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ABSTRACT SNP–SNP interactions are particularly informative biomarkers regarding the genetic
components of disease risk. However, SNP–SNP interaction identifications are yet limited in imbalanced
case–control study. In this study, we proposed a multiobjective multifactor dimensionality reduc-
tion (MOMDR) based on three balancing approaches (BMOMDR), including (1) stratified K -fold cross-
validation; (2) balanced estimation of ratio between cases and controls; (3) balanced measures of SNP–SNP
interactions, to effectively identify SNP–SNP interaction in imbalanced case–control study. BMOMDR
was evaluated by extensive experiments on both simulated imbalanced case–control datasets and real
genome-wide data from Wellcome Trust Case Control Consortium (WTCCC). For the simulated datasets,
the results indicated that three balancing approaches can enhance the detection success rate of SNP–SNP
interaction by MOMDR in imbalanced datasets. For WTCCC datasets, the results of SNP–SNP interaction
detection obtained from BMOMDR revealed statistically significant (p <0.0001), revealing that BMOMDR
can effectively identify SNP–SNP interaction in imbalanced case–control study. BMOMDR is freely
available at http://shorturl.at/bluJS.

INDEX TERMS SNP–SNP interactions, multiobjective approach multifactor dimensionality reduction,
imbalanced case-control study.

I. INTRODUCTION
Genome-wide association studies (GWASs) have demon-
strated that multilocus single-nucleotide polymorphisms
(SNPs) influence some diseases [1]–[5]. SNP–SNP inter-
actions might be involved in some complex traits of these
diseases [6]–[8], and the determination of SNP–SNP inter-
actions could resolve missing heritability concerns [9].
To improve genetic association studies, the development of
efficient analysis methods for SNP–SNP interactions is a key
concern [10], [11].

Model-free approaches have been employed in the
detection of SNP–SNP interactions; such approaches are
not obligated to hypothesize about genetic models and
data [12]–[14]. A well-known model-free approach, multi-
factor dimensionality reduction (MDR), was applied in a
case–control study [15].MDR is able to consider the entire set
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of predictive rules for any multilocus (m-locus) combination.
It can reduce the dimensionality of any m-locus combination
by taking a high-dimensional m-locus space as input and
returning a one-dimensional space as output. As has been
previously reported in the literature, SNP–SNP interaction
was evaluated using correct classification rate (CCR) with
two-way contingency tables and cross validation (CV), so that
overfitting of the training data can be avoided and false
positive errors can be minimized [15]. MDR has exhibited
satisfactory performance with nonlinear effects and high
dimension datasets; multiple case–control studies have suc-
cessfully conducted by MDR to explain the conditions,
including oral cancer [16], hypertension [17], and breast
cancer [18].

Although MDR has exhibited numerous advantages in
SNP–SNP interaction identification, originalMDR does have
its limitations, such as poor certainty in the multifactor
category, calculation costs, and specific data issues [19].
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Based on the limitations of MDR, it can be improved in
three aspects. The first area focuses on the effective classifica-
tion of multiple factors into risk groups through using various
technology such as odds ratio-based MDR [20], log-linear
model-based MDR [20], and multiobjective (MO)-based
MDR (MOMDR) [21]. The term ‘‘MO method’’ denotes
a multiple-criteria decision analysis technique; a decision
problem with multiple conflicting criteria can be solved by
an MO method [22]. An MO approach is able to evaluate a
variety of measures at the same time and return the appro-
priate solution as output [23]. The second aspect is using
the technology to reduce the calculation cost of analysis,
including the unifiedmodel-basedMDR [24], fastMDR [25],
graphical processing unit–based MDR [26], and differential
evolution (DE)-basedMDR [27]. The third aspect is applying
MDR to quantitative traits, survival data, and imbalanced
datasets by using techniques such as quantitative MDR [28],
Cox-MDR [29], MDR-based balanced CCR (bCCR) [30],
and MDR-based adjusting the ratio in risk classes and classi-
fication errors [31]. However, most of the techniques applied
to imbalanced case–control study still involve using the stan-
dard MDR with the CCR measure [30], [31]. Alternative
contingency table measures [32] and MOMDR [21] have not
been addressed in imbalanced case–control study yet.

Due to MDR incorrectly detects SNP–SNP interactions in
imbalanced datasets [30], resampling approaches are typi-
cally applied to overcome the limitations of MDR in imbal-
anced case–control study. However, some of the crucial
information may be lost because some samples may be
undersampled. Yang et al. proposed an MO technique to
enable MDR to simultaneously take various approaches for
the identification of potential SNP–SNP interactions [21].
However, the performance of MOMDR [21] on imbalanced
case–control datasets has not been addressed. The aim of this
study was to improve the performance ofMDR andMOMDR
in imbalanced case–control study. Here, we proposed a
MOMDR-based balancing approaches (BMOMDR) which
adopted three balancing approaches, including (1) strat-
ified K -fold cross-validation; (2) balanced estimation of
ratio between cases and controls; (3) balanced measures of
SNP–SNP interactions, to overcome MDR and MOMDR
limitations in imbalanced case–control study. We experi-
mented with various imbalance case–control data and used
a GWAS data to evaluate the performance of BMOMDR.

II. METHODS
A. DEFINITION OF SNP-SNP INTERACTION DETECTION
For SNP–SNP interaction detection, an SNP S consists of a
set of values {1, 2, 3} which are three genotypes, including
the homozygous reference genotype, the heterozygous geno-
type, and the homozygous variant genotype. s represents an
index–value (i, v) pair, where i is an index and v is some
element of {1, 2, 3}. A predictive rule relates features and
class variables (i.e., cases and controls). A predictive rule
formalizes an epistatic phenomenon; for some conjunction of
n literals (s1, s2, . . . , sn) written as r and for some class label

ζ (ζ = 0 denotes controls, ζ = 1 denotes cases) there exists
some literals of conjunctive rules (r , ζ ): s1∩s2∩. . .∩sn→ ζ .
Therefore, a SNP–SNP interaction of order m is represented
as an m-locus combination having 3m predictive rules in
the form X = (r1, r2, . . . , rn), where n = 3m, ∀r ∈
S1 ∪ S2∪. . .∪Sm, and where ‘‘3’’ represents the genotype
type. To detect SNP–SNP interactions, one must identify the
m-locus combination that has themaximumquality according
to some statistical measure.

B. MOMDR
In MOMDR, suppose the m-locus combination X is a deci-
sion vector. Next, suppose some set of measures f1, f2, . . . , fi
are objective functions. In an MOmaximization, an objective
function can be constructed to obtain a set of values from
multiple measures as

maximize

{
f1 (x) = measure1(x)
f2 (x) = measure2(x),

(1)

where functions f1 and f2 are the objective functions for the
MDR measures. A set of j feasible m-locus combinations is
defined by some vector X∗ = (X1, X2, . . . , Xj). X1 dominates
another solution X2 if fp(X1) ≥ fp(X2) for p = 1, 2, . . . , i.
A solution vector X is deemed Pareto optimal when no other
solution dominates X . The Pareto set X∗ consists of every
solution vector X ∈ X∗ that is Pareto optimal.
A Pareto set operation is introduced to extend MDR to

use multiple measures simultaneously to assess the quality
of an m-locus combination. Extra storage space is produced
by the Pareto set operation. Pareto set filter operators choose
candidates from m-locus combinations. A total of K Pareto
sets are obtained through the K -fold cross-validation (CV).
In MOMDR, the Pareto cross-validation consistency (CVC)
operation is used to determine the multiple solutions depend-
ing on the most instances of solutions in K Pareto sets.
MOMDR process comprises these stages: (1) The dataset is
divided into K subsets for the CV calculation and generate
K Pareto sets. (2) All feasible m-locus combinations are
generated, and data reduction technique is used to divide mul-
tilocus genotypes as high- and low-risk groups. The set of 3m

predictive rules is transformed into a two-way contingency
table. (3) Them-locus combinations are evaluated using mul-
tiple measures. (4) The K Pareto set are respectively updated
according to the multiple measures in K -fold CV. (5) The
m-locus combinations from all Pareto sets are counted. The
m-locus combinations with highest CVC are regarded as the
optimal solutions.

C. BMOMDR
BMOMDR adopted three balancing approaches, including
(1) stratified K -fold CV datasets; (2) balanced estimation of
ratio between cases and controls; (3) balanced measures. The
approaches can improve the ability of MOMDR to detect
SNP–SNP interactions. BMOMDR consists of the following
titles:
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Algorithm 1 Stratified Random K -Fold CV
01: Divide the samples into cases and controls.
02: Randomly shuffle the samples in each set.
03: Count the total number of samples in the case
set (cases) and the total number of samples in the control
set (controls).
04: Compute the ratio between cases and controls.
05: Classify the samples of cases and controls into a
jth-fold CV subset according to the ratio between cases and
controls, in which j is the index of the CV subset.

Step 1: The dataset is assigned into K subsets of CV.
The CV uses the stratified random K -fold [33], and the
pseudo-code is shown in Algorithm 1. The stratified random
K -fold enables each fold to have the same proportion of cases
and controls.
Step 2: Feasible m-locus combinations are calculated.
Step 3: The feasible m-locus combination constructs a

table containing 3m predictive rules. The samples of training
datasets are classified into the corresponding predictive rules,
and the cases and controls in the predictive rules are counted.
Step 4: Evaluate all case–control ratios for predictive

rules by balanced estimation of ratio between cases and
controls (2).

fratio (X) = {θa}

s.t.θa =
n+0 × na1
n+1 × na0

(2)

where X is the set of 3m predictive rules in an m-locus
combination. a is the index of predictive rule. na0 and na1 are
the numbers of samples in the ath predictive rule in the control
group and case group, respectively. n+0 and n+1 are the total
number of samples in the control group and case group,
respectively. Subsequently, the high- and low-risk groups of
predictive rules are determined in X . The ath predictive rule is
labeled as belonging to the high-risk group when θa is larger
than 1 [15]; otherwise, it belongs to the low-risk group.
Step 5: A two-way contingency table is calculated from

3m-labeled predictive rules on the basis of their grouping and
outcome. The TP (true positive),FP (false positive),FN (false

negative), and TN (true negative) of the two-way contingency
table are calculated according to the number of samples
belonging to the corresponding groups and outcomes, and
these values are calculated using (3).

TP =
∑

a∈{θa,θa≥1}

ta1

FP =
∑

a∈{θa,θa≥1}

ta0

FN =
∑

a∈{θa,θa<1}

ta1

TN =
∑

a∈{θa,θa≥1}

ta0

(3)

where tab is the set of individual matches to the ath multifactor
class in the b outcome status, where b = 1 for the case group
and b = 0 for the control group.
Step 6: The objective function of an m-locus combination

X is calculated. Here, a balancing technique was used to
improve the TP, FP, FN, and TN for handling unbalanced
datasets to calculate the proportion of appropriately classified
individuals. bTP (balanced true positive rate), bFP (balanced
false positive rate), bFN (balanced false negative rate), and
bTN (balanced true negative rate) are formulated as the bal-
anced TP, FP, FN, and TN values, respectively (4).

bTP =
TP

TP+ FN

bFP =
FP

FP+ TN

bFN =
FN

TP+ FN

bTN =
TN

FP+ TN

(4)

Objective 1: We used bCCR, which was proposed by
Velez et al. [30] and calculated using bTP and bTN:

f (X) = measure (X)

= bCCR (X)

= 0.5× (bTP+ bTN ) (5)

f (X) = measure (X)

= bNMI (X) =
H (y)− H (y|x)

H (y)
=

2

 bPNlog2bPN + bTPlog2bTP+ bFNlog2bFN
+bTNlog2bTN + bFPlog2bFP− bPlog2bP
−bTPNlog2bTPN − bTNPlog2bTNP− bNlog2bN


2
{
bPNlog2bPN − bTPNlog2bTPN − bTNPlog2bTNP

} (6)

where



bPN = bTP+ bFP+ bFN + bTN
bP = bTP+ bFP
bN = bTN + bFN
bTPN = bTP+ bFN
bTNP = bTN + bFP
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FIGURE 1. Comparison of detection success rates between MDR, MOMDR, BMDR, and BMOMDR in eight models with marginal effects in
imbalanced case–control study. The C bar represents the results of MDR (CCR, left bar) and BMDR (balanced CCR, right bar). The N bar
provides the results of MDR (NMI, left bar) and BMDR (balanced NMI, right bar). The CN bar presents the results of MOMDR (CCR and NMI,
left bar) and BMOMDR (balanced CCR and NMI, right bar). In each bar, the lower region (gray and dark gray) represents the detection success
rate for CVC/ Pareto CVC = 5; the upper region (yellow) represents the detection success rate for CVC/Pareto CVC < 5. The absence of bars
indicates zero detection success rate. The dataset comprised 1,000 SNPs, and the sample sizes were 1,600 (400 cases and 1,200
controls, 1:3), 2,400 (400 cases and 2,000 controls, 1:5), and 3,200 (400 cases and 2,800 controls, 1:7). Under each setting, the detection
success rate was calculated as the proportion for 100 datasets in which the specific disease-associated SNP–SNP interactions were detected.

The bCCR value is in the 0–1 interval, with 1 expressing
the optimal solution.
Objective 2:The normalizedmutual information (NMI) mea-

sure has been applied to MDR [32]. We modified the NMI
measure by using a balancing technique, and the modified
measure (bNMI) can be expressed as (6), as shown at the
bottom of the previous page. The maximum value expresses
the optimal solution.
Step 7: Pareto operation. In each CV, the all non-dominated

candidates are added into the Pareto set.
Step 8: Pareto CVC calculation. In each fold CV, steps 3–7

are repeated until all m-locus combinations have been evalu-
ated. Thus, the K Pareto sets can be obtained. In the Pareto
CVC operation, the candidate with the highest number of
occurrences in the K Pareto sets is regarded as the opti-
mal result; if numerous candidates occur equally as fre-
quently, these candidates are regarded as optimal results.
For CVC = K , we interpret that the SNP-SNP interactions
considered were those that appeared K times among the
K -fold CV.

III. RESULTS
We defined BMOMDR as MOMDR using both bCCR and
bNMI estimations; MOMDR as MOMDR using both CCR
and NMI estimations; BMDR-CCR and BMDR-NMI as
MDR using the bCCR and bNMI estimations respectively;
andMDR-CCR andMDR-NMI asMDR usingCCR andNMI
estimations respectively. BMDR-CCR and BMOMDR used
the imbalanced CCR version proposed by Velez et al. [30].
The performance of BMOMDR was evaluated by compar-
ing it with that of MOMDR, BMDR-CCR, BMDR-NMI,

MDR-CCR, and MDR-NMI by using simulated imbalanced
case–control datasets. A GWAS dataset obtained from the
Wellcome Trust Case Control Consortium (WTCCC) was
used to evaluate the performance of BMOMDR [34].

A. SNP–SNP INTERACTION DETECTION FOR
IMBALANCED CASE–CONTROL DATASETS
1) TWO-LOCUS DISEASE MODEL WITH MARGINAL EFFECTS
IN IMBALANCED CASE–CONTROL STUDY
The performance levels of MDR-CCR, MDR-NMI, BMDR-
CCR, BMDR-NMI, MOMDR, and BMOMDR were char-
acterized in terms of disease loci with marginal effects
in imbalanced case–control study. Eight disease models
with marginal effects were taken [35], [36]. Supplementary
Table S1 shows the multilocus penetrances of eight disease
models. GAMETES software was used to generate imbal-
anced case–control datasets [37]. Each disease model gen-
erated 100 datasets. In each disease model, we analyzed
three imbalanced category in which the ratios of cases to
controls were 1:3, 1:5, and 1:7. Each dataset had its own
correct solution as an interacting SNP pair, and other SNPs
were generated at minor allele frequencies (MAFs) selected
uniformly from [0.05, 0.5). The success rates of detection
expressed the frequencies of correct answer detection within
the 100 datasets.

The detection success rates of MDR-CCR, MDR-NMI,
BMDR-CCR, BMDR-NMI, MOMDR, and BMOMDR are
presented in Fig. 1. The detection success rates of both
BMDR-CCR and BMDR-NMI were higher than those of
MDR in the datasets with case–control ratios of 1:3, 1:5,
and 1:7. For the detection of SNP–SNP interactions with
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FIGURE 2. Comparison of the average detection success rates in eight models with marginal effects in imbalanced case–control study. White
bars indicate the average detection success rates of MDR-based and MOMDR-based original measures, and gray bars present the average
detection success rates of MDR-based and MOMDR-based balanced measures. The 1:3 ratio indicates a total of 1,600 samples (400 cases,
1,200 controls); the 1:5 ratio indicates a total of 2400 samples (400 cases, 2,000 controls); the 1:7 ratio indicates a total of 3,200 samples
(400 cases, 2,800 controls).

TABLE 1. BMDR or BMOMDR compared with MDR or MOMDR for
detection success rate in ONLY CVC = 5 of two-locus disease model with
marginal effects in imbalanced case–control study using Wilcoxon
signed-rank test.

CVC = 5, both BMDR-CCR and BMDR-NMI achieved
superior detection success rates to those of MDR in eight dis-
ease models. Moreover, BMOMDR achieved detection suc-
cess rates superior to those of MOMDR in all tests, and with
Pareto CVC = 5 BMOMDR outperformed MOMDR. The
performance of BMOMDR was evaluated using a Wilcoxon
signed-rank test, in which p <0.05 indicated significant
superiority of BMDR (BMDR-CCR and BMDR-NMI) or
BMOMDR relative to MDR or MOMDR. As presented
in Table 1, BMDR-CCR, BDR-NMI, and BMOMDR exhib-
ited significantly superior detection success rates to those of
MDR and MOMDR, respectively (p <0.05).
The average detection success rates in eight models with

marginal effects are presented in Fig. 2. The average detec-
tion success rates for 1:3, 1:5, and 1:7 datasets were 32.00,
7.75, and 0.75, respectively, in MDR-CCR; 39.50, 12.75,
and 1.38, respectively, in MDR-NMI; and 39.75, 12.63,
and 1.50, respectively, in MOMDR. The detection success
rates of MDR-CCR, MDR-NMI, and MOMDR decreased
as the case–control ratio increased. The average detection
success rates for 1:3, 1:5, and 1:7 were 77.88, 83.75, and
85.75, respectively, in BMDR-CCR; 80.50, 84.38, and 85.50,

respectively, in BMDR-NMI; and 82.00, 86.38, and 88.00,
respectively, in BMOMDR. The detection success rates of
BMDR-CCR, BMDR-NMI, and BMOMDR increased with
the case–control ratio, revealing that BMDR-CCR, BMDR-
NMI, and BMOMDR can effectively detect SNP–SNP inter-
actions in disease loci with marginal effects in imbalanced
case–control study.

2) TWO-LOCUS DISEASE MODEL WITHOUT MARGINAL
EFFECTS IN IMBALANCED CASE–CONTROL STUDY
MDR-CCR, MDR-NMI, BMDR-CCR, BMDR-NMI,
MOMDR, and BMOMDR were assessed with 60 two-locus
and pure models without marginal effects in imbalanced
case–control study [38]. Details on the 60 disease models
of multilocus penetrances are provided in Supplementary
Tables S2-S7. The phenotypic variations of all diseases were
controlled by h2 values that were greater than or equal to
0.025 and less than or equal to 0.2, with MAFs of 0.2 as well
as 0.4. For each model, 100 datasets containing 1000 SNPs
were randomly generated using GAMETES, of which two
SNPs were specific SNP pair, and other SNPs were uniformly
chosen from [0.05, 0.5) MAFs. For this analysis, three imbal-
anced datasets were selected in which the case–control ratios
were 1:3, 1:5, and 1:7. The success rate of detection was
determined by noting the frequency of a particular SNP pair
detected in 100 datasets.

The 60 disease models without marginal effects were
applied to characterize the performance of MDR-CCR,
MDR-NMI, BMDR-CCR, BMDR-NMI, MOMDR, and
BMOMDR in detecting SNP pairs. BMDR-CCR, BMDR-
NMI, and BMOMDR achieved an improvement in perfor-
mance compared with MDR and MOMDR in the disease
models without marginal effects in imbalanced case–control
study (Supplementary Fig. S1). In 45 of the 60 disease
models, BMDR-CCR and BMDR-NMI had higher detection
success rates than did MDR for datasets with 1:3, 1:5, and
1:7 ratios. In the remaining 15 models (data not shown),
all algorithms obtained 100% detection success rates. In 45
disease models, BMOMDR had superior detection success
rates compared with MOMDR. BMOMDR achieved higher
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FIGURE 3. Comparison of the average detection success rates in 60 models without marginal effects in imbalanced case–control study. The
white bar indicates the average detection success rates of MDR-based and MOMDR-based original measures, and the gray bar denotes the
average detection success rates of MDR-based and MOMDR-based balanced measures. For the 1:3 ratio, the sample size was 1,600 (400 cases
and 1,200 controls); for the 1:5 ratio, the sample size was 2,400 (400 cases and 2,000 controls); for the 1:7 ratio, the sample size was 3,200
(400 cases and 2,800 controls).

detection success rates with Pareto CVC = 5 than MOMDR.
The performance of MDR (MDR-CCR and MDR-NMI),
BMDR (BMDR-CCR and BMDR-NMI), MOMDR, and
BMOMDR was evaluated using Wilcoxon signed-rank
test in the 45 disease models without marginal effects.
A p-value of <0.05 indicated significant superiority of
BMDR (BMDR-CCR and BMDR-NMI) or BMOMDR com-
pared with MDR (MDR-CCR and MDR-NMI) or MOMDR.
For datasets of disease models without marginal effects in
imbalanced case–control study, BMDR (BMDR-CCR and
BMDR-NMI) and BMOMDR exhibited significantly higher
detection success rates than did MDR (MDR-CCR and
MDR-NMI) and MOMDR (p <0.05; Table 2).

TABLE 2. BMDR or BMOMDR compared with MDR or MOMDR for
detection success rate in ONLY CVC = 5 of two-locus disease model
without marginal effects in imbalanced case–control study using
Wilcoxon signed-rank test.

The average detection success rates in the 60 models
without marginal effects in imbalanced case–control study
are illustrated in Fig. 3. The average detection success
rates for 1:3, 1:5, and 1:7 were 38.49, 20.71, and 10.24,
respectively, in MDR-CCR; 43.29, 25.51, and 13.87, respec-
tively, in MDR-NMI; and 43.69, 26.11, and 14.31, respec-
tively, in MOMDR. The detection success rates of both
MDR (MDR-CCR and MDR-NMI) and MOMDR decreased
as the case–control ratio increased. The average detec-
tion success rates for 1:3, 1:5, and 1:7 were 93.31, 94.96,

and 95.22, respectively, in BMDR-CCR; 93.02, 94.60, and
94.82, respectively, in BMDR-NMI; and 93.91, 95.33, and
95.93, respectively, in BMOMDR. The detection success
rates of both BMDR (BMDR-CCR and BMDR-NMI) and
BMOMDR increased with the case–control ratio. When the
datasets were imbalanced, the results indicated that BMDR
(BMDR-CCR and BMDR-NMI) and BMOMDR could effec-
tively detect SNP–SNP interactions at the disease loci without
marginal effects in imbalanced case–control study.

B. SNP–SNP INTERACTION DETECTION
FOR WTCCC DATASET
The performance of BMOMDR for large datasets was
tested with a WTCCC dataset of patients who claimed to
be white Europeans. WTCCC had collected information
regarding 1,988 patients with coronary artery disease (CAD)
from the United Kingdom and 1,500 controls (imbalanced
case–control study). The individuals were genotyped with
an Affymetrix GeneChip 500K Mapping Array Set. Overall,
500,569 SNPs were detected in GWAS [34]. BMOMDR
was implemented the SNP–SNP interaction detection over all
two-way combinations based on 5-fold CV in the n SNPswith
3,488 samples, where n is the number of SNPs in GWAS.

The results of SNP–SNP interaction detection using
BMOMDR are listed in Table 3. The SNP–SNP inter-
action related genes were obtained from the dbSNP
database of National Center for Biotechnology Information
(https://www.ncbi.nlm.nih.gov/snp/). Chromosomes include
multiple detected SNP–SNP interactions; this is because MO
allows BMOMDR to obtain multiple solutions. The raw
datasets were subjected to chi-squared testing; all p values
indicated the significance level of a SNP–SNP interaction
between some pair of SNPs. The detected SNP–SNP interac-
tions were all highly significant (p <0.0001) for a SNP–SNP
interaction between the two relevant SNPs. The false posi-
tive rate (FPR) and false negative rate (FNR) were shown
in Table 3. The FPR refers to the expectancy of the false
positive ratio. FNR assumes that there are conditions to be
checked, the conditional probability of negative test results
is obtained. For each SNP–SNP interaction, the frequency of
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TABLE 3. Summary of BMOMDR results for CAD based on WTCCC data.

chance occurrences could be significantly reduced when the
CCR value exceeded 0.5, and the maximum value indicated
the strongest SNP–SNP interaction [39]. High NMI shows
the high level of significance of a SNP–SNP interaction
between two SNPs [32]. In all detected SNP–SNP interac-
tions, the maximum bCCR was 0.959, and the minimum was
0.579 (mean ± standard deviation (SD) = 0.755 ± 0.097).
The maximum and minimum bNMIs were 0.770 and 0.044,
respectively, and the mean bNMI was 0.269 ± 0.182 (SD).
The SNP–SNP interaction rs16926425 and rs7299571 in
chromosome 12 revealed the highest bCCR (0.959) and
bNMI (0.770), and FPR and FNR were 0.011 and 0.071,
respectively. The gene SOX5 is RNA-seq in normal kid-
ney tissue [40]. As shown in Table 3, the ten SNP–SNP
interactions revealed high values of CCR (>0.8), NMI
(>0.4) and Pareto CVC (= 5), and strong significance
(p <0.0001). Gene CACNG1 is found in human adrenal

tissue (16 and 10 weeks respectively). CACNG1 could be
the non-additive effect on disease susceptibility in CAD [41]
and associate to the tissue-specific circular RNA induc-
tion [42]. In SNP–SNP interaction pairs LOC105376942 and
PLCL2, LOC105376942 is RNA-seq found in normal kidney
tissue [40], and PLCL2 could play inflammation role to
CAD [43]. These SNP pairs may be related to the interac-
tions of CAD. However, further study of the genetic poly-
morphisms as well as their functional relevance may yield
information critical for CAD etiology. The chromosome run-
ning times are provided in Table 3. For the average running
time of 23 chromosomes, BMOMDR ran for approximately
6.15 hours.

IV. DISCUSSION
In this study, we adopted balancing approaches to mod-
ify three steps in MDR and MOMDR, namely generating
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K -fold CV datasets, calculating the ratio between cases and
controls, and evaluating measures. The results demonstrated
that balancing approaches improved the detection success
rates of MDR and MOMDR in imbalanced case–control
study. MOMDR did not achieve satisfactory detection suc-
cess rates in imbalanced case–control study (Figs. 2 and 3).
CCRmeasure is widely known as accuracy and is not suitable
for MDR in imbalanced case–control study [30]. Yang et al.
reported the problems associated with imbalance between
cases and controls in MDR [31]. The difference between
cases and controls can cause most predictive rules to be
classified into low-risk groups when the number of cases is
less than the number of controls. In this study, both MDR
andMOMDR exhibited the same fault in calculating the ratio
between cases and controls. Although MOMDR did improve
the detection success ratios, both CCR and NMI measures
still exhibited abnormal values due to the very high TN value
in the two-way contingency table. Thus, CCR and NMI mea-
sures could have high values in a large number of m-locus
combinations, and these high values caused the low detection
success rates of MDR and MOMDR for the simulated case–
control datasets. Moreover, the results revealed a decrease
in the detection success rates along with an increased ratio
between cases and controls for MDR and MOMDR. This
resulted in decreasing detection success rates along with an
increasing TN value. The balanced CCR and NMI measures
can effectively overcome the problem of a high TN value,
because TP, FP, FN, and TN are transformed to percent-
ages (i.e., bTP, bFP, bFN, bTN). Velez et al. suggested that
percentages of TP, FP, FN, and TN can improve the CCR
measure [30], and their results corroborated this improve-
ment. Moreover, the balanced NMI exhibited a satisfactory
improvement in the detection success ratios (Figs. 2 and 3).
We determined that the distribution of cases and controls in
each fold CV dataset can also be slightly influenced by a
difference between cases and controls. A balanced approach
to generate K-fold CV datasets can ensure that a small group
can be assigned into each fold CV dataset in imbalanced
case–control datasets. Thus, the training models in the fold
CV can evaluate sufficient samples in a small group. These
three improvements enable BMDR and BMOMDR to be
effectively applied to detect SNP–SNP interactions in imbal-
anced case–control study.

Regarding implementation efficiency, BMDR is simi-
lar to MDR, and BMOMDR is similar to MOMDR. For
100 datasets comprising 1000 SNPs with 1600 samples
(400 cases and 1200 controls), BMDR was determined to
spend on average of 117.4 s to run a complete process
on an Intel Core i7 3.60 GHz CPU with 32 GB memory,
whereas MDR spent on average 117.3 s. Both MOMDR and
BMOMDR required an average of 131.2 s to run a complete
process. To determine the optimal m-locus combination in
n SNPs using k-fold CV, both MDR and BMDR would
require a total computational time of k× (n choose m)× the
total number of samples × 3m times; whereas MOMDR and
BMOMDR would require a total computational time of the

number of candidates in the k Pareto set×k× (n choose m)×
the total number of samples× 3m times, in which the number
of candidates in the k Pareto set was an average of 3.7 in all
the tests.

We combined the balanced function to determine the
low-risk and high-risk groups and balanced measures (bCCR
and bNMI) to evaluate the SNP–SNP interactions in imbal-
anced case–control study. The balanced functions enabled
adjusting the single measure of MDR and multiple measures
of MOMDR to detect the potential SNP–SNP interactions.
The results revealed that BMDR and BMOMDR performed
a stronger detection efficiency in simulated imbalanced
case–control datasets. BMDR and BMOMDR retain the
advantages of MDR: first, BMDR and BMOMDR can effec-
tively minimize false-positive results in detecting SNP–SNP
interactions in imbalanced case–control datasets. MOMDR
uses a stratified random K -fold CV dataset to select the opti-
mal solution based solely on the ability to predict using inde-
pendent data. Thus, the training model can avoid overfitting
while also minimizing false positives. Second, BMDR and
BMOMDRcan describe the percentages of cases and controls
under m-locus combinations associated with high-risk and
low-risk disease groups in imbalanced case–control datasets.
Third, BMDR and BMOMDR are model-free methods that
do not need a specific inheritance model [15]. Human epis-
tasis (i.e., SNP–SNP interaction) is both chaotic as well as
irreducible; human physiology exhibits gradual changes of
unknown genetic patterns. The model-free approach is cru-
cial for detecting the SNP–SNP interactions, because sim-
ple mono- or oligogenetic traits may be related to epistasis.
Fourth, BMDR and BMOMDR are nonparametric methods;
thus they perform well with small samples in imbalanced
case–control study. Nonparametric statistical analysis meth-
ods do not require assumptions regarding the nature of data
distributions; this prevents problems related to the use of
parametric statistics to detect SNP–SNP interactions [15].

V. CONCLUSION
In this study, we demonstrated balancing approaches that
can improve the detection success rates in imbalanced
case–control datasets, especially, for substantial differences
between cases and controls. A performance assessment
of simulated imbalanced datasets revealed that balancing
approaches successfully enable MDR andMOMDR to detect
SNP–SNP interactions in imbalanced case–control study.
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