity metric determines the effectiveness
of rule-base.We define the decision complexity of a rule-base
as the number of decisions made by the most lengthy path
inside LPG. The decision complexity metric is defined in (8).

DecisionComplexity = max(nDPathi ) for i=1 to nPRS (8)

The average decision complexity of a rule-base is defined as
a ratio of the total number of decisions made in all paths to
the number of paths in the LPG of rule-base. Let nDpath be
the number of decisions made in a specific path of LPG and
nPRS be the number of paths in the rule-base. The average
decision complexity is defined in (9).

AverageDecisionComplexity =
nPRS∑
i=1

(nDPath)/nPRS (9)

E. PERTURBATION RESOLVING TIME (PRT) METRIC
Perturbation resolving time metric is defined by combining
the basic concepts of different research works [29]–[31],
[33], [34]. PRT counts the number of average decisions made
inside each of the p numbers of managers involved in an
SMC, and adds the number of interactions originating from
each of the p managers and q resources involved in the SMC.
PRT consider that each of the interaction and the decision
takes a unit time value. Thus, taking

∑q
j=1(1) = q, the PRT

metric is defined as (10).

PRT_SMC =
p∑
i=1

(DMi + I )+ q (10)

It calculates recovery time for a perturbation. From the
Chedembra’s complexity [28], we define best range for PRT
as, ‘‘p*5+p+q’’. PRT metric helps to evaluate the perfor-
mance of autonomic logic at design time. With PRT, we can
choose a better option amongst the number of solutions.

F. AUTONOMIC LOGIC’S MEMORY REQUIREMENT (MR)
METRIC
A managed resource shares control over its running behav-
ior in the form of Set and Get methods for ‘context
attributes’ [9]. For a context attribute ‘C’, its memory

VOLUME 7, 2019 139763



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

weight w(C) is the number of bytes required for its storage
in memory. For a managed resource Rk , its memory weight
w(Rk ), is the memory space required by distinct context
attributes of the resource and the resource’s touchpoint (TP).
Whereas, TP’s memory weight is the summation of memory
weight of all sensors and effectors inside the TP. For a sensor
Si, its memory weight w(Si) is the local memory required
to retrieve and process values of context attributes. For an
effector Ej, its memory weight w(Ej) is the local memory
required to receive and process action commands. Thus,
for the resource Rk , with ‘c’ number of context attributes,
we define its memory weight as given in (11).

w(Rk ) =
c∑
l=1

w(Cl)+
s∑
i=1

w(Si)+
e∑
j=1

w(Ej) (11)

For an autonomic manager Mu, its memory weight w(Mu)
is the memory space required by MAPE-K loop of the auto-
nomic manager. Memory weight of MAPE-K loop is the sum
of memory space required by context parameters, thresh-
olds, system-state variables, symptoms, policy, and action
related variables used by the MAPE-K loop. w(Mu) also
includes memory space required by the manager’s touch-
point. Thus, we define memory weight of a manager as given
in (12).

w(Mu) = w(CA(MAPE-K))+ w(TP) (12)

Memory Requirement of total autonomic logic inside an
autonomic computing system is the summation of memory
required by its all managers and resources. Thus, by combin-
ing (11) and (12), the memory factor for an ACS is defined
in (13).

MRACS =
m+n+1∑
u=1

w(Mu)+
l∑

k=1

w(Rk ) (13)

Calculating the memory requirement at design time helps to
guess memory demand of autonomic logic when the comput-
ing system executes.

G. SMC’S COST- EFFECT AND SUITABILITY OF THE
EXECUTION ENVIRONMENT
A self-* service can be dynamically adapted inside an auto-
nomic computing system from different sources like a local
system, server, or cloud. An autonomic computing system
can opt for a self-management capability from any of these
sources. To determine the cost-effect of an SMC for an
execution environment, the proposed suit of metrics can be
used. The execution cost for a self-management service can
be formalized as (14).

Cost(SMC) = PRIC ∗ UCPRIC + PRDL ∗ UCPRDL
+DC ∗ UCavg(DC) + PRT ∗ UCPRT
+DCR ∗ UCDCR +MR ∗ UCMR (14)

The description of the terms used in the above equation is
given below.

PRIC : Perturbation Resolving Interaction Complexity,
UCPRIC : Unit Cost for PRIC ,
PRDL: Perturbation Resolving Data Load,
UCPRDL : Unit Cost for PRDL,
DC : Decision Complexity,
UCavg(DC): Unit Cost for avg(DC),
PRT : Perturbation Resolving Time,
UCPRT : Unit Cost for PRT ,
DCR: Data Channel Requirement,
UCDCR: Unit Cost for DCR,
MR: Memory Requirement,
UCMR: Unit Cost for MR
To determine the most appropriate execution environment

(local, server, or cloud) of the application, boolean suitability
of an execution environment can be judged for four char-
acteristics: data channel requirement; perturbation resolving
data load; memory demand factor; and perturbation resolving
time. We define suitability metric as (15), to check pass/fail
for each of the four characteristics. A single ‘fail’ outcome for
any of the four characteristics means execution environment
is unsuitable.

Suitibility =

{
yes if a− b < c
no otherwise

(15)

Here, ‘c’ represents the percentage of resource required. ‘a’
is the total availability of a resource and ‘b’ denotes current
utilization of the resource. So ‘a-b’ means the free percentage
of the resource.

At the first step, the system evaluates the suitability of
the local environment. If it is suitable, the system assigns
the environment to the application. Otherwise, it checks the
suitability of the server and if required it checks the suitability
of cloud. In this way, the system can use these metrics in
a bottom-up manner to assign the execution container to a
self-*service.

V. EXPERIMENTS & RESULTS
A. CASE STUDY FOR METRICS VALIDATION
To validate the proposed metrics, a ‘Stock Trading and Fore-
casting System’ and a ‘metrics evaluation framework’ were
developed using scripting languages, javascript and hypertext
preprocessor (PHP ver 5.4) and python (ver 3.7.1). Struc-
tured query language (MYSQL ver 5.6) was used for the
management of the stock trading database. The case study
system was designed as a highly available, self-managing
application which runs over a virtualized serverFarm to
offer self-* services without interruption. We have used the
‘Stock Trading and Forecasting’ case study due to three
primary reasons. First, as the system requires high avail-
ability, in case of a failure the system should recover itself
automatically because the crashes are not acceptable at real
time. Second, the system has different natural use cases
that require the autonomic computing. The self-* capabilities
included in the design are autonomic stock trade forecasting
service, installed application protection, server-to-database
connectivity control, server farm & load management, and

139764 VOLUME 7, 2019



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

FIGURE 2. Interaction flow graph for selected self-* capabilities.

activity-log memory management. These features are based
on the algorithms and concepts given in [35]–[37]. Third,
the same case study has been used in previous research [38].
We get all these self-* features benchmarked by experts for
the expected values of the proposed metrics. The average
values have been used for metrics validation.

B. EXPERIMENTAL RESULTS
We performed experiments with five self-* services of the
stock trading system to evaluate the proposed metrics. The
detailed working and relevant results of each autonomic man-
ager (delivering a self-* service) are given in sections (V-B.1)
through (V-B.5). The interaction graph for the introduced
self-management capabilities is given in Fig. 2. The graph
represents the perturbation effect whenever a specific self-*
capability gets activated to cover-up the respective anomaly
behavior. For example, in the case of SMC- B1, ServerFarm
& load management, the CPU-farm load manager contin-
uously monitors the serverFarm. In step (B1-i), it fetches
the status of server instances inside the serverFarm. It then
executes its rule-base to determine the required action, and
apply one of the three actions (B1-iia / B1-iib / B1-iic) to
start/stop/restart a server instance, respectively or it directly
jumps to step (B1-iii) and transfers the processing task to one
of the server instances.

To evaluate the proposed metrics, we first identified the
resources (R) and managers (M) inside each SMC. Then the
context attributes (C) and related sensors and effectors were
identified for each manager and resource. Next, the memory
weight values for each of the identified elements were distin-
guished. And then interactions involved in each of the SMCs,
related interaction data weights, and decision complexities
were determined. Metrics were evaluated and refinements
were made in the design of each SMC. The description of
each SMC and related calculation are given below.

1) ServerFarm & LOAD MANAGEMENT SERVICE
This self-management service is to control the virtual envi-
ronment consisting of five virtual machines (VMs). The
serverFarm load manager activates or deactivates VMs with
an increase or decrease of the processing load. Server load
is considered as the number of user tasks queued at a
server [39]. Table 1 describes serverFarm management SMC
and related evaluations. ProcessesQueue and serverFarm
were taken as the resource under observation.The server-
Farm manager was the autonomic manager controlling the
serverFarm. QueueLoad and userTasks were taken as the
context attributes for ProcessesQueue. ServerQueueStatus,
userTaskID and serverInstanceID were the context attributes
for serverFarm. FetchServerStatus, activateRule-base, and
callEffector were the context attributes inside the MAPE-K
loop of serverFarm manager. The sensors and effectors
defined for each resource’s touchpoint are given in Table 1.

Red marked tasks represent the basic execution sequence.
The use of blue method calls is situational, whereas the usage
of green methods is seldom. A 15 number of interactions are
counted for routine activities involved. Perturbation resolving
data load is determined to be 2048 bytes. The total memory
bytes required by this SMC are 6629 bytes. Next, we cal-
culate the number of paths and the decision complexity of
the rule-base for a one-time execution of the SMC. Based on
fuzzy logic, the rule-base of the autonomic manager is given
in Table 2, (taken from the author’s previous work [38]).

Logical path graph for the execution of rules (of Table 2)
is presented in Fig. 3. Rules are denoted with ‘R’ inside
LPG. The LPG shows seven numbers of logical paths which
takes it to the END state, (note: The rules that could not be
fired or which may not take the system to END state were
eliminated). An arc over R3 represents, ‘AND’ condition to
show R3 will be triggered only when both R2a, R2d gets
active. Arc over R3 means it is a single path from start to end

VOLUME 7, 2019 139765



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

TABLE 1. ServerFarm management capability.

TABLE 2. Rule-Base of server Farm manager for load management.

FIGURE 3. Logical path graph for rule-base of ServerFarm&Load manager.

nodes. The number of logical paths in LPG are counted as 8,
representing the rule-base complexity. Decision complexity
of ‘serverFarm & load management control’ is determined to

be 4 which is the lengthiest path, i.e. Initial->R1->R2->R2-
>End.

2) STOCK TRADE FORECASTING SERVICE
The forecastManager predicts the future value for a com-
pany’s stock and financial trade. The service was developed
to help users in deciding whether to sell or buy shares.
There are nine numbers of context attributes, divided into
5 groups, to get stock market data for prediction generation.
Context attributes set for stock trade prediction consists of
given period’s close-ups and close-downs, most recent clos-
ing price, lowest and highest of previous 14 trading sessions
(L14, H14), high, low and closing stock prices, and volume
traded. Design quality measurements for trade forecasting
SMC are given in Table 3.

Interactions involving basic executions are marked with
red color. The use of methods shown in purple color is

139766 VOLUME 7, 2019



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

TABLE 3. Design quality measurements for trade Forecasting SMC.

optional and not involved in regular calls. A 12 number of
interactions are counted for the routine procedure. Perturba-
tion resolving data load was determined to be 58 bytes. The
total memory bytes required by this SMC are 203 bytes. The
number of logical paths in the logical path graph of the rule-
base of a ‘stock trade forecasting manager’ was determined
to be 2. The decision complexity was calculated to be 6 as
the number of decisions made in the most lengthy branch
of LPG.

3) INSTALLED APPLICATION PROTECTION
This service keeps track of installed application against cor-
ruption or deleting of files. It recovers the files from the
backup to keep the system running. In ServerAppProtection
SMC, installed and backup applications were taken as the
resources under observation. Protection manager was the
autonomic manager in action. FileCount and FileHashValue
were taken as context attributes. The context attributes inside
the MAPE-K loop of protectionManager were getFileCount,
getFileHash compareFiles and update-deleteFile. Four num-
bers of sensors and three numbers of effectors were defined
inside the resource touchpoint. The calculations were per-
formed with the following considerations.
• The file hash was calculated with SHA256.
• Variables were considered of long int category with
4-byte memory.

• Ethernet MTU size was taken as 1500 bytes.
These calculations determine the minimum requirements of
memory and the number of interactions among autonomic
modules. The resultant values are given in Table 4.

The interactions involved in the ‘installed application pro-
tection’ SMC were counted to be 14 and are marked red.

The perturbation resolving data load was determined to be
7714 bytes. The total number of memory bytes required
by this SMC was 7978 bytes. The number of logical paths
was determined to be 3 and the decision complexity was
calculated to be 4.

4) SERVER-TO-DATABASE CONNECTIVITY CONTROL
This self-management service keeps track of the server and
database connections. In case of any interruption, it tries to
reconnect. In case of any hang-ups or failures, it restarts
the services to keep the connection live. In server-to-
database connectivity SMC, the resources under observations
were application writing to the database and the database
server. The context attributes for application writing to the
database was DB-connectionState. The context attributes for
the database server was DB-instanceState. Two number of
sensors and three number of effectors had been defined inside
the resource touchpoint. The initial stage calculations are
given in Table 5.

The number of interactions involved in the connectiv-
ity management SMC was counted to be 8 (marked red).
The perturbation resolving data load was determined to be
11316 bytes. The total number of memory bytes required
by this SMC was 18048 bytes. The number of logical paths
was 8, whereas the decision complexity calculated was 5.

5) ACTIVITY LOG MEMORY MANAGEMENT
Continuous client requests to trading database fill the log
memory. This service archives the old files to clear the
required space. In log-memory management, file-system was
the resource under observation whereas freespace Manager

VOLUME 7, 2019 139767



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

TABLE 4. Installed application protection capability.

TABLE 5. Server to database connectivity management capability.

was the autonomic manager to manage the disk space and
log data. The stage1 calculations are given in Table 6.

The number of interactions involved in the connectivity
management SMCwas counted to be 3 (marked red). The per-
turbation resolving data load was determined to be 275 bytes.
The total number of memory bytes required by this SMC was
554 bytes. The number of logical paths was determined to
be 4 whereas the decision complexity was calculated as 3.

C. OVERALL DESIGN EVALUATION AND METRICS
VALIDATION
The evaluation framework (developed to evaluate the
metrics) was used to evaluate the metrics for five

SMCs of serverFarm & loadManager (SF&LM), fore-
castingService (FS), installedApplicationProtection (IAP),
Server-to-database connectivity control (CC), and memory
manager (MM). The metrics evaluation results of five SMCs,
obtained for each design qualitymetric, namely, ‘Perturbation
Resolving Interactions (PRI)’, ‘Perturbation Resolving Data
Load (PRDL)’, ‘Rule-base Complexity (RbC)’, ‘Decision
Complexity (DC)’, ‘Data Channel Requirement (DCR)’,
‘Perturbation Resolving Time (PRT)’, and ‘Memory Require-
ment (MR)’ are combined in Fig. 4. These obtained values
are coherent with known parameters (i.e. expected results,
as bench-marked by the experts), which validates our metrics.
The results depicted in Fig. 4a to 4g also shows a comparative

139768 VOLUME 7, 2019



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

TABLE 6. Memory log management capability.

FIGURE 4. Metrics evaluation results of five SMCs, obtained for each
design quality metric.

relation of five SMCs on the base of design quality metrics.
The graph bars depict that which SMC is most or less costly
on the base of a specific metric.

Also, the design of an SMC can be optimized during the
metrics evaluation process. As an example, we discuss the
findings for stock trade forecasting SMC.

Interaction Complexity can be reduced by reducing the
number of extra interactions. For example, we grouped the
nine number of interactions for all of the nine number of
context attributes, into three sets in prediction generation
capability. It was done by implementing the sensors that send
grouped data over an interaction.

Perturbation Resolving Data Load actually requires 5 *
4 = 20 bytes of memory for generating a sell or buy signal.
However, when the prediction is to be tested for future values,
the CAs value needs to be set which requires 14 *4 = 56 bytes
of memory.

Data Channel Requirement for the forecasting manager
is 4 bytes in the case of 14 interactions. However, if we
combine interaction data into groups to reduce interaction
complexity, data channel requirement will increase. Both of

FIGURE 5. Cost-effect value for each of the SMCs.

these are inversely proportional. If one decreases, the other
one will increase. It is up to the designer to decide about what
suits as per available resources.

Perturbation Resolving Time is directly proportional
to Interaction Complexity and the number of decisions
per SMC. By decreasing the Interaction Complexity, Pertur-
bation Resolving Time can be reduced but at the same time,
the Data Channel Requirement will be increased.

D. SMC’S COST-EFFECT EVALUATION AND FRAMEWORK
FOR SUITABILITY DETERMINATION
Although in practice, a service provider and admin of the
autonomic system have to set an agreement for cost value
of each attribute in (14). However, here we take unit cost
(UC = 1) value for each of the attributes, i.e. UCPRIC =
UCPRDL = UCDC = UCPRT = UCDCR = UCMR = 1,
to determine the cost-effect of each of the five self-
management capabilities. The cost-effect value determined
for each of the SMCs, is given in Fig. 5. The determined
execution cost for a self-management service helps the auto-
nomic system administrator in deciding either it is suitable to
run the service in local environment or to be executed from a
cloud service provider.

In future, we are going to develop a framework based
on equations (14 and 15), to determine the suitability of
execution source and the cost-effect of a self-* service. The
framework will help to keep a check over the cost and in hand
resource utilization for some self-* service and to determine

VOLUME 7, 2019 139769



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

FIGURE 6. Design quality metrics for autonomic computing systems and their mapping to
the design quality parameters.

a suitable execution environment (local, server, or cloud) for
the application.

E. METRICS MAPPING TO DESIGN QUALITY PARAMETERS
To affirm the importance of our newly defined metrics,
we map the defined suite of metrics to the ISO-9126 design
quality parameters. This will help to compare differently
designed SMC solutions for complexity, efficiency, perfor-
mance, understandability and maintainability. The metrics,
namely, Data Channel Requirements, Perturbation Resolve
Data Load, Memory Requirement, are inversely proportional
to the efficiency, performance, complexity, understandability
and maintainability. Whereas, the metrics, namely, Pertur-
bation Resolving Interactions, Decision Complexity, Rule-
base Complexity are directly proportional to complexity and
inversely proportional to understandability and maintainabil-
ity. Metrics Mapping to design quality parameters with inter-
pretation is depicted in Fig. 6. The symbol α represents a
directly proportional relation whereas the symbol 1/α denotes
inversely proportional relation.

The interpretations of the mappings are taken as follows.
Efficiency: More value of the efficiency related metrics

(Data Channel Requirement, Perturbation Resolving Data
Load, and Memory Factor) means an increase in cost and
hence a deficiency in resource usage is observed.

Performance: An increased value of Perturbation Resolv-
ing Time metric shows recovery performance going down.

Complexity: Perturbation Resolving Interactions should
be lesser than 10, and lower values for Decision Complexity
and Rule-base Complexity are better.

Understandability and Maintainability: Smaller values
for Perturbation Resolving Interactions, Decision Complex-
ity, and Rule-base Complexity are better for understandability
and maintainability.

VI. DISCUSSIONS
The work raises four primary research questions. To address
the first question, how to formally design Autonomic Com-
puting System (ACS), we proposed an interaction graph
(Fig. 1) based on IBM’s model of autonomic computing. The
graph represents an ACS in terms of its self-management
capabilities. The required sequence of interactions (between
modules of the system) against a specific anomaly can be
determined at design time using this graph. Thus, it is useful
for the design quality assessment of SMCs and in turn of
the ACS.

The second question was how to evaluate the self-
management capabilities. To address the second research
question, we developed seven design quality metrics
(section IV-A to section IV-F) using the schema interaction
graph (Fig. 1). We designed an autonomic computing sce-
nario, stock management system, with five self-management
capabilities to validate the proposed metrics. The system
was designed and developed with known parameters such as
interaction complexity, decision complexity, rule-base com-
plexity, bandwidth requirements, data traffic, recovery time,
and memory complexity. Then, the system was evaluated
through five different case studies. In each case study,
all the proposed metrics were used to calculate their

139770 VOLUME 7, 2019



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

corresponding values (Fig. 4). These results gave insights
about autonomic systems of the stock exchange which were
very much coherent with the expected results (known param-
eters). The PRIC metric (Fig. 4a) determines the complexity
of an SMC which in turn represents the recovery time of
a perturbation. The PRIC value of an SMC is directly pro-
portional to the understandability and maintainability efforts.
The PRDL metric (Fig. 4b) determines the communication
burden over the system when an SMC activated. It is iden-
tified that the communication load is inversely proportional
to the recovery performance. The rule-base complexity met-
ric (Fig. 4c) determines the effectiveness of a rule-base in
terms of how many autonomic solutions it contains. With
the decision complexity metric (Fig. 4d), all SMCs can
be sorted as per their decisions factor. Average decision
complexity metric measures the average number of decision
to be made by the system for all SMCs. The PRT metric
(Fig. 4e) calculates the recovery time of an SMC which
in turn represents the performance of the SMC. The DCR
(Fig. 4f) metric informs the bandwidth requirement for an
SMC execution. DCR value is inversely proportional to the
cost efficiency of an SMC. TheMRmetric (Fig. 4g) identifies
the efficiency of an SMC, and the cost is also increased
when MR value is increased. These calculated values were
compared with the known parameters which proved that these
proposed metrics are successfully evaluating the autonomic
system.

The third research question was to calculate the cost-
effectiveness and suitable execution environment. Using the
proposed metrics, we defined two functions that determine
the cost effect (refer to (14)) and suitability (refer to (15)) of
the execution environment for a self-* service. We calculated
the cost for all five case studies (Fig. 5). Further, a framework
can be developed on the base of the proposed functions to
keep a check over the cost and in hand resource utilization
for some self-* service and to determine a suitable execution
environment (local, server, or cloud).

Finally, the last research question has been answered
in section V-E, where we mapped the metrics to ISO-
9126 design quality parameters (Fig. 6) to compare dif-
ferent design solutions for complexity, efficiency, perfor-
mance, understandability, and maintainability. We concluded
that the proposed metrics are useful for quantitative assess-
ment of the design quality of an autonomic computing
system in terms of its self-management capabilities and
helpful to compare the differently designed solution of
an SMC.

VII. CONCLUSION AND FUTURE WORK
In this research, metrics were proposed to measure the
design quality of self-* capabilities for autonomic computing.
To validate the design quality metrics, a case study of stock
trading & forecasting was developed with self-management
capabilities using the principle of autonomic computing.
The results of experiments on the case study SMCs proved
that the design quality metrics are useful to measure

perturbation resolving complexity (in terms of interaction and
decisions complexities), perturbation resolving time, pertur-
bation resolving data load, memory cost incurred and data
channel requirements of an SMC. We also showed that a
framework can be developed on the bases of these metrics
to determine which execution container, a local environ-
ment, a server, or a cloud environment, is suitable for the
execution of an SMC service. The metrics were mapped
to the ISO-9126 design quality parameters suggested for
ACSs to compare different designs of an autonomic solu-
tion. Finally, we conclude that the proposed design qual-
ity metrics are necessary to compare and evaluate design
level quality of autonomic computing systems, and these
design metrics are useful for the selection of the execution
environment.

REFERENCES
[1] C. Raibulet and L. Masciadri, ‘‘Metrics for the evaluation of adaptiv-

ity aspects in software systems,’’ Int. J. Adv. Softw., vol. 3, nos. 1–2,
pp. 238–251, 2010.

[2] E. Kaddoum, M.-P. Gleizes, J.-P. George, and G. Picard, ‘‘Characterizing
and evaluating problem solving self-*systems,’’ in Proc. Comput. World,
Future Comput., Service Comput., Cogn., Adapt., Content, Patterns, 2009,
pp. 137–145.

[3] M. Kumar and N. Agrawal, ‘‘Analysis of different security issues and
attacks in distributed system a-review,’’ Int. J. Adv. Res. Comput. Sci. Softw.
Eng., vol. 3, no. 4, pp. 232–237, 2013.

[4] J. A. McCann and M. C. Huebscher, ‘‘Evaluation issues in autonomic
computing,’’ in Proc. Int. Conf. Grid Cooperat. Comput. Berlin, Germany:
Springer, 2004, pp. 597–608.

[5] R. Rufus, W. Nick, J. Shelton, and A. Esterline, ‘‘An autonomic computing
system based on a rule-based policy engine and artificial immune sys-
tems,’’ in Proc. Mod. Artif. Intell. Cogn. Sci. (MAICS), Ohio, OH, USA,
2016, pp. 105–108.

[6] IBM-Autonomic Computing, ‘‘An architectural blueprint for autonomic
computing, version 4,’’ IBM, Armonk, NY, USA, White Paper, 2006,
vol. 31, pp. 1–6. [Online]. Available: https://scholar.google.com/scholar?
q=%27IBM%20and%20autonomic%20computing%3A%20an%20
Architectural%20Blueprint%20for%20Autonomic%20Computing%27
%2C%20IBM%20Publication%20%28April%202003%29-http%3A%2
F%2F%20www.ibm.com%2Fautonomic%2Fpdfs%2FACwpFinal.pdf

[7] P. Horn, ‘‘Autonomic computing: IBM’s perspective on the state of infor-
mation technology,’’ Int. Bus.Mach. Corp., Armonk, NY,USA, Tech. Rep.,
2001. [Online]. Available: https://people.scs.carleton.ca/~soma/biosec/
readings/autonomic_computing.pdf

[8] Oxford Dictionaries. Perturbation. Accessed: May 1, 2016. [Online].
Available: https://en.oxforddictionaries.com/definition/perturbation

[9] Y. Abuseta and K. Swesi, ‘‘Design patterns for self adaptive sys-
tems engineering,’’ Aug. 2015, arXiv:1508.01330. [Online]. Available:
https://arxiv.org/abs/1508.01330

[10] B. A. Miller, ‘‘The autonomic computing edge: Keeping in touch with
touchpoints,’’ IBM Corp., Armonk, NY, USA, Tech. Rep., Aug. 2005.
[Online]. Available: http://www.ibm.com/developerworks/autonomic/
library/ac-edge5

[11] E. Gandrille, C. Hamon, and P. Lalanda, ‘‘Linking reference and runtime
architectures in autonomic systems,’’ in Proc. Symp. Archit. Definition
Eval. (IST), Toulouse, France, 2013, pp. 13–14.

[12] S. Singh and I. Chana, ‘‘QoS-aware autonomic resource management in
cloud computing: A systematic review,’’ACMComput. Surv., vol. 48, no. 3,
p. 42, 2016.

[13] S. Singh, I. Chana, and M. Singh, ‘‘The journey of QoS-aware autonomic
cloud computing,’’ IT Prof., vol. 19, no. 2, pp. 42–49, Mar./Apr. 2017.

[14] H.-W. Jung, S.-G. Kim, and C.-S. Chung, ‘‘Measuring software product
quality: A survey of ISO/IEC 9126,’’ IEEE Softw., no. 5, no. 5, pp. 88–92,
Sep./Oct. 2004.

[15] M. Salehie and L. Tahvildari, ‘‘Autonomic computing: Emerging trends
and open problems,’’ in Proc. ACM SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1–7, 2005.

VOLUME 7, 2019 139771



A. Jaleel et al.: Design Quality Metrics to Determine the Suitability and Cost-Effect of Self-* Capabilities for ACSs

[16] D. K. Tyagi, A. Awasthi, and R. Rastogi, ‘‘Analysis and design of metrics
for autonomic computing,’’ NIET J. Eng. Technol., vol. 1, no. 2, pp. 59–63,
2013.

[17] M. Shoaib, A. Shah, and F. Majeed, ‘‘Software design quality metrics for
Web based applications,’’ Pakistan J. Sci., vol. 63, no. 1, pp. 20–26, 2011.

[18] O. Mola and M. A. Bauer, ‘‘Collaborative policy-based autonomic man-
agement: In a hierarchical model,’’ in Proc. 7th Int. Conf. Netw. Service
Manage., Oct. 2011, pp. 1–5.

[19] C. Raibulet, ‘‘Hints on quality evaluation of self-systems,’’ in Proc.
IEEE 8th Int. Conf. Self-Adapt. Self-Organizing Syst. (SASO), Sep. 2014,
pp. 185–186.

[20] X. Etchevers, T. Coupaye, and G. Vachet, ‘‘Experiences in benchmarking
of autonomic systems,’’ in Proc. Int. Conf. Auto. Comput. Commun. Syst.
Berlin, Germany: Springer, 2009, pp. 48–63.

[21] S. Singh and I. Chana, ‘‘Metrics based workload analysis technique
for iaas cloud,’’ Nov. 2014, arXiv:1411.6753. [Online]. Available:
https://arxiv.org/abs/1411.6753

[22] E. Kaddoum, C. Raibulet, J.-P. Georgé, G. Picard, and M.-P. Gleizes,
‘‘Criteria for the evaluation of self-*systems,’’ in Proc. ICSE Workshop
Softw. Eng. Adapt. Self-Manag. Syst., 2010, pp. 29–38.

[23] P. Lin, A. MacArthur, and J. Leaney, ‘‘Defining autonomic computing:
A software engineering perspective,’’ in Proc. Austral. Softw. Eng. Conf.,
2005, pp. 88–97.

[24] B. Bjorn. Charateristics of Great Software Design. Accessed:
Oct, 14, 2014. [Online]. Available: http://bybjorn.com/30/

[25] R. C. Calinescu, ‘‘Reconfigurable service-oriented architecture for auto-
nomic computing,’’ Int. J. Adv. Intell. Syst., vol. 2, no. 1, pp. 38–57, 2009.

[26] J. Coleman, T. Lau, B. Lokhande, P. Shum, R. Wisniewski, and M. P. Yost,
‘‘The autonomic computing benchmark,’’ in Dependability Benchmarking
for Computer Systems, vol. 72. Hoboken, NJ, USA: Wiley, 2008, p. 1.

[27] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[28] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[29] J. D. Kiper, ‘‘Structural testing of rule-based expert systems,’’ ACM Trans.
Softw. Eng. Methodol., vol. 1, no. 2, pp. 168–187, 1992.

[30] Z. Chen and C. Y. Suen, ‘‘Measuring the complexity of rule-based expert
systems,’’ Expert Syst. Appl., vol. 7, no. 4, pp. 467–481, 1994.

[31] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[32] T. J. McCabe and C. W. Butler, ‘‘Design complexity measurement and
testing,’’ Commun. ACM, vol. 32, no. 12, pp. 1415–1425, 1989.

[33] A. Madi, O. K. Zein, and S. Kadry, ‘‘On the improvement of cyclomatic
complexity metric,’’ Int. J. Softw. Eng. Appl., vol. 7, no. 2, pp. 67–82, 2013.

[34] L. N. Preeti and S. J. Bhadula, ‘‘A methodology for obtaining complexity
of component-based software,’’ Int. J. Softw. Eng. Appl., vol. 11, no. 4,
pp. 1–10, 2017.

[35] E. Manoel, M. J. Nielson, A. Salahshour, K. V. L. S. Sampath, and
S. Sudarshanan, Problem Determination Using Self-Managing Autonomic
Technology. Armonk, NY, USA: IBM International Technical Support
Organization, 2005.

[36] K. P. Kumar andN. S. Naik, ‘‘Self-healingmodel for software application,’’
in Proc. Int. Conf. Recent Adv. Innov. Eng., 2014, pp. 1–6.

[37] W. D. Zhu, ‘‘High availability implementation for IBM filenet P8 system
components,’’ in IBM High Availability Solution for IBM FileNet P8 Sys-
tems (International Technical Support Organization). Armonk, NY, USA:
IBM Red Books, 2009, ch. 5.

[38] A. Jaleel, S. Arshad, and M. Shoaib, ‘‘A secure, scalable and elastic
autonomic computing systems paradigm: Supporting dynamic adaptation
of self-*services from an autonomic cloud,’’ Symmetry, vol. 10, no. 5,
p. 141, 2018.

[39] P. Mittal, A. Singhal, and A. Bansal, ‘‘A study on architecture of autonomic
computing-self managed systems,’’ Int. J. Comput. Appl., vol. 92, no. 6,
pp. 6–9, 2014.

ABDUL JALEEL received the B.S. degree in com-
puter science and engineering from the University
of Engineering and Technology, Lahore, Lahore,
Pakistan, in 2006, the M.S. degree in computer
science in 2010, and the Ph.D. degree in com-
puter science from the University of Engineering
and Technology, Lahore, in 2019, where he is
currently an Assistant Professor with the Depart-
ment of Computer Science, Rachna College. His
research interest includes the development of self-

managing software applications. His major interests include autonomic com-
puting and software quality measurement metrics.

SHAZIA ARSHAD received the M.S. degree in
computer science from Agriculture University,
Faisalabad, Pakistan, and the Ph.D. degree from
the University of Engineering and Technology,
Lahore, Pakistan.

She is currently a Professor with the Department
of Computer Science and Engineering Depart-
ment, University of Engineering and Technology,
Lahore, and also serving as the Head of the Depart-
ment. Her research interests include blockchain,

software engineering, and adaptive learning.

MUHAMMAD SHOAIB received the M.Sc.
degree in computer science from Islamia Univer-
sity, Pakistan, and the Ph.D. degree from the Uni-
versity of Engineering and Technology, Lahore,
Pakistan, in 2006. His Postdoctoral is from Florida
Atlantic University, USA, in 2009.

He is currently a Professor with the Com-
puter Science and Engineering Department, Uni-
versity of Engineering and Technology, Lahore.
His current research interests include information

retrieval systems, information systems, software engineering, and seman-
tic web.

MUHAMMAD AWAIS received the B.S. degree
(Hons.) in computer science from Punjab Univer-
sity, and the M.S. and Ph.D. degrees in computer
science from the University of Engineering and
Technology, Lahore, Lahore, Pakistan, where he
is currently an Assistant Professor with the Com-
puter Science and Engineering Department. His
research interests include artificial intelligence,
reinforcement learning, adaptive eLearning sys-
tems, and affective computing.

139772 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	AUTONOMIC COMPUTING AND SELF-MANAGEMENT CAPABILITIES
	SCHEMA REPRESENTATION OF AN AUTONOMIC COMPUTING SYSTEM IN TERMS OF SELF-MANAGEMENT CAPABILITIES

	DESIGN QUALITY METRICS FOR ASSESSMENT OF A SELF-MANAGEMENT CAPABILITY
	PERTURBATION RESOLVING INTERACTIONS COMPLEXITY (PRIC) METRIC
	DATA CHANNEL REQUIREMENT (DCR) METRIC
	PERTURBATION RESOLVING DATA LOAD (PRDL) METRIC
	RULE-BASE COMPLEXITY AND DECISION COMPLEXITY METRICS
	PERTURBATION RESOLVING TIME (PRT) METRIC
	AUTONOMIC LOGIC'S MEMORY REQUIREMENT (MR) METRIC
	SMC'S COST- EFFECT AND SUITABILITY OF THE EXECUTION ENVIRONMENT

	EXPERIMENTS & RESULTS
	CASE STUDY FOR METRICS VALIDATION
	EXPERIMENTAL RESULTS
	ServerFarm & LOAD MANAGEMENT SERVICE
	STOCK TRADE FORECASTING SERVICE
	INSTALLED APPLICATION PROTECTION
	SERVER-TO-DATABASE CONNECTIVITY CONTROL
	ACTIVITY LOG MEMORY MANAGEMENT

	OVERALL DESIGN EVALUATION AND METRICS VALIDATION
	SMC'S COST-EFFECT EVALUATION AND FRAMEWORK FOR SUITABILITY DETERMINATION
	METRICS MAPPING TO DESIGN QUALITY PARAMETERS

	DISCUSSIONS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ABDUL JALEEL
	SHAZIA ARSHAD
	MUHAMMAD SHOAIB
	MUHAMMAD AWAIS


