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ABSTRACT Metastasis is the leading cause of cancer-related death. A small proportion of tumor cells can
spread to other tissues through the lymph system or bloodstream and colonize in a new microenvironment.
However, not all tumors from the primary site can metastasize. What is the difference between metastatic
and primary tumors? Can such difference be preserved in widely used patient-derived xenografts (PDX)?
To answer these questions, we analyzed the single-cell gene expression profiles of 36 cells from PDX
of metastatic renal cell carcinoma (mRCC), 47 cells from PDX of primary RCC (pRCC), and 35 cells
from parental mRCC (pt-mRCC). First, the gene expression patterns of PDX-mRCC and PDX-pRCC
were compared, and the PDX-mRCC signatures were generated. Such signatures reflected the difference
between metastatic and primary tumors. Second, the pt-mRCC were tested on whether they can be correctly
classified into the PDX-mRCC class rather than PDX-pRCC. We found that pt-mRCC were very similar
with PDX-mRCC. Our results prove that the PDX is a great research model for metastatic tumors since it
preserved the essences for tumor metastasis. Our results justify the applications of PDX in metastatic tumor
studies.

INDEX TERMS Tumor metastasis, patient-derived xenografts, gene expression, Monte Carlo feature
selection, support vector machine.

I. INTRODUCTION
Renal cell carcinoma (RCC) is a malignant proliferative dis-
ease involving the abnormal proliferation and invasion of
mixed renal cells [1], [2]. Originating from the proximal con-
voluted tubule, RCC has been reported to be one of the most
common subtypes of kidney cancer, accounting for more
than 90% of all renal cancers [3]. Globally, kidney and
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renal pelvis cancers are responsible for more than 15.6 new
cases and approximately 3.9 new deaths per 100,000 men
and women [4]. According to 2014 statistics, more than
480,000 people suffered from such diseases in the United
States [3]. Furthermore, in 2017, more than 64,000 people
were estimated to have been diagnosed with such disease,
considering the increasing morbidity in the past 15 years.
Although the 5-year survival rate of such disease has
increased by more than 74% with the development of clinical
treatment, RCC is still a great threat to human health [3].
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Metastasis is one of the major pathogenic behaviors for
almost all types of cancers [5], [6]. As a malignant tumor
subtype, RCC metastasis has been widely identified in clin-
ical practice [7], [8]. Generally, there are three major ways
for cancer to metastasize and spread in the body: (1) direct
spread into tissues around the primary situs (2) movement
into the lymph system, and (3) movement into the blood-
stream [9]. During metastasis, not all primary tumor cells
can successfully transfer and colonize into a new microen-
vironment. Therefore, all metastatic cells are derived from
the original primary tumor tissues and are further screened
and filtered by metastatic tumor microenvironment. Accord-
ing to recent publications, the distinctive expression pat-
tern between metastatic and primary tumor tissues have
already been identified in various tumor types, including
RCC [10], [11]. Early in 2003, a systematic study [12] on pri-
mary and metastatic tumor tissues confirmed that the expres-
sion profiles of metastatic tumor tissues can only reflect
those of only a small subgroup of primary tumor tissues,
validating the distinctive and alternative expression patterns
during tumor metastasis.

Considering the alternative expression pattern of these
tumor cell subgroups, for a long time, researchers have tried
to establish an applicable tumor model to identify such dif-
ferences. The patient-derived xenograft (PDX) mouse model
was created by implanting the patient’s clinical tumor tis-
sues (either primary or metastatic) into an immune-deficient
mouse; it has been widely used in scientific studies on mul-
tiple tumor types, including breast cancer, colorectal cancer,
pancreatic cancer, and renal carcinoma [13]–[16]. Implanted
under aseptic conditions, the PDX mouse model is able to
reflect the genetic background and basic biological charac-
teristics of patients’ original tumor tissues to the maximum
extent [15]. Therefore, PDX mouse models are gradually
being used in tumor studies. However, various studies have
confirmed that during the implantation and development of
tumor xenografts, the implanted tumor tissues may lose some
of the hereditary information due to the distinctive environ-
mental stress [17]. Therefore, the genetic background of PDX
mouse model containing tumors may not be exactly the same
with the original tumor tissues. Such controllable distinctions
may be acceptable in studies focusing only on primary or
metastatic tumors. However, PDX mouse models are also
widely used in comparative studies between primary and
metastatic tumor tissues, in which the proportion of genetic
information loss may be quite significant [18]. Up to now,
no direct studies have validated whether the PDX model
can accurately reflect the expression distinction of primary
and metastatic tumor tissues. Therefore, we summarized the
expression profiles from Kim et al.’s study [18] on RCC and
explored the distinctive expression pattern between primary
and metastatic PDX mouse model-containing tissues.

In this study, based on the expression pattern of metastasis
and primary tumor retrieved fromKim et al.’s study, we estab-
lished a systematic computational method to identify the
core differential expression pattern in primary and metastatic

tumor tissues. On one hand, we qualitatively identified a
group of effective genes that may have different expression
patterns in primary tumor tissues relative to the metastatic
ones and quantitatively set up a rule for such distinction.
On the other hand, the correspondence between our training
sets and test sets reflected the expression consistency between
clinical tumor tissues (in situ or metastatic) and PDX tumor
tissues, implying that the PDX mouse model may be a quite
accurate and efficient mouse model for tumor research.

II. MATERIALS AND METHODS
A. DATASET
We downloaded single-cell RNA sequencing data
of 24,866 genes in 36 cells from PDX of metastatic renal
cell carcinoma (mRCC), 47 cells from PDX of primary
RCC (pRCC), and 35 cells from parental mRCC (pt-mRCC)
from the Gene Expression Omnibus with accession num-
ber of GSE73121 [18]. We investigated the expression
difference of 24,866 expressed genes in PDX-mRCC and
PDX-pRCC and tested whether the PDX-mRCC signature
can be used to identify the mRCC samples. The PDX-mRCC
and PDX-pRCC formed the training dataset, and the pt-
mRCC served as the test dataset. First, the PDX-mRCC signa-
tures were generated by comparing the differential expression
of PDX-mRCC and PDX-pRCC. Second, the pt-mRCC were
tested on whether they can be correctly classified into the
PDX-mRCC class rather than PDX-pRCC.

B. FEATURE SELECTION
To identify highly related genes for PDX-mRCC and
PDX-pRCC cells, we used a two-stage feature selection
method. First, Monte Carlo feature selection (MCFS) [19]
was applied to rank all available genes. Second, incremental
feature selection (IFS) [20] was utilized on the ranked fea-
tures to identify genes with strong discriminative power for
cells of PDX-mRCC and PDX-pRCC.

MCFS [19] is used to rank the input features because
it is good at dealing with high-dimensional datasets such
as the training dataset in this study. To date, it has been
applied to analyze different biological problems [21]–[23].
It consists of multiple decision tree classifiers. Each deci-
sion tree is built using m features randomly selected from
original M features (m << M) and a bootstrap set from
the original training set. For each feature subset, p decision
trees are grown on p bootstrap sets consisting of features
from this feature subset. The above process is repeated t
times. In the end, we yield t feature subsets and a total of
p × t decision trees. MCFS estimates the relative impor-
tance (RI) as an importance score for each feature according
to weighted accuracy of each decision tree and the overall
number of splits made on that feature in all nodes of all
trees. In this study, MCFS software package downloaded
from http://www.ipipan.eu/staff/m.draminski/mcfs.html is
used to produce the ranked feature list in descending order
of RI scores of features.
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In addition, the MCFS method can output the most impor-
tant features, called informative features. These features are
always top ranking features in the feature list by setting a crit-
ical value of RI scores, which is determined by a permutation
test on class labels and one-sided Student’s t-test [24]. The
obtained informative features are deemed to be essential for
classification.

However, different classification algorithm needs different
feature subspace to construct an optimal classifier. Thus,
the informative features produced by MCFS method are not
always optimal for each classification algorithm. In view
of this, we selected a certain number of features with the
best performance for a give classification algorithm using the
IFS method [20]. Given a ranked feature list withM features
from MCFS, denoted as F = [f1, f2, . . . , fM ], here we only
kept M features of the original 24,866 genes with RI scores
greater than 0. IFS first constructs a series of feature subsets
according to the rank of each feature, with each feature
subset having an additional feature than the former. Then,
it collects the samples consisting of features from individual
feature subsets. Support vector machine (SVM) was used
to assess the classification performance on samples using
10-fold cross-validation [25]–[28]. In the end, we obtained
an SVM classifier with the best performance, whose input
features are called optimal features.

C. SVM
SVM seeks a separating hyperplane with maximum margin
between samples from different classes in the feature space.
In many cases, however, data samples are neither linearly nor
perfectly separable. Thus, soft-margin SVM is proposed as it
allows misclassification errors and maps the original features
into a higher dimensional space using kernel tricks, in which
the data samples are linearly separable. SVMs are widely
and successfully used inmany biological problems [29]–[33],
especially for binary classification problems.

A tool, named ‘‘SMO’’, in Weka [34] was employed in
this study because it implements a type of SVM algorithm
optimized by the sequential minimal optimization (SMO)
[35]. For convenience, this tool was performedwith its default
parameters. In detail, the parameter C was 1.0 and the kernel
was a polynomial function. The Weka can be downloaded at
https://www.cs.waikato.ac.nz/ml/weka/downloading.html.

D. RULE LEARNING
As metnioned in Section II-B, MCFS method can produce
some informative features, which are some top featuers in
the feature list. From these informative features, the Johnson
Reducer algorithm [36] was adopted to extract a reduced
feature subset that can give similar performance comparing
with using all informative features. Then, a rule algorithm,
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) algorithm [37], was applied to construct classifi-
cation rules. The detailed procedures for constructing rules
via RIPPER algorithm are shown in Figure 1. The rules pro-
duced by RIPPER algorithm contain two parts: (I) conditions,

FIGURE 1. The whole procedures of Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) algorithm for extracting classification
rules [23].

listed at the left-hand-side of the rule; (II) result, listed at
the right-hand-side of the rule. For instance, a rule can be
‘‘IF Gene1 >= 0.2 AND Gene2 <= −1.3 THEN mRCC’’.
The MCFS program used in this study integrated the John-
son Reducer algorithm and RIPPER algorithm. Thus, it can
directly output the classification rules, which were exten-
sively analyzed in this study.

E. PERFORMANCE EVALUATION
In this study, we performed 10-fold cross-validation on the
training set and also evaluated the training model on a test set
consisting of pt-mRCC samples. As a binary classification
problem, we compared the predicted and real labels, and
four values were counted. They were true positive (TP), true
negative (TN), false negative (FN), and false positive (FP).
Based on these values, four measurements, sensitivity (SN),
specificity (SP), prediction accuracy (ACC), and Matthew’s
correlation coefficient (MCC) [38]–[40], can be calculated to
evaluate the prediction ability of the classifier:

SN =
TP

TP+ FN

SP =
TN

TN + FP

ACC =
TP+ TN

TP+ TN + FP+ FN

MCC=
TP× TN − FP× FN

√
(TN+ FN )×(TN+FP)×(TP+FN )×(TP+FP)

(1)

III. RESULTS
In this study, we employed several advanced computational
methods to analyze the single-cell RNA sequencing data
in PDX-mRCC and PDX-pRCC. The whole procedures are
illustrated in Figure 2.

A. RESULTS OF MCFS METHOD
We first used MCFS method to rank all features in the
feature list by descending order of their RI scores. The top
3,525 features/genes with corresponding RI scores greater
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FIGURE 2. Whole procedures for analyzing single-cell RNA sequencing data in PDX-mRCC and PDX-pRCC.
PDX-mRCC and PDX-mRCC samples constituted a training dataset, which were represented by single-cell RNA
sequencing data of 24,866 genes. The training dataset was analyzed by the MCFS method, producing
31 informative features and a feature list containing 3,525 genes with RI scores larger than zero. Classification
rules were constructed via Johnson Reducer and RIPPER algorithms with informative features. For the feature
list, IFS method using SVM as the prediction engine was applied to extract optimal features and construct an
optimal SVM classifier. The optimal SVM classifier was finally applied on pt-mRCC samples to evaluate its
performance.

TABLE 1. Two produced classification rules for distinguishing PDX-mRCC
and PDX-pRCC samples.

than 0 are listed in Table S1. These features would be used
in the IFS method and the rest features were discarded.

In addition, the MCFS method also provided 31 infor-
mative features, which were exact 31 top features in the
feature list. Based on these 31 informative features, we fur-
ther produced two rules listed in Table 1 using the Johnson
reducer algorithm and RIPPER algorithm implemented in the
MCFS program. To indicate the effectiveness of rules yielded
by these two algorithms on 31 informative features, we tested
them via 10-fold cross-validation three times, resulting in
an SN of 0.963, SP of 1.000, ACC of 0.984, MCC of 0.968.
It is quite effective.

B. RESULTS OF IFS METHOD WITH SVM
We also tried to select optimal feature subspace for SVM
via the IFS method. We first selected 3,525 genes with
RI scores>0, which were calculated via MCFSmethod. Sec-
ond, a series of feature subsets with step 1 on the 3,525 genes
were constructed. Third, the SVM classifier built on samples
in the training dataset consisting of features from each

constructed feature subset was evaluated by 10-fold cross-
validation. The predicted results were counted as SNs, SPs,
ACCs, and MCCs as mentioned in Section II-E, and they
are all listed in Table S2. SVM could correctly classify all
samples when the top four genes were used.

Furthermore, we evaluated the above SVM classifiers
trained on PDX-mRCC and PDX-pRCC samples represented
by different numbers of features to classify pt-mRCC samples
in the test dataset. The results are provided in Table S3.
We obtained an accuracy of 100% when the top 838 genes
were used. Thus, we can construct an optimal SVM classifier
on these 838 genes, which was trained on PDX-mRCC and
PDX-pRCC and used to correctly classify pt-mRCC samples.

However, analyzing these 838 genes is an impossible task.
Thus, it is necessary to reduce them. To this end, a curve
was plotted in Figure 3 to show the trends of these SNs
yielded by the SVM classifiers with 4-500 top genes. The
SN was 0.829 when the top eight genes were used. Thus, we
believed that 8 is a critical value for selecting most important
genes to correctly classify pt-mRCC samples by the model
trained on PDX-mRCC and PDX-pRCC samples.

C. COMPARISON OF IFS METHOD
WITH C4.5 DECISION TREE
In this study, we selected SVM as the classification algo-
rithm to construct the optimal classifier. In fact, we also tried
another classic machine learning algorithm, C4.5, a classic
decision tree [41]. For quickly implementing this algorithm,
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TABLE 2. Detailed information of the top eight genes.

FIGURE 3. The trends of sensitivity on pt-mRCC samples corresponding to
the number of features that were used to build a SVM classifier on
PDX-mRCC and PDX-pRCC samples. It can be observed that the SVM
classifier with top eight features can yield the sensitivity higher than 0.8.
Thus, top eight features were deemed most important.

we employed the tool, called ‘‘J48’’, in Weka and executed it
with its default parameters. For each of feature subsets con-
structed in the IFS method, a C4.5 classifier was constructed
on PDX-mRCC and PDX-pRCC samples and evaluated via
10-fold cross-validation. Table S4 lists the evaluation results,
including SNs, SPs, ACCs andMCCs. It can be observed that
evaluation results were identical whenever howmany features
were selected. TheMCCwas 0.927, which was inferior to the
perfect classification yielded by the optimal SVM classifier.
Furthermore, we also tested the performance of these C4.5
classifiers on pt-mRCC samples, yielding an identical SN
of 0.886, listed in Table S5, which was also lower
than 1.000 that was produced by the optimal SVM classifier.
All of these indicate that selection of SVM as the classifica-
tion algorithm was a proper choice.

IV. DISCUSSION
As we have mentioned above, based on the expression
profiles from Kim et al.’s study, we screened out eight func-
tional genes (Table 2) that have distinctive expression pat-
terns in primary and metastatic tumor tissues derived from
PDXmouse model tumors. Based on the detailed quantitative
gene expression level, we also set up two rules (Table 1) for
further distinction on the two groups of PDX tumor tissues.
All distinctive functions of the eight genes and rules could
be validated by recent publications, reflecting the efficacy
and accuracy of our results. Furthermore, such distinctions
could be confirmed to be derived from the original primary

and metastatic tumor tissues from the patients by test set
results. These results confirmed that, on one hand, the
PDX mouse model can directly reflect the expression profile
distinction between primary and metastatic tumor tissues
and, on the other hand, the genes and rules we screened
out may accurately distinguish the two subgroups of tumor
tissues, providing a novel computational tool for tumor stud-
ies. The detailed analysis of each gene and rule can be seen
below.

A. ANALYSIS OF OPTIMAL DIFFERENTIALLY
EXPRESSED GENES
MT2A (ENSG00000125148), encoding a metallothionein
protein, has been widely reported to contribute to heavy
metal binding and is transcriptionally regulated by both
heavy metals and glucocorticoids [42]. Two studies [43], [44]
that investigated the expression profile and drug sensitivity
of primary and metastatic tumors by using a PDX mouse
model confirmed that the expression distinction of such gene
between primary and metastatic tumor tissues can still be
identified in their respective PDX mouse model-containing
tumor tissues, validating that such core distinctive expres-
sion marker of tumor metastasis can be stably expressed
and identified in the PDX mouse model. Similarly, the next
gene, named MT1L (ENSG00000260549), has also been
widely reported to participate in glucocorticoid-associated
biological processes [45]. An early study [45] on metalloth-
ionein proteins confirmed that such gene may contribute to
the invasion and metastasis of renal carcinoma, indicating its
differential expression pattern in tumors in vivo. As for its
distinctive functions on tumors in the PDX mouse model,
glucocorticoid-associated genes have been widely reported
to maintain the differential expression pattern in a PDX
mouse model [43], [44]. Therefore, the biological function of
such gene may also be distinctive in primary and metastatic
PDX tumor tissues.

Apart from such glucocorticoid-associated genes,
theHSPA6 (ENSG00000173110) gene has also been deemed
to contribute to the identification of primary and metastatic
tumor tissues in the PDX mouse model. As a member of heat
shock protein family, HSPA6 has been reported to interact
with HSP70-2 and has differential expression patterns in pri-
mary and metastatic clinical tumor samples [46], [47]. As for
its expression profiles in the PDX mouse model, although

142590 VOLUME 7, 2019



Y. Jiang et al.: Gene Expression Difference Between Primary and mRCC Using Patient-Derived Xenografts

there are no direct reports on the expression pattern of such
gene in patient-derived mouse model, the specific contribu-
tion [48], [49] tometastasis and invasion of heat shock protein
family members, including this gene, in PDX models indi-
cates that such gene may still be a proper identifier contribut-
ing to the distinction of primary and metastatic tumor-derived
mouse models. KRT81 (ENSG00000205426), encoding a
basic protein to form the keratin of multiple tissues all over
the human body, is functionally related to various tumor
subtypes [50], [51]. As for its differential expression pattern
in primary and metastatic tumor tissues, KRT81 has been
confirmed to be associated with the survival and invasion
ability of tumor cells in a new tumor microenvironment (such
as the novel metastatic focus) [52]. As for its functional
retention during PDX implantation and development, another
study [53] on similar transplantation process confirmed that
the differential expression pattern of such gene in different
tissues, such as primary and metastatic tissues, can be stably
retained.

CSF2 (ENSG00000164400) encodes a cytokine that con-
trols the production, differentiation, and function of granulo-
cytes and macrophages in the tumor microenvironment [54].
As for its distinctive expression pattern in primary and
metastatic tumor lesions, considering the negative regulatory
functions of such gene on tumor invasion and metastasis,
it is quite reasonable to speculate that such gene may have
differential expression patterns in primary and metastatic
tumor tissues [55], [56]. As for the retention characteris-
tics of such gene in the PDX mouse model, recent publi-
cations confirmed that, as one of the components of tumor
microenvironment, myeloid-derived suppressor cells have a
quite stable expression pattern in different tumor microen-
vironments, indicating that such gene may also be a stable
biomarker for the identification of primary and metastatic
tumor tissues in the PDX mouse model [57], [58]. FSTL1
(ENSG00000163430), encoding an activing-binding protein,
has also been predicted to have a differential expression
pattern in primary and metastatic tumor-derived PDX mouse
models. According to recent publications, FSTL1 has been
widely reported to participate in tumor metastasis, indicat-
ing its differential expression pattern between primary and
metastatic tumor tissues in vivo [59], [60]. By regulating the
immune dysfunction of certain metastatic focus, such gene
may maintain its unique differential expression pattern in
the PDX mouse model after implantation due to the lack of
immune selection. Such results have been verified by another
individual study [61].

The NME7 (ENSG00000143156) gene encodes a non-
metastatic expressed nucleoside diphosphate kinase [62].
Only two studies on the NME protein family confirmed
that such gene may directly regulate the metastatic biolog-
ical functions of tumors with different expression profiles
in primary and metastatic tumor tissues [63], [64]. As for
the retention ability of the expression pattern in the PDX
mouse model, based on an evolutionary study, such gene has
a quite stable expression pattern in multiple vertebrate cell

microenvironments [64]. Therefore, considering the stable
expression pattern of such gene in alternative microenviron-
ments, it is quite reasonable to speculate that such gene may
also have a distinctive expression pattern in primary and
metastatic tumor tissues in the PDX mouse model. The last
gene SEMA6A (ENSG00000092421) has been generally
reported to participate in normal granule cell migration [65].
As for its specific contribution on tumor metastasis, such
gene has been widely reported to contribute to the progres-
sion, invasion, and metastasis of multiple tumor subtypes by
interacting with semaphorins and their receptors [66], [67].
A novel study [68] on OTX2-driven stem cell confirmed that
implanting patient-derived tumors in mouse model may not
affect the original expression pattern of SEMA6A (a ligand
for Plexin-A2), indicating that such gene can definitely dis-
tinguish primary and metastatic tumor tissues in PDX mouse
model.

B. ANALYSIS OF OPTIMAL RULES FOR DISTINCTION
Apart from such qualitative distinctive genes, we also
screened out two potential quantitative rules (Table 1)
for the identification of metastatic tumor-derived mouse
model. Only one unique functional gene, called MT2A
(ENSG00000125148), is involved with the rules. As we
have analyzed above, the differential expression patterns
of such gene in primary and metastatic tumor-derived
PDX mouse model have been verified by two experimental
studies [43], [44]. Considering that the up-regulation of such
gene directly promotes the invasion and metastasis of various
tumor subtypes, it is quite reasonable to speculate that with
expression level higher than 10.138 (number summarized
from our training set), the test samplemay bemore reasonable
to be derived from metastatic tumor tissues compared with
primary ones [69].

Taken together, we screened out eight qualitative identi-
fiers for the recognition of PDX mouse model derived from
primary or metastatic tumor tissues. These genes have been
confirmed to have differential expression patterns in primary
and metastatic tumor tissues and may maintain their expres-
sion pattern during implantation. As for the quantitative rules,
we only screened out a unique rule involving a qualitative
gene that we have just predicted above, MT2A, which has
also been validated by recent publications. In summary, based
on the expression profile provided by Kim et al.’s study [18],
we not only identified a group of stably expressed genes
in the PDX model (which may distinguish metastatic tumor
samples from primary tumor samples) but also established
a quantitative rule for further validation on tumor metastatic
tissues derived from the PDX mouse model.
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