
Received August 8, 2019, accepted September 10, 2019, date of publication September 25, 2019, date of current version October 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943840

Adaptive RGB Color Lexicographical Ordering
Framework Using Statistical Parameters From
the Color Component Histogram
JOSÉ LUIS VÁZQUEZ NOGUERA 1, CHRISTIAN E. SCHAERER1, JACQUES FACON2,
AND HORACIO LEGAL AYALA1, (Member, IEEE)
1Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 2160, Paraguay
2Department of Computer and Electronics, Universidade Federal do Espírito Santo, São Mateus 29932-540, Brazil

Corresponding author: José Luis Vázquez Noguera (jlvazquez@pol.una.py)

This work was supported by the CONACYT, Paraguay, under Grant 14-POS-007.

ABSTRACT In image filtering, the classical lexicographical ordering is a popular method that cannot
be directly applied for ordering colors in RGB color images. This is due to the fact that each color has
similar importance and no order can be defined trivially a priori. In this work we propose an adaptive color
lexicographical ordering framework for RGB color images where a color pixel is transformed into a real
number. This transformation is weighted by statistical parameters from each color component histogram
and used as the main component for color comparison. This approach seeks to avoid the arbitrariness since
the order of the color component priorities is defined by the information extracted from the image itself. The
proposed approach was tested by applying a median filter to reduce noise and a morphological approach to
local contrast enhancement. In noise reduction, we compare our method with classical ordering techniques
on images with different noise levels. Results show that our proposal outperformed the state-of-the art
methods according to the Mean Absolute Error (MAE) measure, especially in those scenarios with higher
noise levels. In contrast enhancement, the proposed framework outperformed the classical lexicographical
ordering method according to Contrast Improvement Ratio (CIR) metric, especially when increasing the
contrast factor. Our proposal generates less distortion than the state-of-the art methods ordering.

INDEX TERMS Ordering methods, lexicographical order, statistical parameters, color component
histogram.

I. INTRODUCTION
The management of digital images has become an area of
interest in different disciplines such as medicine, astronomy,
etc. Because of this, image processing has arisen as a topic of
interest to get insight from digital images. Color is probably
the most important information of all visual elements because
it is the fastest stimulus that reaches the brain and affects the
central nervous system of people [1].

In image processing, color space is a mathematically struc-
tured model so that color and the features associated with it
(saturation, lightness, etc.) can be represented by tuples of
numbers as, for example, the RGB, CMYK and HSI color
spaces. Different color spaces with different properties have
been proposed in the literature. Some of the most used color
models are L∗a∗b∗ [2], HSL [3], CIELAB [4], HSI [5],
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HSV [6], and the RGB color space [7]–[9]. However, color
ordering in most color spaces is a non trivial problem, and it
is needed in many well known mathematical procedures of
image processing [10].

In particular, color mathematical morphology requires
color ordering to define its basic operations, and extend
all other operations. Mathematical morphology (MM)
is the de facto standard mathematical approach to
many applications of image processing, such as filter-
ing, noise reduction, contrast enhancement, among oth-
ers. Based on set theory, lattice theory, topology, and
random functions, its analysis and processes geometrical
structures [11], [12]. MM was originally developed for
binary images and it was later extended to grayscale images.
Actually, it is currently being extended to color images.
The main challenge for applications of color MM continues
to be the selection of an appropriate color space and the
ordering [13]–[24].
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In color ordering, lexicographical ordering is one of the
most popular methods in the literature [10], [25], because
of its desirable theoretical properties and the possibility
to customize the way in which image components can be
compared [3], [10], [26]–[28]. Louverdis et al. [28] and
Vardavoulia et al. [29] present an HSV based lexicograph-
ical ordering method for the morphological processing of
color images. In [30], Louverdis et al. propose a new mor-
phological technique for size and shape analysis of color
granular images. Angulo and Serra [31] present a lexico-
graphical ordering method in RGB and HSL color spaces for
JPEG color image compression. Ortiz et al. [32] used the
lexicographical ordering I → H → S (Href = 0◦) for
Gaussian noise reduction.

The main weakness for lexicographical ordering is that
most decisions are based on the first component, which
ignores all other components [4]. To overcome this limitation
some lexicographical order variations have been proposed.
Angulo [33] and Sartor and Weeks [34] added a distance
measurement to a reference color in the first component,
to include information of the entire vector. Zamora [11] and
Angulo [27] introduced a parameter α to reduce the number
possible values of the components. This causes more colors
to collide in the component, and increase the likelihood to
use all components on the comparisons. Bouchet et al. [35]
used fuzzy logic to assign the same ordering weight to all of
the color components. In [36], Bibiloni et al. generalize fuzzy
mathematical morphology to process multivariate images in
such a way as to overcome the problem of defining an order
between colors.

An alternative to lexicographical ordering is to order
colors based on the distance function [37]. Distance to
a reference color is commonly used for color ordering.
Some works propose the automatic reference color selection
forMM [38], [39].Wang et al. [40] induce the RGB color dis-
tance and establish the structural hypergraph in color images.
In the L∗a∗b∗ space, the Euclidean norm (distance to the
origin L = 0, a = 0 and b = 0) is often used as an
ordering method for pixels to evaluate the quality of color
reproduction, or in color image compression techniques [41].
This strategy keeps a small norm difference between visually
similar colors, however different colors may have the same
norm. This problem increases when using the RGB color
space. Following the proposal by Comer andDelp [42], which
uses the Euclidean norm and a black pixel as reference in
the RGB space, two RGB colors may appear to be partially
equal to the eye but very different based on their norm values.
Therefore, the use of these strategies are not recommended in
general color ordering.

In [43], Deborah et al. propose several basic ordering rela-
tions for spectral data. Two ordering relations are extended
from the classical marginal and lexicographical ordering,
followed by several other ordering relations that are con-
structed using the total amount of energy and distance func-
tion. Sinha et al. [44] define a ordering of three-dimensional
RGB color space using Hilbert 3D space filling curve and

then applies MM operators to obtain the contrast enhanced
image.

In RGB color images, the bit mixing ordering has proven
to be efficient for color image filtering [45], although it
prioritizes the red component. Ideally, the most important
component will be determined by local information in the
image.

In this work we propose an adaptive color ordering frame-
work for the RGB color images that is based on local sta-
tistical parameters from each color component histogram.
A statistical parameter is a number that is obtained from
the data of a statistical distribution. Statistical parameters are
used to synthesize the information given by a graph.

The colors are ranked according to a weight obtained from
the statistical parameters. Further contributions derived from
the framework can be summarized as follows:

• We propose the use of several statistical parameters
extracted from the local histogram by color component
to establish a color ordering. In particular, mode, mean,
minimum,maximum, variance and smoothness are used.

• We propose two strategies to extract local characteristics
of an image. The first is based on neighborhoods around
each pixel, and the second is based on non-overlapping
partitions of the image.

• We establish a robust evaluation for noise reduction.
This evaluation analyzes the performance of themethods
when increasing the noise for different noise types.

• Analogously, we extend a simple contrast enhancement
proposal by Stojic et al. [46], to analyze the enhance-
ment on the image for different contrast values. The
extension adds an enhancement factor, which increases
the amount of contrast in the image.

The rest of this article is organized as follows.
Section 2 presents the framework. Section 3 explains the
applications tested together with some examples of them.
Section 4 shows the experimental results of the framework in
comparison to the methods suggested in the literature in noise
reduction and contrast enhancement usingmathematical mor-
phology applications. The conclusions and future Work are
presented in Section 5.

II. R̂ ORDERING IN RGB COLOR IMAGES
Let an image be a function f : Z2

→ Z3, where each pair
(x, y) ∈ Z2 denotes a pixel and f (x, y) ∈ Z3 is the pixel color
at (x, y). In particular, v = f (x, y) where v = (r, g, b) is a
color and for any k bits r, g, b ∈ {0, 1, . . . , 2k − 1} is the
component intensity of the corresponding R,G and B, respec-
tively. The f (x, y) is the resulting color of the component
mixture at pixel (x, y) for an RGB color image. The intensity
of each component is usually normalized, i.e. r, g, b ∈ [0, 1].
The set of colors v is denoted by �.

A structure for ordering in the set of � is defined through
a homogeneous binary relation. i.e. an endorelation over
� denoted by R, such that the binary relation on a set � is
defined as a collection of ordered pairs of elements
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of � specified by vRw meaning that v is R-related to w.
A binary relationR on a set � is called:
1) Reflexive if vRv, ∀v ∈ �,
2) Antisymmetric if vRw ∧ wRv⇒ v = w, ∀v,w ∈ �,
3) Transitive if vRw ∧ wRz⇒ vRz, ∀v,w, z ∈ �,
4) Total if w ≤ v ∨ v ≤ w, ∀v,w ∈ �.
If the binary relation satisfies expressions (1) and (3) is

called a pre-ordering relation. If, in addition, it satisfies the
expressions (2) is called as an ordering relation and if in addi-
tion expression (4) is satisfied, the binary relation is called as
total, otherwise it is called partial. In this work a new ordering
relation is established, denoted by R̂. For this, it is presented
a new transformation that produces an ordering which avoids
any arbitrary criterion to assign a higher priority to any of
the three color components. To this end, a transformation
T : Z3

→ R is defined, and then the colors are ordered
according to the scalar order.

A color reduction transformation is defined as T :

f (x, y) → R by the inner product of color v and a weighted
vector ψ = (ψ1, ψ2, ψ3) as follows:
Definition 1: Let v = (r, g, b) be an RGB color, and ψ =

(ψ1, ψ2, ψ3) a weighted vector such that ψ ∈ R3, then the
transformation T is defined by the inner product expression:

T (v) := 〈v, ψ〉. (1)
For defining more appropriately the transformation T ,

the histogram of j-th color component associated to a specific
region in the image, denoted byDm ⊂ D, where the subindex
m denotes any subregion in the image, is defined as hDm

fj (i) :=
ni, where i represents the i-th level of intensity in the range
{0, 1, . . . , 2k − 1} of component j-th, and ni is the number of
pixels in image f , whose intensity level is i in component j-th
within domain Dm (subset of pixels (x, y) in the image f ).

The values of ψ are obtained by applying function φ ∈ R
over each component histogram in the domainDm of image f .
In the context of this paper, the function φ is obtained
through the application of a statistical function to each R, G,
and B component histogram, ψ1 = φ(hDm

f1
), ψ2 = φ(hDm

f2
),

ψ3 = φ(h
Dm
f3

). This is done in order to givemore weight to the
component whose statistical parameter has the highest value
in domain Dm ⊂ D (this could be the whole image or part
of it). The partition of the domain D for obtaining the sub-
domain Dm is considered latter (see the next subsection).
The following functions φ were applied to each compo-

nent j of image f in all the tests:
• Mean (φMe): the sum of all intensity levels i that appear
in domain Dm divided by the pixel quantity n in Dm:

φMe(h
Dm
fj ) =

2k−1∑
i=0

i× hDm
fj (i)

n
, (2)

where n = n0 + n1 + . . .+ n2k−1.
• Minimum (φMin): the lowest intensity level i in
domain Dm:

φMin(h
Dm
fj ) = min{i|hDm

fj (i) > 0}. (3)

• Maximum (φMax): the highest intensity level i in
domain Dm:

φMax(h
Dm
fj ) = max{i|hDm

fj (i) > 0}. (4)

• Minimum Mode (φminMo ): the lowest intensity level i
that appears the most times in domain Dm:

φminMo (h
Dm
fj ) = min{i|hDm

fj (i) ≥ hDm
fj (i′),∀i 6= i′}. (5)

• Maximum Mode (φmaxMo ): the highest intensity level i
that appears the most times in domain Dm:

φmaxMo (h
Dm
fj ) = max{i|hDm

fj (i) ≥ hDm
fj (i′),∀i 6= i′}. (6)

• Variance (φVar ): the intensity level variance in
domain Dm:

φVar (h
Dm
fj ) =

2k−1∑
i=0

hDm
fj (i)× (i− φMe(h

Dm
fj ))2

n
. (7)

• Smoothness(φR): measurement of the relative smooth-
ness of the intensity in domain Dm:

φR(h
Dm
fj ) = 1−

1

1+ φVar (h
Dm
fj )

. (8)

The induced Reduced ordering (R-ordering) of the trans-
formation T consists in reducing the color vectors v and v′

to a scalar values using its respective transformations T (v)
and T (v′), and then rank them in accordance to the scalar
ordering. In this paper, we consider the induced R - binary
relation with respect to the transformation (1) as:
Definition 2: Let v and v′ be two colors in the set of

colors � on a subdomain Dm ⊂ D. An ordering relation,
denoted by R - binary relation is defined by the following
implication:

∀v, v′ ∈ �, T (v) ≤ T (v′)⇒ v ≤R v′. (9)
The characterization of the properties of the implication (9)

in terms of the reflexive and transitive properties is given in
the following Lemma.
Lemma 1: Consider the R - binary relation in the subdo-

main Dm ⊂ D, the transformation T defined by expression
(1) and two colors v and v′ associated with the pixels (x, y)
and (x ′, y′), then the R - binary relation T (v) ≤ T (v) ⇒
v ≤R v′ is reflexive and transitive.

Proof: Reflexive vRv. Let v be a color associated with a
pixel (x, y) ∈ Dm, then T (v) ≤ T (v), T (v) = q, q ∈ R. Since
q ≤ q, therefore v ≤R v, and consequently the R-binary
relation is reflexive.
Transitive vRv′ ∧ v′Rv′′ ⇒ vRv′′. Let v, v′ and v′′ colors

associated with pixels (x, y), (x ′, y′) and (x ′′, y′′) ∈ Dm, and
considering T (v) = q, q ∈ R, T (v′) = q′, q′ ∈ R and
T (v′′) = q′′, q′′ ∈ R, then the expression T (v) ≤ T (v′) ∧
T (v)′ ≤ T (v)′′ can be reduced to q ≤ q′ ∧ q′ ≤ q′′, which
implies that q ≤ q′′ and therefore v ≤R v′′ (consequently the
R-binary relation is transitive). �

Observe that since the R - binary relation is reflexive and
transitive, it is a pre-ordering relation. A problem with the

141740 VOLUME 7, 2019



J. L. Vázquez Noguera et al.: Adaptive RGB Color Lexicographical Ordering Framework Using Statistical Parameters

R - binary relation induced by the transformation (1) can lead
to a non - injective transformation, i.e., given two different
colors v and v′ associated to two different pixels (x, y) and
(x ′, y′), respectively; it is desirable that the transformation
assures T (v) 6= T (v′) for v 6= v′. Unfortunately, depending
on the transformation this desirable property could not be
obtained, and it can be that T (v) = T (v′). The following
Lemma shows this situation:
Lemma 2: Given two different colors v and v′ be in the

subdomain Dm ⊂ D, and the weighted vector ψ , such that
ψ ∈ R3. There exists a set of ψl such that T (v) = T (v′)

Proof: In order of having, T (v) = T (v′) and assuming
that ψ and v′ are given, we have:

〈v, ψ〉 = 〈v′, ψ〉. (10)

Hence the linear equation (10) has a bi-dimensional KernelK,
and consequently, infinite vectors v (not necessarily equals
to v′) satisfies the equation (10). �
By the Lemma 2, the R - binary relation is not injective and
consequently, the antisymmetric property is not satisfied.

At this point, we are interested in having an ordering rela-
tion in the set of color � associated to each sub-domain Dm
and transform the R - binary relation in an injective one.
To this end, let consider an extended color vector v̂ defined
as v̂1 = T (v) and v̂l = vl−1 for all l ≥ 2.
Definition 3: Let v and v′ be two colors in the set of

colors � on a subdomain Dm ⊂ D. A lexicographical
ordering relation, denoted by R̂ - binary relation is defined
by the following implication:

∀v, v′ ∈ �, v̂ ≤L v̂′ ⇒ v ≤R̂ v′ (11)

where ≤L indicates the relation ≤ according to the lexico-
graphical ordering.

In the next Theorem, it is formalized important properties
of the proposed R̂ - binary relation.
Theorem 1: The ordering between colors v and v′ is a total

order under the R̂ - binary relation of Definition 3.
Proof: It is straightforward from considering that the

lexicographical order (≤L) is a total order and v̂ ≤L v̂′ ⇒
v ≤R̂ v′ then R̂ ordering (≤R̂) is also a total order. �
After the transformation T , the priority of the color com-

ponents could be changed in the extended color vector. The
main idea behind the consists in giving higher priority to the
transformation T with respect to the higher priority of the
component whose statistical parameter is higher, according
to the function φ associated to the region Dm analyzed.
A direct consequence of the statement above is the need

of an appropriate partition of the domain D in subdo-
mains Dm, since the subdomains affects the computation of
the weights ψl and the transformation T . In this work, two
domain partition strategies are explored: 1) partition based
on neighborhood and 2) partition the image into sub-regions.
Other criteria can be used which yield other kind of partition.
The exploration of partitions is left as a future work.

FIGURE 1. Neighborhood B of size 3 × 3 centered at pixel (x, y ).

A. DOMAIN PARTITION STRATEGIES
We need to define the domain Dm ⊂ D to calculate the
weights ψl . The function φ is applied to each histogram of
the color component (hDm

fj ) in domain Dm.

1) FIRST STRATEGY: PARTITION BASED ON
NEIGHBORHOOD
Given a color image f and a filter F , the application of
F to f can be expressed as g(x, y) = F{f (x, y)}, where
(x, y) represents a pixel for a specific color v and g is the
filtered image. Order filters are nonlinear neighborhood oper-
ations, where a function is applied to the neighborhood of
each pixel. The idea is to move a window B through the
entire image. This window B is centered on each pixel and
get a new value, which is the result of selecting one pixel
from all previously ordered pixels in the window. For exam-
ple, a pixel in the new image may be the result of getting
the median, minimum, or maximum of the colors ordered
in B.

Dm is the B window (called the structuring element in
the mathematical morphology (see the next subsection)),
where the operation (order filter) is applied. Figure 1 depicts
a domain Dm corresponding to a neighborhood B of size
3 × 3 centered in the pixel (x, y).

2) SECOND STRATEGY: PARTITION THE IMAGE INTO
SUB-REGIONS
In order to obtain local information from an image f , it is
divided into λ sub-regions {Wl}, l = {1, . . . , λ}. Let B be a
window or a structuring element, and Dm its corresponding
domain centered at pixel (x, y). Then any region in contact
with a pixel of B is considered as part of Dm.

Figure 2 depicts the image division into four sub-regions:
W1, W2, W3, and W4. The region delimited by window B is
shaded. The domainDm used to compute theweightsψl using
B represents the zone corresponding to sub-regionW1.

It should be noted that the window will not necessarily be
included in a single sub-region. Because the window moves
through the entire image, it may touch more than one sub-
region. Figure 3 depicts a domain Dm, where the weights
will be calculated. Domain Dm belongs to the union of
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FIGURE 2. Domain when window is in contact with one sub-region.

FIGURE 3. Domain when window is in contact with more than one
sub-region.

sub-regions W1 and W2, and window B is in contact with
both sub-regions. This ensures that the weighted vector ψ
will be the same for all pixels in B. Thus, when two different
pixels are to be compared with the same color v, the same
transformation T can be obtained.
In this context, we can consider the global information as

a special case in which the image is not split into regions so
that the region is the full image. In this case the weights are
computed from the entire image.

In our tests, input images with a size ofM ×N pixels were
divided into sub-regionsW{1,2,...,λ} with

⌊ M
M ′
⌋
rows and

⌊ N
N ′
⌋

columns, where b.c indicates the floor function. In this way,
we obtained a new matrix with M ′ rows and N ′ columns,
whose element was sub-regionWl .
Note that since the R̂ - binary relation depends on the

selection of the weighted vector and the domain Dm, from
which the statistical parameters are extracted as components
of that vector, it is possible to have an ordering frame-
work. In the ordering framework you can configure different
domain partition strategies with different statistical param-
eters depending on the type of image to be treated or the
application. In the Figure 4 it can be observed the flow
chart of the ordering framework. It should be noted that
the sequence of steps shown in the flow chart must be
applied in the filter window for each pixel within the
image.

FIGURE 4. Flow chart of the ordering framework.

B. MATHEMATICAL MORPHOLOGY
Mathematical morphology as a particular case of order fil-
tering is based on two basic operators: erosion and dilation.
Such operators can be defined by theminimum andmaximum
within a special windowB called a structuring element. Given
a digital image f and structuring element B; the erosion (ε)
and dilation (δ) of image f for all pixels (x, y) with respect to
B are defined as follows:

ε(f ,B)(x, y) = min{f (x − s, y− t),∀(s, t) ∈ B}, (12)

δ(f ,B)(x, y) = max{f (x + s, y+ t),∀(s, t) ∈ B}. (13)

The combination of erosion and dilation produces other
operators such as opening and closing. The opening ◦ and
closing • of f by B are defined based on the dilation and
erosion as follows:

f ◦ B = δ(ε(f ,B),B), (14)

f • B = ε(δ(f ,B),B). (15)

In practice, opening smooths the bright regions of the
image. Closing smooths the dark zones of the image.
An operator is considered morphological if it has some prop-
erties such as anti-extensive or extensive, idempotent, homo-
topy, and increasing [47].

The extension of mathematical morphology for color
images remains an open problem [48], mainly because there
is no a natural order between colors. In the RGB color
image, the priority of the color component is given by the
ordering when applying a filter over the image using the
lexicographical ordering. However, the same ordering filter
may yield to different results depending on which component
is prioritized. Figure 5 depicts an example of the application
of the dilatation operator with a square structuring element B
(size 3× 3) to a synthetic color image (Figure 5(a)) using the
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FIGURE 5. Example of applying the dilation operator to a synthetic image.

lexicographical ordering R → G → B and G → B → R.
In the image in Figure 5(b), it can be observed how the green
objects decrease in size and the red object size increases.
In the image of Figure 5(c) occurs exactly the opposite.
This is because the red component has a higher priority in
ordering in Figure 5(b), while the green component has a
higher priority in Figure 5(c). This simple example shows the
importance of choosing adequately the component priority
in the lexicographical ordering. In fact, this prioritization is
highly dependent on the type of image or application.

III. APPLICATIONS
In this paper, two applications are shown. The first one is
noise reduction and the second is contrast enhancement using
mathematical morphology.

For the examples in this section and in the experiments
(next section), we use the following abbreviations:

• ED : The Euclidean norm in RGB was used as the color
ordering method [11].

• BM : Bit mixing ordering in RGB was used as the color
ordering method [45].

• LEX : Lexicographical ordering in RGB was used as the
color ordering method.

• ALEX : α-lexicographical ordering inRGB [49] was used
for color ordering. The value of α = 10.

• AMLEX : α-module lexicographical ordering in
RGB [31] was used for color ordering. The value of
α = 10.

• HLEX : I → S → H lexicographical ordering was used
for color ordering.

• DLAB: The Euclidean norm in L∗a∗b∗ was used as the
ordering method [11].

• OL: An ordering method based on the ordering of
Loewner [24].

• MIN : Equation 1 was used to add this transformation as
the initial element to the extended color vector, where:
ψ = (φMin(h

Dm
f1

), φMin(h
Dm
f2

), φMin(h
Dm
f3

)).
• MAX : Equation 1 was used to add this transformation as
the initial element to the extended color vector, where:
ψ = (φMax(h

Dm
f1

), φMax(h
Dm
f2

), φMax(h
Dm
f3

)).
• MO1: Equation 1 was used to add this transformation as
the initial element to the extended color vector, where:
ψ = (φminMo (h

Dm
f1

), φminMo (h
Dm
f2

), φminMo (h
Dm
f3

)).

• MO2: Equation 1 was used to add this transformation as
the initial element to the extended color vector, where:
ψ = (φmaxMo (h

Dm
f1

), φmaxMo (h
Dm
f2

), φmaxMo (h
Dm
f3

)).
• SMO: Equation 1 was used to add this transformation as
the initial element to the extended color vector, where:
ψ = (φR(h

Dm
f1

), φR(h
Dm
f2

), φR(h
Dm
f3

)).
• MEAN: Equation 1 was used to add this transformation
as the initial element to the extended color vector, where:
ψ = (φMe(h

Dm
f1

), φMe(h
Dm
f2

), φMe(h
Dm
f3

)).
• VAR: Equation 1 was used to add this transformation as
the initial element to the extended color vector, where:
ψ = (φVar (h

Dm
f1

), φVar (h
Dm
f2

), φVar (h
Dm
f3

)).

A. NOISE REDUCTION
In images, noise is a random variation of brightness or color
information due to capture, storage, transmission, process-
ing, or conversion [50]. From the theoretical point of view,
several mathematical models have been developed to gener-
ate different types of noise.

Let f ′ be the result of contaminating image f with a certain
type of noise, with vector η = (η1, η2, η3), in which each
element in η corresponds to a random variable. The utilized
noise models are defined as follows:
• Gaussian noise: This is an additive statistical noise with
a density function of Gaussian probability [51]. Gaus-
sian noise is expressed as follows:

f ′(x, y) = f (x, y)+ η, (16)

where each component ηl is a random variable with a
normal distribution, average µ, and variance σ 2.

• Speckle noise: This is a multiplicative statistical noise
with a uniform probability density function, defined as
follows:

f ′(x, y) = f (x, y)+ η ∗ f (x, y), (17)

where the operator ∗ symbolizes the Hadamard prod-
uct (element to element). Each element ηl is a uni-
formly distributed random value with an average µ and
variance σ 2.

Figure 6 depicts an untouched image (6(a)), and the same
image after adding noise (6(b-c)) The noise parameters are
(σ 2
= 0.105, µ = 0) for the Gaussian noise and (σ 2

= 0.05,
µ = 0) for the speckle noise.
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FIGURE 6. Image with different types of noise.

FIGURE 7. Results from applying different filters. The image was divided into 5 × 5 sub-regions.

In order to establish which ordering method is more effi-
cient for noise reduction, the images resulting from applying
the median filter with different ordering methods to a noisy
image should be compared. In this case, the median filter
is applied to the image contaminated with Gaussian noise
(Figure 6(b)). One of the objectives whenworkingwith image
filtering regardless of the noise present is to have a good
balance between image smoothing and edge preservation.
The ideal filter for image enhancement is one that is capable
of preserving fine edges and details. Some filters, by reducing
noise, inevitably eliminate a considerable amount of detail.

Figure 7 depicts the results of the median filter using
different ordering methods in the tip of the pyramid. The
idea is to compare the visual results obtained by the different
ordering methods using the same filter, and thus observed,
which results are the closest to the original image and is
capable of preserving fine edges and details.

The methods proposed in the literature are very similar
visually, in the sense that they reduce noise, but the results
are not so smooth, and do not maintain the structure of the
pyramid (eliminate a considerable amount of detail). The
results of using the ordering methods in the L∗a∗b∗ and
HSI color spaces are shown. In the RGB color space the
BM and ED methods are shown, and of all lexicographical

methods only the LEX method is shown (Figure 7(c-g)). The
images filtered using the proposed ordering and different
weights are visually better than thosemethods proposed in the
literature (the resulting image maintains the structure of the
pyramid and is much smoother). They also are perceptually
very similar to each other, getting a good balance between
image smoothing and edge preservation. Figure 7(h) depicts
the filter results using of method SMO.

B. CONTRAST ENHANCEMENT USING MATHEMATICAL
MORPHOLOGY
Based on opening and closing, other operators such as top-
hat (TH ) and bottom-hat (BH ) are defined as follows:

TH (f ) = f − f ◦ B, (18)

BH (f ) = f • B− f . (19)

The advantages of using TH and BH are the possibilities
of extracting small bright and dark sets in complex contexts,
respectively [52], [53]. Operators with the proposed order are
not purely morphological because theoretical properties such
as idempotent cannot be guaranteed for opening and closing.
Because the information extracted in the form of weights
(as a result of applying a function φ) can be different, a color
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FIGURE 8. Visual result of applying contrast enhancement.

can be considered higher or lower than another color in a
domain D but not in another one.
Even when using the same domain, the weights can vary

in the next iteration (as a consequence of reapplying the same
operator), because the information extracted varies from one
iteration to another. In the literature, this kind of operator is
called a pseudo-operator [19]–[21], [48], [54].

A contrast enhancement strategy [46] consists of adding
bright regions to (TH ) and subtracting dark ones (BH ) from
image f as follows:

MC(f ) = f + TH (f )− BH (f ), (20)

whereMC(f ) is the contrast enhancement of f .
In order to increase the bright regions and decrease the dark

parts of an image, in this work we propose to generalize the
expression proposed in [46] by adding the weight β so that:

MC(f ) = f + β × TH (f )− β × BH (f ). (21)

This factor affects the contrast so that increasing β implies
a higher contrast.

Figure 8 presents the visual results of applying con-
trast enhancement with ordering methods LEX and MO1
to an image (Figure 8(a)). We can see that both methods
enhance the contrast in relation to the original image. Our
methodMO1, unlike the LEXmethod, not only generates less
distortion, but also improves the details of the image. The
difference between the different ordering methods in both
applications is shown in the numerical results discussed later
in the next section.

IV. EXPERIMENTAL RESULTS
This section presents the different experiments performed
to evaluate the proposed framework. Such experiments are
divided into two parts:

1) In the first part (Section IV-A), we evaluate the perfor-
mance of the proposal in the presence of noise.

2) In the second part (Section IV-B), we assess the
proposal in the contrast enhancement application.
In this case the contrast enhancement is done using

the morphological method presented previously (see
equation 21).

The proposed framework was compared with the following
popular orderingmethods: classical lexicographical ordering,
α-lexicographical ordering [49], α-module lexicographical
ordering [31], I → S → H lexicographical ordering,
(Href = 0Âž) [32], bit-mixing [45], the Euclidean dis-
tance to color (0, 0, 0) method in the L∗a∗b∗ and RGB color
spaces [11], and an ordering method based on the ordering of
Loewner [24]. The same abbreviations used in the previous
section were used for differentiation of ordering methods.

A. NOISE REDUCTION
The objective of this experiment is to compare the ordering
methods in noisy images after applying a well known filter to
reduce noise as the median.

In order to evaluate the filter efficiency with different
ordering, we used the mean absolute error to measure how
close the predictions were to the actual observations [55].
Given an image f and its filtered image gwith the dimensions
M ×N , the mean absolute error of the filtered image is given
by:

MAE(f , g) =
1

3×M × N

3∑
j=1

dj, (22)

where:

dj =
∑

x∈{1,...,M}
y∈{1,...,N }

|[f (x, y)]j − [g(x, y)]j| (23)

We used 100 different images from [56], polluted with
Gaussian and speckle noise. It is worth mentioning that the
input images were normalized at interval [0, 1] to generate
the noise, and then changed again to their original interval
[0, 1, . . . , 2k − 1] (k = 8) for the filter applications and
subsequent evaluations. For both speckle and Gaussian noise,
the value ofµwas set to 0 while σ 2 varied between 0.005 and
0.165, in increments of 0.01.
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For each noise type we evaluate the goodness of the pro-
posal by performing the following experiments:

1) First, we test how changes the values when varying the
window size with the methods from the literature.

2) Then, we perform similar experiments to previous
one, but now varying number of sub-regions (Second
strategy) and the window size (First strategy) with the
proposal.

3) We continue comparing the proposal with the best con-
figuration of window size, number of sub-regions and
other ordering methods.

4) Finally, we present a ranking of the different methods
used with the best parameter values. This ranking is
presented for different noise levels.

The results in this section differentiate the order filters of
each weight (obtained by applying the φ function) accord-
ing to their domain partition. As a reference, a suffix WX
was added to the designations of the proposed filters, where
X represents the number of sub-regions in which the image
was divided. If X is equal to 0 (zero), the neighborhood
(marked by the filter window) is the domain (fist strategy).
In order to distinguish the size of the window, suffix B is
used before suffix WX . For instance, B3W0 implies that a
3× 3 window was used by the neighborhood as the domain.
Similarly, B5W9 implies that a 5× 5 window was used, and
the image was divided into 9 sub-regions of the same size.

1) WINDOW SIZE ANALYSIS
The objective of the analysis is to determine which filter
window sizes are best suited to reduce noise for differ-
ent ordering methods in the literature. The horizontal axis
(or abscissa) is assigned the window size values (B3, B5
and B7) and the vertical axis or ordinate is assigned the values
of the MAE metric as B increases for each ordering method.
As shown in Figure 9, it can be seen that the size of the
B filter window is more important than the ordering methods.

Figure 9 depicts that in comparison to the 3×3 window for
Gaussian noise, better results could be obtained with 5×5 and
7×7 windows on average, with σ 2 values between 0.005 and
0.165 (17 in total× 100 images) for the methods proposed in
the literature. Method ED gave better results than the rest,
while method BM remained in second place. TheOL method
performed worse than the other methods.

Figure 10 depicts the filter results with the ordering meth-
ods proposed in the literature, for speckle noise. We can see
that a smaller window size provides better average results.
In addition, ED is the method with the best performance and
OL is the method with the worst performance.

2) NUMBER OF SUB-REGIONS AND THE WINDOW
SIZE (STUDY)
The objective of the analysis is to determine which numbers
of sub-regions and window sizes in the framework are best
suited for noise reduction. The horizontal axis (or abscissa)
is assigned the values of window size B and the number of
subregions W. The vertical axis (or ordinate) is assigned the
values of the MAE metric for each ordering method.

FIGURE 9. Gaussian noise. Average MAE of 1700 images (100 × 17) per
window size. Proposed methods in literature.

FIGURE 10. Speckle noise. Average MAE of 1700 images (100 × 17) per
window size. Proposed methods in literature.

Figure 11 depicts the behavior of the Gaussian noise filter
using different domain partitions for the proposed ordering.
Every curve presents the same form, i.e., the filters present
the same relative behavior regarding the domain partition.
Better average results were obtained for the 5× 5 and 7× 7
windows in comparison to the 3×3 window (just as occurred
with the methods proposed in the literature). It is also notice-
able that the domain was not as important as the weights.
The neighborhood was better as a domain than the division
into sub-regions for methods MIN , MO1, and MO2. These
3 methods were the ones with the worst results. On the other
hand, VAR, SMO, MAX , and MEAN had better results, and
were practically equal regardless of the domain used for the
weight calculations.

Figure 12 depicts the filter behavior for speckle noise,
when using different domain partitions with the framework.
Every curve presents the same form. In other words, the filters
present the same relative behavior regarding the domain parti-
tion. We can see that the domain is not very important, except
in MIN , where the results vary depending on the way the
domain is distributed. In addition, in relation to the weights,
the methods with the best results areMAX and SMO.

3) ORDERING METHODS COMPARISON
For each statistical parameter and noise, a graph of the trend
curves of each filter in relation to the noise variation param-
eter (σ 2) is presented. Each point represents the average of
the results for 100 images from the database [56] obtained
by that filter for a certain noise parameter value (σ 2,MAE).
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FIGURE 11. Gaussian noise. Average MAE of 1700 images by domain
partition. Proposed filters.

FIGURE 12. Speckle noise. Average MAE of 1700 images by domain
partition. Proposed filters.

The curve corresponding to a filter was obtained by joining
each pair of successive points of said filter with the straight
line passing through both points.

Figure 13 depicts the behavior of the Gaussian noise filter
(with the best configuration by ordering method) with the
increase of σ 2. The horizontal axis (or abscissa) is assigned
the value of σ 2 and the vertical axis (or ordinate) is assigned
the MAE values of the different ordering methods as σ 2

increases. The goal is to display the MAE values as the noise
increases. It can be seen that the MAE values increase as σ 2

increases.
We can see that the framework with all the weights is better

than the methods proposed in the literature for almost every
point (with the exception of the initial points).MEAN ,MAX ,
and SMO were the 3 best methods, with practically the same
results. The OL method was worse in performance than the
other methods for all σ 2 value. This can be seen in the legends
of the box on the right of the Figure, where the methods
are ordered according to their MAE value from highest to
lowest. The ordering methods resulting from the use of the
framework are painted in blue.

Figure 14 depicts each filter behavior for speckle noise
(with their best configuration) with an increase in σ 2. We can
see that the framework, for most weights, is better than those
proposed in the literature. Once again, ED is the best method

FIGURE 13. Gaussian noise. MAE average of 100 images by σ2. Best
configurations.

FIGURE 14. Speckle noise. MAE average of 100 images by σ2. Best
configurations.

FIGURE 15. Gaussian noise. Ranking.

among those proposed in the literature and OL is the method
with the worst performance.

4) RANKING THE ORDERING METHODS
Figure 15 depicts the ranking (order axis) as σ 2 increases
(abscissa axis). Lower values for MAE imply better ranking
positions. It is noticeable that when σ 2 is equal to 0.015,
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FIGURE 16. Speckle noise. Ranking.

the framework with different weights gives better results than
the methods proposed in the literature. This shows that with
higher noise, the framework, with any of the weights, gives
better results than the other methods with Gaussian noise.

Figure 16 depicts that, in the speckle noise ranking, all of
the methods are stable even if the noise increases, with very
few jumps.MethodED startedwith the 4th position and ended
with the 6th. It was surpassed byMO and VAR, which started
from σ 2 equal to 0.025.

B. CONTRAST ENHANCEMENT
We may assess the contrast enhancement effectiveness using
a method called the contrast improvement ratio (CIR), which
quantifies the level of image contrast enhancement [57]. The
local contrast c(x, y)j for component j is defined as follows:

c(x, y)j =

∣∣∣∣ρ − aρ + a

∣∣∣∣ , (24)

where ρ is the intensity of component j in (x, y), and a is the
average intensity of the eight neighbors in a 3 × 3 matrix of
pixels centered on (x, y).
The performance measure CIRj is defined as the ratio

of the enhanced image and original image for each
component j.

CIRj =

∑
(x,y)

∣∣c(x, y)j − č(x, y)j∣∣2∑
(x,y) c(x, y)

2
j

, (25)

where c and č are the local contrast values of the original
image and the enhanced one, respectively.

The performance measure CIR is defined as follows:

CIR =
1
3

3∑
j=1

CIRj. (26)

The tests were performed using a database composed of
100 images [56]. The structuring element is an important

FIGURE 17. Results of applying contrast enhancement. Structuring element 7 × 7 and domain W0.
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FIGURE 18. Comparison of the ordering method α-lexicographical (ALEX) with methods
MO1 and MO2.

factor to enhance the image. The larger the structuring ele-
ment is, the better the obtained results are. In this application,
defining the domain as the structuring element (W0) produces
the best results. For this reason only these results are shown in
this work. Table 1 lists the average results with the best con-

figurations for the proposed method (B7WO), using different
weights, along with those of the ordering methods proposed
in the literature (B7). It presents the 3 best ordering methods
proposed in the literature and the 3 best ordering methods
obtained by the framework.
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FIGURE 19. Comparison of the ordering method α-lexicographical (ALEX) with methods
MO1 and MO2.

The contrast enhancement method is defined by equation
21 with β equal to 1, 2, 3, 4, 5, 6, and 7. We can see that
as β increases, so does the contrast for each of the ordering
methods. With β equal to 1, 2, and 3, method LEX is more

efficient. However, methodMOD1 is the most efficient, with
β equal to 4, 5, 6, and 7.

Figure 17(b-h) also depicts the results when β = {1, 2, 3}
using methods LEX and MO1 (with these values of β the
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TABLE 1. Better CIR results.

LEX method obtains better results according to the
metric CIR). LEX method gives more importance to the
red component in the ordering; therefore, greater distortions
appear in the resulting image (a darker red color in certain
areas of the fish face). This kind of distortion is also observed
for methods that are lexicographical variations in the RGB
color space. It should be noted that the level of distortion is
lower and details are improved using our proposed method.
In Figure 18 and 19 it can be observed the comparison of
the ALEX method (the second with the best performance of
the literature ordering methods) with the MOD1 and MOD2
methods. It can be observed that the ALEX method adds a
false color (turquoise color) on the edges of the wings of the
airplane and the roof of the house. The MOD1 and MOD2
methods improve the contrast of the image without adding
much distortion.

C. ANALYSIS OF RESULTS
The framework has more flexibility, compared to state of
the art methods, for color ordering. This flexibility is due to
the different strategies of domain partition, and the informa-
tion to extract in that domain (generating different ordering
options). When comparing the different ordering strategies
in the framework, it can be observed that the information and
the domain with better performance varies both for Gaussian
noise and for speckle noise. In the experiments, it can be
observed that almost independently of the type of informa-
tion extracted from the histograms of each color component,
the results of the proposal in the application of noise reduc-
tion are better than the comparative state of the art ordering
methods, mainly when there is a greater presence of noise.

In the application of contrast enhancement also better
results are achieved in terms of contrast enhancement, pro-
ducing less distortion in the processed image.

V. CONCLUSION AND FUTURE WORK
This paper presented a new RGB color image ordering frame-
work. The main strength of this proposal is that the ordering
is performed by extracting information from each color com-
ponent histogram in a certain image domain. In particular,
mode, mean, minimum, maximum, variance and smoothness
are used to establish a color ordering.

Some tests were performed for two image processing
applications: noise reduction and contrast enhancement. Two
domain partition strategies were proposed to extract statisti-
cal parameters of each color component. The median filter
was used for noise elimination and the MAE criterion as
numeric evaluation.We establish a robust evaluation for noise

reduction. This evaluation analyzes the performance of
the methods when increasing the noise for different noise
types. Our method outperformed classical ordering methods
encountered in the literature with a considerable amount
of Gaussian noise, and for speckle noise we outperform
with different statistical parameters from the histograms. The
experiments showed that domain partition strategies was not
as important as the statistical parameters from the histograms
of the color components for obtaining good results.

For the application of contrast enhancement using math-
ematical morphology, we extend a simple contrast enhance-
ment method proposal by Stojic et al. [46], to analyze the
enhancement on the image for different contrast values. The
extension adds an enhancement factor β, which increases the
amount of contrast in the image. The M01 and M02 order-
ing methods (where the mode is considered) defined here,
outperformed the best classical ordering method LEX and its
variants according to the CIR metric, as the contrast factor
β increased. It is worth noting that the framework achieves
much less noise than the method LEX and its variants. For
this application the best results were obtained from the first
domain partition strategy. This strategy consists of extracting
information from the order filter window.

Authors are very enthusiastic about the results obtained
when using the proposed ordering framework in both noise
reduction and contrast enhancement. The results show that
the proposed approach is competitive, has in general a better
performance and is robust in terms of introducing less dis-
tortion in the image. Future works include the extension of
the proposed framework to other morphological operations
(such as multiscale mathematical morphology) using statis-
tical parameters such as color component histogram entropy,
as well as, other applications such as texture classification.
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