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ABSTRACT The automatic segmentation of the skin lesion on dermoscopy images is an important step
for diagnosing the melanoma. However, the skin lesion segmentation is still a challenging task due to the
blur lesion border, low contrast between the skin cancer region and normal tissue background, and various
sizes of cancer regions. In this paper, we propose a deep supervised multi-scale network (DSM-Network),
which achieves satisfied skin cancer segmentation result by utilizing the side-output layers of the network to
aggregate information from shallow&deep layers, and designing a multi-scale connection block to handle a
variety of cancer sizes’ changes.Moreover, a post-processing of the contour refinement strategy is adopted by
a conditional random field (CRF) model to further improve the segmentation results. Extensive experiments
on two public datasets: ISBI 2017 and PH2 have demonstrated that our designed DSM-Network has gained
competitive performance compared with other state-of-the-art methods.

INDEX TERMS Skin cancer, dermoscopy image, deep supervised learning, multi-scale feature, conditional
random field.

I. INTRODUCTION
Skin cancer has become one of the most common malig-
nant tumors in the world, and the death rate of melanoma
(i.e., a kind of skin cancer) has increased to 75% [1]. The early
diagnosis of melanoma can significantly improve patients’
survival rate. Currently, the most common way to detect this
cancer is by using dermoscopy images. Dermoscopy is a pop-
ular tool in vivo non-invasive imaging that employs polarized
light to obtain magnified and illuminated images of localized
areas of the skin, and it can help improve diagnostic per-
formance and reduce skin cancer mortality. However, most
of the current dermoscopy images are manually analyzed
by dermatologists, which is time-consuming, expensive,
and laborious. Meanwhile, the diagnosis result is easily
biased by each individual dermatologist. Computer-aided
system (CAD) can effectively solve these problems. It not
only improves the detection efficiency but also helps make
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diagnosis more objective. Therefore, the development of a
computer-aided detection system formelanoma segmentation
is imminent and essential.

At present, according to the types of extracted skin cancer
features, there are mainly two categories of methods (hand-
crafted, deep learning) proposed in skin cancer segmenta-
tion. One is based on manually defined traditional features
such as color, shape, size, texture, and so on. For example,
Abbas et al. [2] proposed a method using a dynamic pro-
gramming technique to find the optimal boundary of the
lesion in dermoscopy images. Celebi et al. [3] presented an
automated method for skin lesion border detection by using
ensembles of four different thresholding methods. In order to
improve the performance of the classic gradient vector flow
snake, Zhou et al. [4] integrated a mass density function into
the optimization objective functional, which can be solved
with the support of mean shift estimation. However, the opti-
mization process involves a large amount of computation to
converge. Celebi et al. [5] performed an automatic border
detection to segment the lesion from the background skin, and
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then extracted a series of color, texture, and shape features
based on the extracted lesion region [6]. Stanley et al. [7]
used the color histogram analysis over a training set of
images to determine the colors characteristics of melanoma.
Messadi et al. [8] applied a sequence of transformations
to the image to measure a set of attributes (A: asymmetry,
B: border, C: color and D: diameter) which contain sufficient
information to differentiate melanoma from benign lesions.

Unlike manually defined traditional features, deep learn-
ing can automatically extract features by learning from a
hierarchical network structure. Besides the great success of
deep learning in natural image recognition tasks such as
image classification [9], convolution neural networks (CNNs)
have also shown promising performance in various medi-
cal image computing problems. For skin segmentation task,
Sadri et al. [10] introduced a fixed-grid wavelet network,
in which orthogonal least squares were used to calculate the
network weights and then to optimize the network struc-
ture. A supervised method in [12] was proposed, in which a
self-generating neural network is combined with the genetic
algorithms for skin lesions segmentation. Yuan et al. [13]
developed an end-to-end deep convolution neural network
with a jaccard distance-based loss for skin lesion segmen-
tation without prior knowledge and sample re-weighting.
Li et al. [14] presented a new dense deconvolutional
network based on residual learning to segment lesions.
Mirikharaji et al. [15] proposed to encode the star shape
prior to the loss of deep convolutional neural network
to guarantee a global structure in segmentation results.
Sarker et al. [16] applied a robust deep encoder-decoder net-
work learning framework to segment the boundaries of lesion
regions accurately. To simultaneously produce segmenta-
tion and coarse classification result, two fully convolutional
residual networks were proposed in [17]. A deep ResNet
was also utilized in [18] to enhance robust visual features
learning, and they used 50 layers for skin lesions segmen-
tation to obtain good performance. Moreover, an enhanced
Convolutional-Deconvolutional Network [11] was used for
automatic segmentation of skin lesions. However, the pro-
posed method in [11] can’t realize deep supervision, which
leads to the loss of lots of detailed information thus can’t
further improve the performance of segmentation on skin
lesion. Codella et al. [19] proposed a system that com-
bines recent developments in deep learning with established
machine learning approaches. Specifically, it creates ensem-
bles of methods that are capable of segmenting skin lesions
and analyzing the detected area and surrounding tissues for
melanoma detection.

Although those methods have achieved great success, there
still remain several challenges to the skin cancer segmenta-
tion task. Firstly, dermoscopy image may include hair, blood
vessels, and other factors that interfere with segmentation.
Moreover, the low contrast between the lesion area and the
surrounding skin causes blurry boundary, which makes it
difficult to segment the lesion accurately. At last, melanoma
usually has different sizes, shapes, and colors depending on

different skin condition, which could be a hamper to achieve
high segmentation accuracy.

In order to accurately segment the skin cancer, we propose
a deep supervised multi-scale network (DSM-Network) to
extract strong and robust features of skin cancers. Before
extracting features by the proposed DSM-Network, we first
preprocess the input image to remove the possible hairs
influence on the lesion region, then two image contrast
enhancement techniques are utilized to generate two addi-
tional images as the inputs to the network. After obtain-
ing the primary prediction mask of the input image by
DSM-Network, a contour refinement by CRF is applied to
further enhance the segmentation result. And the final pre-
diction mask is the averaged one among the results of the
original image and two contrast-enhanced versions of the
original image. Although our DSM-Network shares simi-
lar network architecture as U-Net, we distinguish ourselves
from the existing methods from the following three aspects:
(1) we add extra residual block after each convolution layer
to enhance the feature learning ability of the network; (2) we
design a multi-scale connection (MSC) block at each skip
connection layer of the network to handle variety of cancer
size changes; (3) we aggregate complementary information
at different layer by side-output layers considering that the
deeper side outputs encode high-level semantic knowledge
while the shallower side outputs capture rich spatial infor-
mation which is capable of successfully highlighting the
boundaries of the cancers.

The rest of the paper is organized as follows. In Section II,
we introduce our proposed approach of DSM-Network.
In Section III, we conduct experiments on two public
datasets: ISBI 2017 and PH2, and then make thorough com-
parisons with state-of-the-art methods. In the last Section,
we present the conclusion and discussions of the future work.

II. THE PROPOSED APPROACH
The overview of the proposed DSM-Network architecture
is illustrated in Fig. 1. The backbone of our DSM-Network
is U-Net [20]which has been successfully used inmanymedi-
cal image segmentation tasks. Like U-Net basedmethods, our
method also consists of the encoder and the decoder stages,
respectively. The encoder stage is composed of successive
convolution and pooling layers to extract the image features,
while the decoder stage is to upsample the feature maps at
different layers to the original image size, such that they can
be concatenated for the final segmentation task.

The pipeline of the proposed method is as follows. Before
sending one input image to our DSM-Network, we first apply
a preprocessing operation to the input image to remove the
possible hairs influence on the lesion region, and then two
image contrast enhancement methods are performed indi-
vidually. Both the enhanced images and the original images
are inputs and sent to the network with the expectation that
more image data could further improve the model perfor-
mance. Moreover, in order to improve the feature learning
ability of the model, we utilize the residual block [28] after
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FIGURE 1. The main architecture of our proposed DSM-Network, which achieves satisfied skin cancer segmentation result by utilizing the
side-output layers of the network to aggregate information from shallow&deep layers (i.e., S′1, S′2, S′3 and S′4), and designing multi-scale
connection blocks to handle variety of cancer sizes’ changes. The final predicted mask is obtained by sending the concatenated
segmentation masks from different layers to a convolution+sigmoid layer.

each convolution operation as one basic unit of the network
(i.e., the orange blocks in Fig. 1). At the different layer of
the network, in order to handle a variety of cancer sizes’
changes, a multi-scale connection block is designed to con-
catenate the discriminative features from different scales. The
detailed structure of the MSC block can be referred to Fig. 3.
Furthermore, we use a deep supervision learning with side-
output layers to aggregate complementary information from
various layers (i.e., layers connected to the upsampling and
the concatenation blocks in Fig. 1). The final output of the
decoder stage is then fed into a 1× 1 convolution layer with
the sigmoid activation to produce the final predicted feature
map (as the purple block shows in Fig. 1.). After that, for the
predicted mask of each input image (we use three images
as inputs: one original image, and two enhanced images),
a contour enhancement operation by CRF is performed, and
the final predicted mask is obtained by fusing three refined
masks equally.

A. IMAGE PREPROCESSING AND CONTRAST
ENHANCEMENT
The dense hairs usually cover the skin cancer regions of
the images (Fig. 2 (a)), which could hamper the model to
obtain accurate segmentation results. Thus, before training
the network, we first apply a morphological transformation to
remove the effect of the hairs. The operation ofmorphological
transformation is operated by closing operation [29] on three
image channels, respectively. It performs with a kernel size of
k×k to close the hair region pixels with the surrounding tissue
pixels. Empirically, we set k = 11 in all our experiments.
The detailed visualization results of the closing operation are
shown in Fig. 2 (b). From this column, we can see that the
hairs near the lesion regions are clearly removed.

Moreover, in order to increase the contrast between normal
tissue and cancer region, after the morphological operation,
we perform the unsharpmasking [30] and the intensity rescal-
ing [31] to the image, and twomore images are generated then
as inputs sent into our DSM-Network. The unsharp masking

FIGURE 2. Example images of the skin cancer regions before and after
image pre-processing and enhancement. (a) original images with hairs;
(b) hair removing results after the closing operation on three channels of
the original image; (c) image contrast enhancement with unsharp
masking after (b); and (d) another image contrast enhancement with the
rescale intensity after (b).

technique comes from a publishing industry process in which
an image is sharpened by subtracting a blurred (unsharp)
version of the image from itself. The intensity rescaling is
adopted from the Scikit-image [31] python package, and it
aims to enhance the local contrast of the image. The results
by the unsharp masking and the intensity rescaling are shown
in Fig. 2 (c) and Fig. 2 (d), respectively.

B. DEEP SUPERVISED LEARNING
In our network architecture, the deep supervised learning is
achieved by adding the side-output layers, which generate the
output segmentation map from the early layers. With the deep
supervised learning, it could help the network training and
alleviate the gradient vanishing. Furthermore, the features of
different layers could also contain much more different level
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FIGURE 3. The detailed structure of our multi-scale skip connection block. Given an input feature
Fi−1, four sets of convolutions with size of 1× 1, 3× 3, 6× 6, and 9× 9 are performed on it and then
we concatenate them to be Fi . After using a 1× 1 convolution to reduce the dimension of Fi ,
the output feature map Fi+1 is acquired by employing a residual learning between Fi−1 and Fi .

features which help the network achieve higher performance.
The detailed deep supervised learning structure is illustrated
in Fig. 1. Let denote the output feature map of each side-
output layer as Si where i ∈ {1, 2, 3, 4}. For S1, S2, S3,
we first upsample each feature map to the original image size.
For S4, we keep it untouched since it has the same size as
the original image. Then a 1 × 1 convolution layer with a
sigmoid activation is applied to Si to generate the predicted
activation map S ′i . After that, these predicted activation maps
are concatenated to gain the stacked predicted activation
map St :

St = [S ′1, S
′

2, S
′

3, S
′

4]. (1)

Finally, we apply an extra 1 × 1 convolution layer with
sigmoid activation to St to fuse all the predicted activation
maps and gain the final predicted result. Based on our deep
supervision learning, the influence of the gradient vanishing
could be alleviated, and the network could also extract more
fine detail representations to further boost the performance of
the model.

C. MULTI-SCALE CONNECTION BLOCK
The convolution operation learns the local features from the
input image through the filters automatically. Different sizes
of filter kernels could provide diverse multi-scale features.
For the small size kernel at lower layers, it tends to learn
the detailed low-level information of the images. Meanwhile,
for the large size kernel at high layers, it could extract
the high-level or semantic and usually big representations.
At last, the skip connection of U-Net is to alleviate the gra-
dient vanishing and provide more spatial information of the
previous layers to the deep layers. Inspired by those findings,

we design an MSC block to enhance the feature learning
ability of the segmentation network. The detailed structure
of the MSC block is illustrated in Fig. 3. Consider Fi−1 as
the input feature from the encoder stage layer. Four sets of
convolutions with size of 1 × 1, 3 × 3, 6 × 6, and 9 × 9 are
performed, respectively. For 1 × 1 and 3 × 3 convolutions,
they aim to extract the features with a small receptive field
such that tiny information can be captured. For 6 × 6 and
9× 9 convolutions, they can learn representations with large
receptive fields which are suitable for the large representa-
tions learning. Here, denote the feature maps after the four
convolutions asF1

i−1,F
3
i−1,F

6
i−1, andF

9
i−1, respectively. After

that, we concatenate those four scale features to gain the
feature map Fi, and then a 1 × 1 convolution is applied to
reduce the dimension of Fi. Finally, the output feature map
Fi+1 is acquired by employing a residual learning between
Fi−1 and Fi. The designed MSC block is placed in the skip
connection as one intermediate layer so that more multi-scale
features of the encoder stage’s layers could be learned.

D. SIDE-OUTPUT WEIGHTED LOSS
In our designed model, we use the combination of the binary
cross-entropy and dice loss to train the network. The binary
cross-entropy loss can be written as:

Lbce = −
N∑
i=1

((yiln(pi))+ (1− yi)ln(1− pi)), (2)

and the dice loss function can be formulated as :

Ldi =
2 ∗

∑N
i yipi∑N

i yi +
∑N

i pi
, (3)
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where N is the pixel number, yi is the ground truth label
(i.e. 0 or 1) and pi is the predicted probability. Thus, the com-
bination loss Lc can be written as:

Lc = Lbce + (1− Ldi). (4)

Then, the side-output layer loss Ls is given as:

Ls =
M∑
m=1

βLc, (5)

where β is the fusion-weight of each side-output layer.
We make it as 0.1 empirically, and the values of M and N
are 4 identically. Finally, the total loss Lt of the network is
calculated by:

Lt =
M∑
m=1

βLc + (1− N ∗ β)Lf , (6)

where Lf is the loss from the final fused activation map, and
it can be similarly formulated as:

Lf = Lbce + (1− Ldi). (7)

E. CONTOUR REFINEMENT WITH CRF
Although our proposed model shows competitive capabil-
ity in generating high-quality probability maps, the final
segmentation can sometimes be ambiguous and rough on
edges of the regions, especially when the dense hair on
the skin covers the lesion contour. Besides, since the deep
convolutional networks usually have a very large recep-
tive field, the produced probability maps are too coarse for
pixel-level skin lesion segmentation. Hence, in our model,
CRF is used for refining the imprecise lesion contour through
building non-local pixel relations, yielding accurate seman-
tic segmentation results. The pipeline of the contour refine-
ment by CRF is shown in Fig. 4. For each predicted mask,
CRF is performed to refine the coarse boundary and imperfect
segmentation result. Each predicted mask by DSM-Network
for the original image and two enhanced images (unsharp
masking image and the intensity re-scaled image) are refined
by CRF respectively, and then the three refined results are
averaged to obtain the final segmentation mask.

Here, we use x ∈ X denoting the image to be refined
while y ∈ Y is corresponding labeled results that include the
label configuration of each pixel of x in the CRF graph. The
objective is to solve the following energy function:

E(y, x) =
∑
i

Ei(yi, xi)+
∑
ij

Eij(yi, yj, xi, xj). (8)

Here, the first term is the unary potential, and it calculates for
each individual pixel. Thus, the Ei(yi, xi) can be defined as:

Ei(yi, xi) = −logp(yi, xi), (9)

where p(yi, xi) denotes the prediction probability at pixel xi.
The second term of Eq. 8 is a pairwise potential. It considers

FIGURE 4. The pipeline of the contour refinement by CRF and the
procedure to obtain the final segmentation mask. Each predicted mask by
DSM-Network for the original image and two enhanced images are
refined by CRF respectively, and then the three refined results are
averaged to obtain the final segmentation mask.

the compatibility between each pair of adjacent pixels. The
Eij(yi, yj, xi, xj) can be formulated as:

Eij(yi, yj, xi, xj) = φ(yi, yj)f (yi, yj). (10)

Specifically, the second term of the above equation can be
further defined as: φ(yi, yj) is 1 if yi 6= yj, and 0 otherwise.
And f (yi, yj) can be defined as:

f (yi, yj) = exp{−
|xi − xj|2

2σ 2
α

} + λexp{−
|pi − pj|2

2σ 2
β

}, (11)

where σα and σβ are the hyper parameters to adjust the
Gaussian kernels, and λ is used to weight between the
RGB color space and the position space. In particular,
in Eq. 8, the first term constrains that the connected pixels
with similar color appearance tend to be assigned with the
same category label, and the second term constrains spatial
proximity while enforcing smoothness. The optimal solution
of E(y, x) can be obtained by using efficient mean field
approximation inference [34].

III. EXPERIMENTS
A. DATASETS
We evaluate the proposed network on two benchmark
datasets:

ISBI 2017 dataset To validate the performance of our
designed model, we conduct experiments on ISBI 2017
dataset [32], in which images were captured from different
clinical centers. Each image is paired with the expert manual
tracing of the skin lesion boundaries for segmentation task.
During the validation process, 2000 data samples are used
for training, 150, and 600 samples for validation and testing,
respectively.

PH2 dataset PH2 public dataset [33] contains
200 dermoscopy images with the resolution of 768 × 560
pixels, including 160 nevus, and 40 melanomas. All the
dermoscopy images are gained from the Pedro Hispano
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TABLE 1. The effectiveness of residual learning (RL) on two employed datasets.

Hospital, the research group of the Dermatology Service of
Hospital Pedro Hispano, Matosinhos, Portugal. The lesion
segmentation boundary mask was annotated by professional
experts.

B. IMPLEMENTATION DETAILS
The DSM-Network is achieved based on the Tensorflow deep
learning framework with an NVIDIA GTX 1080 graphic
processing unit (GPU). The initial learning rate of the model
is 0.001, and we reduce it by a factor 0.1 dynamically. The
optimization of our model is Adam optimizer. During the
training, we input the image with a size of 256 × 256. The
random flipping, rotation, whitening, and two extra generated
images are used as the data augmentation approach to further
improve the performance of the model.

C. EVALUATION METRICS
In this paper, we use accuracy (AC), sensitivity (SE), jaccard
index (JA), and dice coefficient (DI) as the basic metrics to
evaluate our designedmodel. Consider TP as the true positive,
FP as the false positive, TN as the true negative, FN as the
false negative. The evaluation metrics are defined as follows:

AC =
TP+ TN

TP+ FP+ TN + FN
, (12)

SE =
TP

TP+ FN
, (13)

JA =
TP

TP+ FP+ FN
, (14)

DI =
2 ∗ TP

2 ∗ TP+ FP+ FN
. (15)

D. THE EFFECTIVENESS OF RESIDUAL BLOCK
Since the deeper network could extract more high-level
and abstract features from the original image. Nevertheless,
directly adding the layers may result in the gradient vanish-
ing problem, and make the network difficult to train. Thus,
in our model, we add the residual block (RL) [28] to resolve
the gradient vanishing problem effectively. In this section,
we conduct experiments to verify the effectiveness of this
module. Especially, we also use U-Net as the baseline model
for better comparison.

The detailed comparison result is illustrated in Table 1.
The comparison result demonstrates that with the residual
block, themodel could gain better segmentation performance.

FIGURE 5. Performance comparisons of multi-scale connection block on
ISBI 2017 and PH2 datasets, respectively.

Specifically, on ISBI 2017 dataset, the best result is achieved
with 94.3% AC, 85.9% SE, 78.5% JA and 87.5% DI, respec-
tively. While on PH2 dataset, the performance is 93.1% AC,
88.9% SE, 89.1% JA and 92.0% DI, separately. The reason
may lie on that with the residual block the proposed model
can deepen the network thus is able to extract more high-level
and abstract features for accurate segmentation result.

E. THE EFFECTIVENESS OF MULTI-SCALE CONNECTION
BLOCK
The skip connection is to alleviate the gradient vanishing
and provide more spatial information of the previous layers.
Inspired by that, we design a multi-scale connection block
to enhance the model learning more scale-relevant features.
Different comparison results on those two datasets are illus-
trated in Fig. 5. From the result, we can see that with the
MSCmodule, the segmentation performance of our proposed
DSM-Network on those two datasets can be further improved.
On ISBI 2017 dataset, AC and JA are improved by
0.7%, and SE and DI are improved by 0.6%, respectively.
On PH2 dataset, after adding MSC block, the performance
of our model is enhanced AC, SE, JA, and DI by 0.5%, 1.2%,
0.7%, and 0.9%, respectively. That further validates that
discriminative multi-scale features adding from the previous
layers could be an efficient way to boost the segmentation
performance of the proposed model.

F. THE EFFECTIVENESS OF SIDE-OUTPUT LAYERS
In our designed model, the deep supervised learning is
achieved by adding the side-output layers, which generate
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TABLE 2. Comparisons with state-of-the-arts on ISBI 2017 dataset.

FIGURE 6. The results of our DSM-Network with or without the
side-output layers on ISBI 2017 and PH2 datasets, respectively.

the output segmentation map from the early layers. In this
section, we compare the results with or without the deep
side-output layers to explore the effectiveness of this design.
The detailed comparison result is shown in Fig. 6. It demon-
strates that adding the side-output layers could efficiently
improve the overall performance of the model, especially in
SE and JA. For ISBI 2017 dataset, the AC, SE, JA, and DI
are improved by 1.1%, 0.9%, 1.4% and 0.6%, respectively.
For PH2 dataset, the performance by adding the side-output
layers boosts AC, SE, JA and DI by 0.4%, 1.9%, 0.9% and
0.7%, respectively. All these illustrate that adding the side-
output layers could help the network learn more level-wise
features, which are complementary information to further
boost the segmentation performance.

G. THE EFFECTIVENESS OF CRF REFINEMENT
In our model, we use CRF to refine the imprecise lesion
contour through building non-local pixel relations, yielding
accurate semantic segmentation results. We first use three
predicted probability maps (original image, unsharp masking
image, re-scaled intensity image) with CRF operation and
then ensemble them with an average mode. The final com-
parison result of the CRF enhancement operation is presented
in Fig. 7. On ISBI 2017 dataset, AC and JA are improved by
0.6% and 0.4%, and SE and DI are improved by 1.1% and
0.7%, respectively. On PH2 dataset, with the CRF enhance-
ment operation, AC, SE, JA, and DI are improved by 0.8%,

FIGURE 7. The comparison results of our DSM-Network with or without
the CRF enhancement on ISBI 2017 and PH2 datasets, respectively.

1.4%, 0.8%, and 0.6%, separately. The improvement of the
segmentation performance further validates the effectiveness
of CRF as post-processing of our method.

H. COMPARISONS WITH STATE-OF-THE-ART METHODS
In this section, we compare our model with state-of-the-art
methods on the employed two datasets. The detailed results
are illustrated in Table 2.

On ISBI 2017 dataset, the traditional segmentation
model U-Net [20] and SegNet [21] are trained as baseline
models for comparison. Then, a enhanced convolutional-
deconvolutional network [11], a full resolution convolutional
networks (FrCN) [22], a dense deconvolutional network
(DDN) [14], and a robust Skin lesion segmentation(SLS)
model [16] are compared separately. The comparison result
shows that our model could achieve competitive results
in AC, SE, and JA. And our DI achieves a comparative
result which is the second-best among all the compared
methods.

On PH2 dataset, we compared the performance of our pro-
posed method with state-of-the-art methods and the results
are listed in Table 3. The traditional segmentation method
Adaptive thresholding (AT) [23] and a simple linear itera-
tive clustering (SLIC) [24] method are trained as baseline
models for comparisons. Then, other methods compared
are Multi-Scale Segmentation (MSS) [25], Level Set Active
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TABLE 3. Comparisons with state-of-the-arts on PH2 dataset. ‘‘-’’ denotes no corresponding result provided by the method on this dataset.

FIGURE 8. Sampled segmentation results of our method compared with human labeled ground truth.

Contours (LSAC) [26], DermoNet [27] andDeep FCN [13]. It
can be seen from the results that our method performs the best
on dataset PH2 and is better than the existing segmentation
methods in the literature.

I. QUALITATIVE ANALYSIS
In this section, we conduct the qualitative analysis of
our DSM-Network, the detailed visualization results are
illustrated in Fig. 8. The result shows that the overall

segmentation performance on PH2 dataset is better than that
on ISBI 2017 dataset. The reason may be that images from
ISBI 2017 dataset usually contain more complex and sub-
tle information, which is difficult for the network to learn.
Meanwhile, the segmentation performance of the contextual
edge information is not as good as expected. That’s due to
the missing features by the successive pooling layers and the
small difference between the cancer region and the normal
tissue region.
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IV. CONCLUSION
In this paper, we propose a novel DSM-Network for skin seg-
mentation, which uses the deep supervision feature learning
with the side-output layers to learn different level features,
and a multi-scale connection block is designed to improve
the ability of extracting scale-relevant features. Furthermore,
a post-processing of contour enhancement strategy is adopted
by a CRF to obtain better segmentation performance. The
extensive comparison results on two public datasets demon-
strate that our model could achieve state-of-the-art perfor-
mance. In future work, we will try to re-design the network
with the post-processing by an end-to-end training mode.
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