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ABSTRACT In this paper, we present a method to improve emotion recognition based on the fusion of
local cortical activations and dynamic functional network patterns. We estimate the cortical activations
using power spectral density (PSD) with the Burg autoregressive model. On the other hand, we estimate
the functional connectivity networks by utilizing the phase locking value (PLV). The results of cortical
activations and connectivity networks show different patterns across three emotions at all frequency bands.
Similarly, the results of fusion significantly improve the classification rate in terms of accuracy, sensitivity,
specificity and the area under the receiver operator characteristics curve (AROC), p < 0.05. The average
improvement with fusion in all evaluation metrics are 6.84% and 4.1% when compared to PSD and PLV
alone, respectively. The results clearly demonstrate the advantage of fusion of cortical activations with
dynamic functional networks for developing human-computer interaction system in real-world applications.

INDEX TERMS Emotion, electroencephalogram (EEG), cortical activation, functional connectivity network
patterns, fusion, classification.

I. INTRODUCTION
Emotion recognition facilitates the interaction between
humans and intelligent machines. An emotion consists of
complex mental activities that influence the physical and psy-
chological behavior of a person during the process of social
interactions and decision-making. Thus, emotion recognition
is a critical factor for several domains such as human robot
interaction, characterizing the level of interest on learning,
identifying the level of vigilance in road and safety, detect-
ing patient’s mental and physical states and the progress in
recovery [1]–[3].

Different approaches have been considered to measure
emotions. These include the methods based on speech,
facial expressions, physiological measurements and self-
assessment [3]–[6]. However, each of these poses cer-
tain limitations. For example, social expectations may bias
self-assessment of emotions, speech, and facial expressions.
Subjects may conceal their feelings and hence influence these
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measures. Paralysis and skin diseases may also affect the
facial expressions. In addition, emotion recognition through
facial expressions require the subjects to stand in front of a
camera to measure their expressions.

On the other hand, physiological signalsmeasured from the
autonomous nervous system (ANS) such as heart rate, respi-
ration, and skin conductance yield a more objective measure
of emotions than through facial expressions or voice [3], [7].
However, these types of signals are sensitive to cardiovas-
cular diseases, skin diseases, and physical activities [8], [9].
In particular, various human activities can generate signals
similar to those produced by ANS to emotional states, hence
affecting the accuracy of emotion recognition.

To overcome the limitations mentioned above, researchers
have utilized the physiological signals from the central
nervous system (CNS) acquired using Electroencephalo-
gram (EEG) technique. EEG signals provide a quantitative
measure of the electric potentials generated from the brain in
response to a particular stimulus. This has the advantages of
being portable, low cost, easy to set-up, and having a high
temporal resolution.
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Researchers have focused on studying the relationship
between emotional states and brain activities and have
found a strong influence of cognitive processes on emo-
tions [10]–[13]. Several databases have been published
in literature to evaluate different emotions. For example,
ENTERFACE’06 [14] dataset with 54 EEG-channel recorded
from 5 subjects is one such example. Another published
database is the MAHNOB-HCI [15] database comprising 32
EEG-channel recorded from 27 subjects watching video clips
with different emotions. Additionally, Koelstra et al. [16]
published another public database called DEAP for the anal-
ysis of human emotions. This dataset contains 32 EEG-
channel data of 32 subjects watching music video clips.
Recently, SEED database [17], comprising 62 EEG-channel
was recorded from 15 subjects while watching emotional
video clips. Based on this dataset, researchers studied the
correlation between EEG spectral power and valence scores
in several studies. They found that higher frequency com-
ponents on the frontal, parietal and occipital lobes had a
higher association with the self-assessment based valence
response. The same database [18] was used in another study
in which the EEG power spectral density (PSD) and facial
features were fused to improve the classification performance
of continuous emotion recognition. Lin et al. [19] evaluated
the emotion-specific features based on the PSD changes of
EEG and assessed the association between EEG dynamics
and music-induced emotional states. The study found that the
features from frontal and parietal lobes provided discrimina-
tive information and were strongly associated with emotion
processing.

In a similar way, other researchers have evaluated emotions
(positive, neutral and negative) using EEG signals alone or
in combination with other physiological signals including
eye tracking data and facial expressions, and have achieved
classification accuracy in the range of 58% to 80% [20]–[30].
Although these studies have tried to classify different emo-
tions by statistically analyzing EEG signals, most of them
focused on EEG features extracted at the single-electrode
level. On the other hand, Lee et.al. [31] classified three dif-
ferent emotions; neutral, positive and negative by means of
functional connectivity. The authors highlighted the impor-
tance of functional connectivity in emotion detection and
showed that the classification accuracy outperformed those
using power spectral features at single electrode level. In line
with this, Mauss and Robinson in their review paper, have
indicated that ‘‘emotional state is likely to involve circuits
rather than any brain region considered in isolation’’ [3].
Therefore, in this study, we hypothesize that fusion of cor-
tical activation and functional connectivity network patterns
can improve emotion recognition and classification. We pro-
pose a feature-level fusion approach to combine local corti-
cal activations and functional connectivity network patterns.
We estimate the cortical activations using power spectral
density with Burg autoregressive model and evaluate the
functional connectivity networks by utilizing phase locking
value (PLV).

The remaining parts of this paper is organized as follows.
Section II presents the experimental protocol and the method
of analysis used in this study. Section III presents the results
of emotion recognition based on cortical activations and func-
tional connectivity network patterns. Section IV provides a
detailed discussion on the findings and compares it with the
state-of-the art of emotion studies, as well as highlights the
limitations of the study and provides suggestions for future
studies. Finally, section V conclude this paper.

II. METHODOLOGY
A. PARTICIPANTS
Twenty-eight healthy young right-handed students from the
American University of Sharjah (20 males and 8 female,
age: 21±1.5 years, (mean±standard deviation)) have partic-
ipated in this experiment. All participants reported normal or
corrected-to-normal vision. None of them had a history of
neurological or psychiatric illness and had no current or prior
psychoactive medication use. They were asked to abstain
from caffeine, exercise, energy drink and tobacco use for
24 hours before testing. Each participant was briefed about
the study and gave her/his informed consent before the start
of the experiment. The experimental protocol was conducted
following the Declaration of Helsinki and approved by the
IRB committee at the American University of Sharjah.

B. EMOTION-ELICITING STIMULUS
The emotion stimuli composed of 245 pictures taken
from two publicly available image datasets, GAPED and
OASIS [32], [33]. Three groups of images (115-funny
images, 70-neutral images, and 60-plain images) were used
as stimuli. Funny pictures involved pictures of human and
animal babies, neutral pictures involved pictures of nature
and the plain-images mainly depicted inanimate objects; e.g.,
a picture of plain Book was used. The pictures were selected
according to their valence and arousal scale. Funny images
had high arousal and valence, neutral images had low arousal
and high valence rating, and plain images had moderate
arousal and valence. When the plain target image appears on
the screen, the participant has to pose an acted smile and hit
a response key.

There was a total of 245 trials in this experiment as shown
in FIGURE 1. Each trial begins with a drift check of one sec-
ond to ensure the focus is on the screen, followed by the image
stimulus display. For every trial, an image was displayed on
the screen for a maximum of 2 seconds and the participant
had to give a keyboard response by hitting any of the three
letter keys as shown in FIGURE 1. All image stimuli were
presented on a 19 inch LCD display which was placed at a
distance of 50 cm in front of the participant. All participants
were asked to hit letter ‘‘Q’’ or ‘‘P’’ or ‘‘N’’ once and only
whenever they felt their emotion had changed and have to act
to produce certain emotional expressions in the form of fake
smile (hitting Q letter), true smile (hitting P letter) and neutral
expression by (hitting N letter), respectively.
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FIGURE 1. Task sequence presentation.

FIGURE 2. EEG data acquisition and experimental set-up.

The experimental paradigm was implemented in the
Psychology software, and the behavioral responses were
recorded and used for evaluating the emotions. The behav-
ioral responses of the participants indicated that, stimuli
induced different emotions according to the arousal and
valence scale.

This experiment lasted about 13 min on average. The
number of trials also depended on the participant’s rating
speed. Note that, the order of images’ presentation was semi-
randomized, with the condition that no two pictures from
the same category appeared immediately one after the other.
Three different markers were sent to mark the epochs of each
type of images.

C. DATA ACQUISITION
Electrophysiological signals were recorded using 64Ag/AgCl
scalp electrodes arranged according to the standard 10–
20 system (ANT waveguard system and ASA Lab
4.9.2 acquisition software, ANT Neuro, the Netherlands).
In this study, the EEG data were acquired at a sampling
rate of 500 Hz. The impedances of all EEG electrodes were
maintained below 10 k�, and referenced to the left and right
mastoids, M1 and M2. FIGURE 2 shows the data acquisition
and experimental set-up.
Summary of the Experimental Protocol:

1) Brief introduction about the task and experimental
set-up.

2) All participants were instructed to show emotional
expressions to each of the three types of stimuli.
For example, if the target image appears as funny,
we expected a true/genuine smile, while neutral expres-
sion for neutral image and an acted fake smile for the
plain image, plain book.

3) If the participants did not find a picture funny, they
would mark it as neutral.

4) All participants evaluate their emotions by filling emo-
tion questionnaire.

5) Behavioral responses showed that image stimuli
induced different emotions.

D. DATA PROCESSING
EEG signals were preprocessed using custom scripts [34],
[35] as well as the EEGLAB toolboxes (9.0.4) [36]. The
EEG signals were re-referenced to the common average ref-
erence [37] and segmented into target-related EEG epochs
of 1500 ms. Baseline removal and DC offset were performed
by subtracting the mean from the data. All EEG signals
were band-pass filtered using a finite impulse response (FIR)
filter with 0.1 Hz and 30 Hz cut-off frequencies. The 50Hz
electrical power line interference was removed with indepen-
dent components (ICs) using the CleanLine plug-in avail-
able on EEGLAB. The abnormal epochs were manually
removed. Similarly, eye-blinks and eye-movements were
removed manually by visual inspection as well as utiliz-
ing Independent Component Analysis (ICA) technique using
the Infomax algorithm. Here, the components representing
artifacts, such as eye blink, eye movements, and muscular
activities were removed and the remaining components were
used to reconstruct the clean EEG signals. Typically, only one
or two independent components relevant to eye blinks or eye
movements were removed for each subject. Finally, all EEG
epochs were visually double checked to ensure the quality
of the EEG data. Further analysis in this work would only
include the correctly performed trials that had the artifacts
mitigated in all channels (we use 180 trials in this study
distributed equally across the three different emotions).

E. CORTICAL ACTIVATIONS
We estimate the cortical activation based on the power spec-
tral density (PSD) with the autoregressive model (AR). It is
simple and computationally efficient compare to other tech-
niques [38]. Moreover, AR modeling is preferred over other
spectral estimation techniques, such as the Fast Fourier Trans-
form (FFT), because of its superior resolution for short time
segments. It is typically used in brain computer interface
applications. AR modeling is well suited for EEG signals
for several reasons. Firstly, EEG is non-stationary and must
be evaluated using short time segments over which the data
is assumed stationary. The length of the input process does
not explicitly limit the spectral resolution of an AR model,
and therefore, it is capable of providing superior resolu-
tion for short data segments. Secondly, EEG is essentially
comprised of the superposition of mass single-unit activity
through volume conduction. This may be considered as a
filtered white noise process. This filtering process is the basis
for AR modeling, and therefore, it is a reasonable approach
to adopt for EEG modeling [39]. Then, in order to ensure
stationarity of the EEG signal, we tested the stationarity over
different sliding windows of length 500, 750 and 2000 data
points. We found consistent stationarity at window size of
length > 500 data points. Therefore, we have chosen to take
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sliding windows of 750 data points across the 60 trials of EEG
signals (i.e. we use 60 sliding windows of length 750 data
points in each type of EEG signal). This number is large
enough to show the stationarity of EEG signals and have
been reported in previous EEG studies with a comparable data
point [40], [41].

Note that, the model order (p) may influence the fitting
results of the AR model. Several issues complicate the evalu-
ation of AR model order. Different methods for estimating
the AR coefficients can result in different optimal model
orders. Additionally, band-pass filtering of signals tends to
produce lower model order estimates when spectral content
with considerable variance is removed from the signal. Fur-
thermore, the length and sampling rate of the data can have
a significant effect on model order estimates; higher sam-
pling rates, and longer data segments may capture increased
spectral content, thus requiring a higher model order [42].
All of these issues greatly complicate the determination of
the optimal AR model order and must be considered when
generating a model. The most commonly considered order
estimation methods include Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and Final Pre-
diction Error (FPE) [38], [43]–[46]. In this study, AIC is used
to determine the proper model order p (we used p = 10).
Previous studies have also reported the effective AR-orders
in EEG spectrum analysis using p = 2, 4, 6, 8, 10, 16, and
30 [38], [47], [48].

We evaluated the PSD based on autoregressive Burg
method, by minimizing the forward and backward predic-
tion error. We applied a sliding Hamming window with a
length of 750 points (1.5s) for the spectral estimation as
suggested by [49]. The procedure consist of two steps: firstly,
the AR model parameters are estimated from a clean EEG
data sequence (x(n), 0 ≤ n ≤ N −1,N = 750) for each EEG
frequency band. In this paper, we take this strategy to perform
PSD analysis of EEG waves in four clinical frequency bands,
i.e., the delta waves (δ [0.1- 4] Hz), theta waves (θ [4- 8] Hz),
alpha waves (α [8- 12] Hz) and beta waves (β [12- 30] Hz).
Then, we use the autoregressive (AR) method for modeling
the EEG data sequence x(n), as the output of a causal and
discrete filter [50]. The AR model used here is a linear
regression of the current observation of the series against one
or more prior observations of the series. AR model of order p
for a zero-mean time series x(n) is written as:

x(n) = −
p∑

k=1

a(k)x(n− k)+ ω(n) (1)

where x(n) is the EEG signal to bemodeled, n refers to sample
point, a(k) is the AR coefficients, ω(n) is the white noise
which is independent of the previous points with variance
σ 2, and p denotes the number of previous time points used
to model the current time point. We computed the AR coeffi-
cients a(k), k = 1, . . . , p for all EEG electrodes.

For each trial, we then calculated the PSD from the AR
parameters using Burg algorithm. Please see Appendix A

for expressions used in this work for this purpose. The
PSD values were then normalized between [0, 1], in which
the value of ‘0’ indicates low cortical activation and ‘1’
indicates high cortical activation. The grand-average of the
PSD is then presented in a topographical form to illustrate
the cortical activations under the three different emotional
expressions.

F. FUNCTIONAL CONNECTIVITY NETWORK
The functional connectivity network (FCN) is constructed by
quantifying the coupling between pairs of electrodes using
Phase Locking Value (PLV). Like the traditional coherence
method, the PLV method calculates the correlation between
two sets of EEG signals in different frequency bands. How-
ever, unlike the conventional coherence method, the PLV
method deals with the phase characteristics of the signal.
It also does not rely on the stationary-signal assumption.
Therefore, PLV is considered more suitable for analyzing the
functional coupling between EEG signals [51].

Several studies have highlighted the role of phase syn-
chronization as a bindingmechanism among segregated brain
areas in attention, memory processes, and conscious percep-
tion [52]–[54]. Studies of attention have reported a sharp
decrease of phase synchrony during task execution and sug-
gested that it may reflect the transitional state between two
distinct cognitive processes [55]. The same finding was also
observed during the execution of an audiovisual perception
task suggesting that it could reflect the disengagement of
incoherent perceptual streams [56]. Likewise, another study
has illustrated that the task-related activity is mediated by
distinct complex networks related to the phase desynchro-
nization that configure their architecture dynamically during
the task [57]. Recent work has demonstrated that the phase
synchronization of EEG signals has task-free biometric prop-
erties, which can be used for subject identification. This sug-
gests that it can be a good candidate to quantify the coupling
between electrodes in emotion studies.

Before computing the PLV, the clean EEG signals of all
electrodes are band-pass filtered into four frequency bands
similarly to the case of obtaining the PSD: δ (0.1- 4Hz),
θ (4-8Hz), α (8-13Hz) and β (13-30Hz) respectively to get
their phase synchronizations. The PLV values were aver-
aged over time samples using a 750 points segment. This
seemed to be a good tradeoff between fast response time and
robustness.

Consider a pair of EEG signals s1(t) and s2(t), that have
been band-pass filtered to the frequency range of interest. The
analytical EEG signals are obtained from si(t) using Hilbert
transform. Once the analytical signals are defined, the overall
PLV is then computed by averaging over trials/segments [58]
according to Equation (2). PLV can, therefore, be viewed as a
measure of a trial-to-trial variability in the relative phases of
two signals. This is very suitable for our type of experiment,
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an event-related paradigm.

PL̂V (t) ,

∣∣∣∣∣ 1N
N∑
n=1

ej1φn(t)
∣∣∣∣∣

=

∣∣∣∣∣ 1N
N∑
n=1

(cos(1φn(t))+ j sin(1φn(t))

∣∣∣∣∣ (2)

here n indexes the trial number and N is the total number of
trials (segments). Further details about the Hilbert transform
and PLV relevant to our work are given in Appendix B.
The PLV takes values between [0, 1] with 0 reflecting the
case where there is no phase synchrony and 1 where the
relative phase between the two signals is identical in all
trials.

The estimated PLV at each trial is then used for analysis
and classification evaluation. In order to reduce the effects
of volume conduction, we conducted statistical correction for
each pair of electrodes {i, j} at every time point by wrapping
the phase differences in the interval [−π , π ]. We also tested
if the mean distribution of the phase difference was signifi-
cantly different from zero (we used t-test at 95% confident
interval, p = 0.05 level of significance). We used only the
PLVwith phase-difference distribution significantly different
from zero for further analysis.

1) ANALYSIS OF EEG CONNECTIVITY NETWORK
For each subject, the PLV is obtained in the four frequency
bands for the three emotional states. The average data format
of the connectivitymatrix is 62×62×4×28, which represents
the channel× channel× frequency band× subjects.

To analysis the connectivity network, we adopted graph
theory analysis methods. The maximum number of connec-
tions in each network within K-nodes is measured using:
N = K (K−1)/2. In total, we have 1431 pairs after excluding
electrodes located within the center of the cortex, which have
no lateralization.

In this case, each electrode is regarded as a node in a net-
work, and the connection value is regarded as a weighted con-
nection edge between two nodes. To reduce the effects of vol-
ume conduction, we subtracted the connectivity in-between
different emotions.

We then extract the topological features using graph den-
sity and clustering coefficient from the normalized network.
These metrics have been successfully used in graph theory
studies [59], [60].

2) CLUSTERING COEFFICIENT (C)
Clustering coefficient C is a local density of connections used
to quantify the number of relationships/connections between
nearest neighbors of a node as a portion of the maximum
number of possible links.

3) DENSITY (DEN)
Graph density indicates how many edges (pairwise connec-
tion between nodes) are inside the graph divided by the

maximum possible number of edges between the vertices of
the graph. In this work, we define the density of the graph
as the ratio of the number of observed connections in the
network to the number of possible links. The formulation and
explanation of the clustering coefficients and graph density
are given in Appendix C.

G. STATISTICAL ANALYSIS
To reveal the differences in brain responses to different
emotions, we analyzed the differences between them in
electrode-based using two-sample t-test. The t-test is mea-
sured between EEG power features as well as the phase
synchronizations (PLV) for the three different emotions. The
comparison was between features extracted from the True
emotion versus Neutral emotion (T vs N), True emotion ver-
sus Fake emotion (T vs F) and Neutral emotion versus Fake
emotion (N vs F) respectively. In each electrode, the differ-
ences were considered statistically significant if the p-value
is less than 0.05 (p < 0.05).

H. FUSION ANALYSIS
The extracted features from the local cortical activations are
fused with the features extracted from the dynamic functional
network connectivity to form a union feature for the same
recognition problem. The fusion here is based on concate-
nation of the two features (one from PSD and the other
from PLV based on clustering coefficient and density). Such
feature fusion helps in classification if different features are
giving different but useful information about the problem.

I. CLASSIFICATION EVALUATION
The extracted features from the cortical activations, phase
synchronizations before and after fusion in alpha and beta fre-
quency bands within the three emotional states are used as an
input to support vector machine (SVM) classifier (FIGURE
3). In this study, we used LIBSVM to build the SVMclassifier
with radial basis function (RBF) similar to our previous stud-
ies [61], [62]. For each subject as well as for the average of
all subjects, a ten-fold cross-validation (CV) procedure used
to train and test the SVM classifier. In the ten-fold cross-
validation, each of the PSD features, PLV features, and the
fused PSD+PLV features split into ten subsets (10 cross-
validation). Nine subsets were used to train the SVM clas-
sifier, and the remaining one subset was used for estimation
of classification accuracy, sensitivity, specificity and the area
under the receiver operating characteristic curve (AROC).
The classification of emotions was conducted in the form of
one-vs-one such as genuine/true-vs-neutral; genuine-vs-fake,
and neutral-vs-fake, for each individual subject as well as for
the average of all subjects. Note that, we average the features
of all subjects in the early stage of feature extraction at each
trial.

III. RESULTS
In this section, we present the results of emotion classification
based on cortical activations, connectivity network patterns
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FIGURE 3. Schematic of feature level fusion and classification of emotion.

FIGURE 4. Topographical maps of cortical activations of four frequency
bands under three different emotions.

and after fusion of cortical activations and connectivity net-
work patterns. Although, we presented the results of emotion
at all frequency bands, only the highly associated frequency
bands with emotions used for classification evaluations.

A. CORTICAL ACTIVATIONS ANALYSIS
The cortical activations based on the average weight normal-
ized PSDs in the three emotions for each frequency band are
calculated and reported in the form of topographical maps
covering the entire brain with EEG electrodes. These are
shown in FIGURE 4.
BETA: The results of PSD in the beta frequency band at the

true/genuine emotion showed high cortical activations on the
frontal, temporal, and parieto-occipital brain areas. During
neutral emotion, the left frontal, parietal and occipital regions
showed moderate cortical activations. During fake emotion,
high activations shown on the left midline, and left parieto-
occipital brain areas.
ALPHA: The true/genuine emotion showed high corti-

cal activations on the frontal, and parieto-occipital regions
similar to that at beta frequency band. However, during
the neutral emotion, only the left midline and lateral-

FIGURE 5. Statistical Topographical T-maps of EEG rhythms.

ized parieto-occipital brain areas showed moderate corti-
cal activations. During fake emotion, the left frontal, and
parieto-occipital regions showed higher cortical activations
compared to the other regions.
THETA: The true emotion showed high cortical activations

on the left frontal, and parieto-occipital brain areas. During
neutral emotion, only the left frontal, and parieto-occipital
regions showed moderate cortical activations. The fake emo-
tion showed high cortical activations on left midline and left
parieto-occipital brain areas compared to the other regions.
DELTA: The true/genuine emotion showed high cortical

activations on the frontal, and parieto-occipital brain areas.
During neutral emotion, only the left frontal and parieto-
occipital regions showed moderate activations. During fake
emotion, the left frontal and left parieto-occipital regions
showed higher cortical activations compared to the other
regions.

The statistical analysis of cortical activations between the
three emotions in beta, alpha, theta, and delta frequency bands
is shown in FIGURE 5 in the form of t-maps. The value of
t >= 2.1 indicate that the difference between emotions is
significant, p < 0.05. Lateralized electrodes that have high
t-value were used for classification evaluation. Table 1 shows
the selected pair of electrodes for emotion classification eval-
uation at the cortical activations and network connectivity
patterns.

B. FUNCTIONAL CONNECTIVITY ANALYSIS
In this section, we present the results of brain functional
connectivity network (FCN) patterns under three different
emotional expressions in the four frequency bands. The nor-
malized FCN on inter and intra-hemispheres between differ-
ent emotions are shown in FIGURE 6. Only the subtracted
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grand-average FCNs across all subjects in the different emo-
tions within the four frequency bands are reported.
BETA: The FCNs in the true/genuine emotion was asso-

ciated with more synchronization than neutral and fake
emotions, mainly at the right frontal-to-parietal, frontal-to-
temporal, and left parieto-occipital regions. The FCNs at the
fake emotion showed high synchronization in the left hemi-
sphere mainly at the frontal-to-parietal, frontal-to-occipital
and right midline compared to that of neutral emotion.
ALPHA: The FCNs in the true/genuine emotion showed

high synchronization in the left frontal-to-parietal and
frontal-to-occipital brain areas compared to that of neutral
and fake emotions. The FCNs in the fake emotion showed
high synchronization in the left frontal-to-occipital and right
frontal-to-central compared to that of neutral emotion.
THETA: The FCNs in the true/genuine emotion showed

moderate synchronization in the left frontal-to-occipital,
frontal-to-temporal, and parieto-occipital and right frontal-
to-occipital compared to neutral and fake emotions. Note
that, the high synchronization was on the right hemisphere
specifically the right frontal-to-parietal and right frontal-to-
occipital compared to neutral and in the left hemisphere as
specifically, the frontal-to-occipital, frontal-to-parietal and
frontal-to-temporal compared to the phony emotion. The
FCNs in the fake expressions showed high synchronization
in the frontal-to-parietal and frontal-to-temporal regions com-
pared to neutral emotion.
DELTA: The FCNs in the genuine emotion showed high

synchronization at frontal-to-parietal, and frontal-to-occipital
regions compared to that of neutral and fake emotion. How-
ever, the FCNs in the fake emotion showed high synchro-
nization only over the frontal-to-occipital and left frontal-to-
parietal regions compared to neutral emotion.

The statistical analysis of FCN showed that beta and alpha
frequency bands were highly sensitive to different emotions
in this study. Therefore, the graph density and clustering
coefficients were extracted from these two bands only. FIG-
URE 7 shows the network density and clusters for the three
emotions. The results show that true emotion has a higher
density, as well as high clustering coefficients, compared to
that of neutral and fake emotion. Additionally, the results
show that as density increases, the clustering coefficient also
increases. This is because a graph with higher density has
more triangles compared to a spare graph. The variations in
density and clustering coefficient seem consistent across the
alpha and beta frequency bands.

1) EEG CHANNEL SELECTION FOR INDIVIDUAL AND GROUP
ANALYSIS
In this study, we utilized various EEG channels/electrodes
that cover different regions of the brain while taking into
consideration the effects of emotion on brain asymmetry.
The selection of EEG channels was based on their signifi-
cant response in differentiating between the three emotions,
p < 0.05. Several studies have reported frontal, prefrontal,
temporal, parietal and occipital regions as the most sensitive

FIGURE 6. Dynamic functional networks (averaged over all participants)
in different frequency bands calculated by subtracting the networks
corresponding to True, Neutral and fake.

TABLE 1. Selected EEG electrodes for classification analysis.

brain regions to emotional responses [63]–[65]. Likewise,
we utilized nine-pairs (nine asymmetries) of electrodes that
cover the prefrontal, frontal, parietal and occipital regions of
the brain for classification evaluation, as listed in Table 1.
These pairs of electrodes, in fact, were highly sensitive to
different emotions in the cortical activations as well as in the
functional connectivity network patterns as demonstrated in
FIGURE 4 to FIGURE 6. The selection criteria were applied
to beta and alpha frequency bands since they were highly
associated with emotions.

C. CLASSIFICATION ANALYSIS
The results of the classification performance in differentiating
between three different emotions are reported in terms of
accuracy, sensitivity, specificity, and area under the receiver
operator characteristic curve (AROC). The result of classifi-
cation is presented based on combination of alpha and beta
features which has been reported in literature [66] to give
better performance than individual frequency band features
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FIGURE 7. Network Density and Clustering Coefficients of true, neutral,
and fake emotions within: A) in Beta Band and B) in Alpha Band,
(∗p < 0.05. ∗∗p < 0.01).

FIGURE 8. Classification Performance of true versus neutral emotion a)
demonstrates the performance accuracy; b) represents the sensitivity; c)
shows the specificity of the classifier and d) demonstrates the area under
the receiver operator characteristics curve. Note that the yellow violin box
demonstrates the performance evaluation using PSD while the green
violin is for the PLV and the gray violin demonstrated the classification
performance after fusion of PSD with PLV.

under the same conditions. The distribution of classification
performance across subjects is presented in boxplots with
violin graphs for easy visualization. FIGURE 8 to FIGURE
10 show the distributions of classification performance of
different emotions using individual PSD, PLV and fusion

FIGURE 9. Classification Performance of true versus fake emotion a)
demonstrates the performance accuracy; b) represents the sensitivity; c)
shows the specificity of the classifier and d) demonstrates the area under
the receiver operator characteristics curve. Note that the yellow violin box
demonstrates the performance evaluation using PSD while the green
violin is for the PLV and the gray violin demonstrated the classification
performance after fusion of PSD with PLV.

TABLE 2. Performance evaluation of Individual Subjects, mean±standard
deviation.

of both; PSD+PLV. Note that the fusion of PSD+PLV sig-
nificantly enhance the classification performance compared
to individual feature in all the evaluation metrics for all
subjects. The results of classification performance using
PLV outperformed using PSD in all the evaluation metrics.
Table 2 shows the results of classification performance when
using individual subject analysis represented by the mean
with standard deviation. Table 3 shows the results of clas-
sification performance when using the average features of
all subjects. The performance of average-subjects analysis
outperforms individual analysis, indicating that individuals
perceived the emotions differently. Additionally, the classi-
fication results show that the specificity score higher than
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TABLE 3. Performance evaluation for the Average of all subjects.

sensitivity/accuracy in the individual PSD, PLV feature
vector as well after fusion of PSD+PLV feature. Over-
all, the results of the classification accuracy, sensitiv-
ity, specificity, and AROC significantly improve after
feature-fusion compared to individual features, suggesting
that connectivity networks complement the cortical activa-
tions. Note that, the yellow colors in Figure 8 to Figure 10
show the classification scores when the PSD features are
used, green colors show the classification scores using
PLV features and the grey colors show the classification
scores after fusion of PSD+PLV features, respectively.
The red horizontal line in each of the boxplot and vio-
lin shows the median of the score and the smooth black
line indicates the mean of the score in the classification
performance.

IV. SUMMARY AND DISCUSSION
This study aimed to improve emotion classification based
on the fusion of cortical activations with functional connec-
tivity network patterns. The study utilized power spectral
density based on the autoregressive model to estimate the
cortical activations and the phase locked value to evaluate
the functional network connectivity. It was performed on
twenty-eight subjects that underwent three different stimuli.
The stimuli were intended to induce true/genuine, neutral and
fake emotions. The study then performed statistical analysis
on the features extracted from the PSD/PLV of each sub-
ject individually as well as on the average of all subjects.
It showed significantly different patterns between emotions.
The high-frequency components in beta and alpha bands
were found to be highly sensitive to different emotions. The
classification results later showed that fusion of cortical acti-
vations with functional connectivity network patterns out-
performed individual features in all the evaluation metrics,
p < 0.05. Up to date, this is the first study to combine cortical

FIGURE 10. Classification Performance of neutral versus fake emotion a)
demonstrates the performance accuracy; b) represents the sensitivity; c)
shows the specificity of the classifier and d) demonstrates the area under
the receiver operator characteristics curve. Note that the yellow violin box
demonstrates the performance evaluation using PSD while the green
violin is for the PLV and the gray violin demonstrated the classification
performance after fusion of PSD with PLV.

activations with connectivity network patterns for classifying
three different emotions and to evaluate their performance in
term of accuracy, sensitivity, specificity, and the area under
characteristics curve using the EEG signals.

In this study, the procedures of inducing three different
emotions were validated with self-evaluation and behavioral
responses. All subjects showed high arousal and valence
when exposed to funny images, low arousal and high valence
to neutral images, and moderate arousal and moderate
valence when plain-images appeared with high accuracy (in
line with [32], [33]). The results of high-density EEG sig-
nals indicate that the content of emotional stimuli induces
different cortical activations as well as different connectivity
network patterns. The local cortical activations in our results
appeared mostly in the frontal and parieto-occipital regions.
The results of cortical activations in the frontal and parietal
regions in this study indicate emotions modulated attention in
which participants were mentally engaged to the task/stimuli.
Althoughwe only analyzed the cortical activations at beta and
alpha frequency bands, other frequency bands showed activa-
tions as well but not as high. The higher cortical activations
in the high-frequency components are due to their associa-
tions with emotions and cognitive process. Previous emotion
studies have shown similar activation patterns at higher
frequency components of beta and gamma bands [17], [19],
[28], [63], [67]. In line with that, it may be conjectured
that the activations at higher frequency components reflect
emotion regulation [68]–[70].

Similarly, the functional connectivity network patterns at
beta and alpha frequency bands showed dense network when
participants viewed images that induced true/genuine emo-
tion compared to that at neutral and fake emotions. The signif-
icant differences in the network patterns were mainly on the
frontal-to-parietal and frontal-to-occipital brain areas. How-
ever, in fake emotion, less connectivity network patterns were
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found compared to that of neutral emotion. Nevertheless, dif-
ferent asymmetries were found across different frequencies as
showed in FIGURE 6. For example, at a beta frequency band,
the genuine emotion showed high connectivity in the right
hemisphere (specifically in the frontal-occipital, frontal–to-
temporal) compared to neutral and fake emotions. Similar
observations have been reported for frontal-to-temporal site
while participants watching film clips with positive emo-
tions [31]. Likewise, at the alpha frequency band, the connec-
tivity patterns in the left hemisphere were highly connected
particularly in the frontal-to-parietal and frontal-to-occipital
brain regions. It also showed that fake emotions produced
dense networks within the left hemisphere compared to the
right hemisphere in beta and alpha frequency bands. The left
dominance in fake emotion is in line with previous studies
that used music to induce different emotions [71], [72]. The
increase and decrease in the connectivity network patterns
in our study are in line with previous emotion studies that
showed happiness produced stronger activation in the dorso-
lateral prefrontal cortex, cingulate gyrus, and inferior tempo-
ral gyrus, see review [73].

Taken all together, the results of our study showed that
true/genuine emotion produced great connectivity patterns
compared to fake emotion in all the frequency bands.
It was also found that at high cortical activations the con-
nectivity showed dense or wide network. Similar result
was found in a previous emotion and working memory
study [74]. Although we found different cortical activations
and connectivity patterns in the three emotions, it is very
important to involve negative emotions to establish func-
tional connectivity as an index for emotion processing and
regulation [75].

The results of classification performance demonstrated
that fusion of cortical activations with functional connec-
tivity network patterns outperforms individual feature sets
with p < 0.05. Considering, the average of all subjects,
we achieved 90.3%, 88.52% and 78.82% classification accu-
racy between true/genuine versus neutral, true/genuine ver-
sus fake, and neutral versus fake emotions respectively,
as demonstrated in Table 3. Similarly, in the subject-level
analysis, we achieved 87.71%±5.28%, 86.35%±5.22%, and
77.72%±4.45%, accuracy between true/genuine versus neu-
tral, true/genuine versus fake, and neutral versus fake emo-
tions respectively, as demonstrated in Table 2. Our fusion
results showed an average improvement of 7.10%, com-
pare to PSD alone, and 4.01% compared to PLV alone in
term of classification accuracy. The improvements in the
classification performance was also found across all the
proposed evaluation metrics (accuracy, sensitivity, speci-
ficity, and the AROC on average of 6.84%, compared to
PSD, and 4.1% compare to PLV) indicating that, connec-
tivity network patterns provide complementary informa-
tion to the cortical activations. The improvements in the
classification performance in our study were in line with
previous fused emotion studies that combined cortical acti-
vations of EEG with facial features [17], [18], and with

eye tracking data [22], [26], [76], [77]. Overall, the aver-
age classification performance in our study outperforms
the other published results of emotion classification stud-
ies (achieved classification accuracy ranges between 58%
and 85%) [20]–[30], [78]–[81] based on ENTERFACE’06,
MAHNOB-HCI, SEED, and DEAP datasets.

Note that, it is important to consider the experimental pro-
tocol and the assessment method differences between studies.
Our approach may, however, have high sensitivity to detect
emotions due to the use of high-density EEG neuroimaging.
Limitation of the Study: This study improved emotion clas-

sification and recognition well above the chance level based
on the fusion of cortical activation and functional connectivity
network patterns. However, it poses some limitations, and fur-
ther studies will be needed in some aspects. Firstly, the emo-
tion induction stimuli in this study were based on viewing
images. Nonetheless, some experimental studies utilized film
clips, facial expressions, and music for emotion induction.
Literature has reported that different type of stimuli led to
different brain activation [82]. Using a combination of various
stimuli would be necessary to understand the relationship
between the neural mechanism and emotion. Secondly, this
study evaluates the functional connectivity network using
phase locking value. Other multivariate methods such as Par-
tial Directed Coherence (PDC) and Directed Transfer Func-
tion (DTF) with Granger causality [83] may be applied in
future emotion studies to estimate the directed brain func-
tional connectivity. These methods gave more quantitative
data as they reflect the directions of the information flow in
the network. Thirdly, it is essential to consider the effects
of volume conduction when evaluating the EEG connectiv-
ity network at the scalp level [84]. One such method sug-
gested by [85] could be an excellent alternative to solve this
problem. Another method is to combine high-density EEG
with another neuroimaging technique that has good spatial
resolution such as fMRI or fNIRS. Furthermore, this study
was conducted on young healthy subjects; old people may
perceive emotion stimuli differently. Future studies on AR
model may use a regressor to include the current data in the
prediction model.

V. CONCLUSION
This study improved the classification accuracy, sensitivity,
specificity and area under the receiver operator characteristics
curve on classifying three different emotions based on feature
fusion of cortical activations with functional connectivity net-
work patterns. The study achieved up to 90.3%, 88.52% and
78.82% classification accuracy between the three different
emotion classification tasks. The results also showed different
activation patterns in the three emotions at all the frequency
bands. Nonetheless, results in high-frequency components at
alpha and beta bands were highly associated with emotions.
The current results demonstrate the potential of the fused
cortical activation at the single electrode level with the dense
functional connectivity network patterns and suggest it for
future emotion studies.
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APPENDIX A
Formulation and explanation of Power spectral density
obtained from the autoregressive model

Mathematically, we calculated the PSD from the AR
parameters using Burg algorithm for each trial according to:

P̂(f ) =
êp∣∣∣∣1+ p∑

k=1
âp(k)e−jπ fk

∣∣∣∣ (A.1)

where êp is the total least squares error and p is the order of
AR model, p = 10 in our study.

APPENDIX B
Formulation and explanation of analytical EEG signals using
Hilbert transform and Phase locked value (PLV).

Consider a pair of EEG signals s1(t) and s2(t), that have
been band-pass filtered to the frequency range of interest. The
analytical EEG signals zi(t):

zi(t) = Ai(t)ejφi(t) = Ai(t)(cos(φi(t))+ j sin(φi(t))) (B.1)

for i = {1, 2} are obtained from si(t) using Hilbert transform
according to the following equation:

zi(t) = si(t)+ jHT (si(t))

where HT (si(t)) is the Hilbert transform of si(t) define as :

HT (si(t)) =
1
π
P.V

∞∫
−∞

si(t)
t − τ

dτ (B.2)

the φ is the difference in phase between the two time series,
and P.Vmeans that the integral is taken in the sense of Cauchy
principal value. Once the analytical signals are defined,
the relative phase then computed as:

1φ(t) = arg
(
z1(t) z2(t)∗

|z1(t)| |z2(t)|

)
= ẑ1(t) ẑ2(t)

∗
(B.3)

where ẑi(t) =
zi(t)
|zi(t)|

is the unit vector, i = 1, 2.
The instantaneous phase PLV is then defined as:

PLV (t) ,
∣∣∣E [ej1φ(t)]∣∣∣ = |E [cos(1φ(t))+ j sin(1φ(t))]|

(B.4)

APPENDIX C
Formulation and explanation of global network metrics.

The clustering coefficient (C) is an index of local structure
of a graph. For a network graph, the C of node i is defined as:

Ci =

∑
k 6=i

∑
l 6= i
l 6= k

cikcilckl

∑
k 6=i

∑
l 6= i
l 6= k

cikcil
(C.1)

where cik , cil is the linkage strength between node i and node
j estimated by PLV, and k, l indicate any two different nodes.

Graph density is defined as the ratio of the number of
observed connections in the network to the number of pos-
sible links.

DEN =
2E

N (N − 1)
(C.2)

where E denotes the number of unique edges in an undirected
graph with no self-loops and N is the network size.
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