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ABSTRACT Let G be a connected graph and d(µ,ω) be the distance between any two vertices of G. The
diameter of G is denoted by diam(G) and is equal to max{d(µ,ω); µ,ω ∈ G}. The radio labeling (RL)
for the graph G is an injective function z : V (G) → N ∪ {0} such that for any pair of vertices µ and
ω |z(µ) − z(ω)| ≥ diam(G) − d(µ,ω) + 1. The span of radio labeling is the largest number in z(V ).
The radio number of G, denoted by rn(G) is the minimum span over all radio labeling of G. In this paper,
we determine radio number for the generalized Petersen graphs, P(n, 2), n = 4k+2. Further the lower bound
of radio number for P(n, 2) when n = 4k is determined.

INDEX TERMS Diameter, radio number, generalized Petersen graph.

I. INTRODUCTION
In graph theory, a graph labeling is the assignment of labels,
generally represented by whole numbers, to edges as well
as vertices of a graph [37]. Most graph labelings follow
their sources to labelings exhibited by Alex Rosa in his
1967 paper [40] Rosa recognized three kinds of labelings,
which he called α−, β−, and ρ-labelings [41]. β-labelings
were later renamed graceful by S. W. Golomb and the name
has beenmainstream since. Afterward, various kinds of graph
labelings have been characterized and numerous papers have
been composed on various graph labelings until now, for
example [4]–[10] and the references there in.

One of the intriguing and significant graph labeling in
graph theory is RL ‘‘which is spurred by the channel assign-
ment issue presented by Hale [11]’’. In telecommunication
system to radio network, the interference constraints between
a couple of transmitters assume an indispensable job. For
the transmitters of radio system, we look to allot channels
with the end goal that the system satisfies all the interference
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constraints. The task of assigning channels to the transmitters
is prevalently known as channel assignment problem which
was presented by Hale [11]. For radio system on the off
chance that we accept that the frequencies are uniformly
distributed in the spectrum then the frequency span deter-
mine the bandwidth allocation for the assignment. For this
situation, the obstruction between two transmitters is firmly
related with the geographic location of the transmitters. Prior
designer of radio systems considered just the two-level inter-
ference, in particular, major and minor. They arranged a
couple of transmitters as close transmitters if the interference
level between them is major and close transmitters if the
interferene level between them is minor.

To take care of the channel assignment problem, the inter-
ference graph is created and task of channels assignment
changed over into graph labeling (a graph labeling is a task of
labeling every vertex as per certain standard). In interference
graph, the transmitters are spoken to by the vertices, and two
vertices are joined by an edge if relating transmitters have the
significant (major) interference while two transmitters having
minor interference are at distance 2, and there is no interfer-
ence between transmitters they are at distance 3 or more. As it
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were, very close transmitters are spoken to by neighboring
vertices, and close transmitters are spoken to by the vertices
which are at distance two apart. Roberts [12] suggested that
a couple of transmitters which has minor interference must
get various channels and a couple of transmitters which has
significant interference must get channels that are at least 2.
Inspired through this issue Griggs and Yeh [13] presented
L(2, 1)-labeling in which channels are connected with the
nonnegative whole numbers.
Definition 1: ‘‘A distance two labeling (or L(2, 1)-

labeling) of a graph is a function z from vertex set G to the
set of nonnegative integers such that the following conditions
are satisfied: (1) if |z(µ)−z(ω)| ≥ 2, if d(µ,ω) = 1
(2) if |z(µ)−z(ω)| ≥ 1, if d(µ,ω) = 2.’’
The span of z can be defined as max{|z(µ) − z(ω)| :

µ,ω ∈ V (G)}. The λ-number for a graph G is denoted
by λ(G), and is the minimum span of a L(2, 1)-labeling of G.
The L(2, 1)-labeling has been studied by many scientists,
for example Yeh [14], Sakai [15], Chang and Kuo [16],
Vaidya et al. [17], and Vaidya and Bantva [18].

In that case, as time passed, it has been seen that the
interference among transmitters may go past two levels.
RL expands the number of interference level considered in
L(2, 1−labeling from two to the biggest possible-the diam-
eter of G. The diameter of G is represented by diam(G) or
just by d is the most extreme distance among all pairs of
vertices in G. Inspired through the issue of channel task of
FM radio stations, Chartrand et al. [19] presented the idea
of radio labeling of graphs as follows.
Definition 2: ‘‘A radio labeling z of G is an assignment

of positive integers to the vertices of G satisfying

|z(µ)−z(ω)| ≥ d + 1− dG(µ,ω), ∀µ,ω ∈ V (G).

The radio number denoted by rn(G) is the minimum span of
a radio labeling for G. Note that when diam(G) is two then
radio labeling and distance two labeling are identical.’’

The radio labeling is actually an assignment of allo-
cating frequencies to AM/FM radio channel suggested by
Chartrand et al. [19] in such a way that there is no disturbance
in the signals received due to nearby or geographically closed
radio stations.

Examining the radio number of a graph is a fascinating
task. So far the radio number is known distinctly for bunch of
graph families. Liu and Zhu [20] have given the radio number
for paths and cycles. Liu and Xie [21], [22] additionally
studied the radio labeling for square of paths and cycles while
Liu [23] has given a lower bound for radio number of trees
and exhibited a class of trees accomplishing the lower bound.

Notice that the development of radio system as per cer-
tain standard is comparable to stating that the extension of
interference graphs by methods for explicit graph operation.
The extension of existing system and to decide the radio
number for the extended system is likewise a fascinating task
[24]–[27]. Simultaneously, it is an essential issue to relate
the radio number of existing system with the extended sys-
tem. In this paper, we register the radio number for peterson

graphs.
Definition 3: Let n ≥ 3 be a positive integer and let m ∈
{1, 2, . . . , n−1}. The generalized Petersen graph P(n,m) has
its vertex and edge set as V (P(n,m)) = {ui : i ∈ Zn} ∪ {u′i :
i ∈ Zn} and E(P(n,m)) = {uiui+1 : i ∈ Zn} ∪ {u′iu

′
i+m :

i ∈ Zn} ∪ {uiu′i : i ∈ Zn}. Obviously m ≤ b
n
2c because of

obvious isomorphism P(n,m) ∼= P(n, n− m).
Peterson graphs has been largely studied in past years

[29]–[31], for example, spectrum of generalized Petersen
graphs has been studied in [31]. Coloring and Tutte poly-
nomial of Peterson graphs have been given in [32] and [33]
respectively. Metric dimension of some classes of Peter-
son graph has been computed in [34]. For more properties,
we refer [35], [36]. In this paper, we aim to study radio
labeling for generalized peterson graphs. The main results of
this paper are:
Theorem 1: For the generalized Petersen graphs P(n, 2),

n = 4k + 2, k ≥ 3

rn(P(n, 2)) =


4k2 + 21k + 8

2
, for even k;

4k2 + 25k + 9
2

, for odd k.

Theorem 2: For the generalized Petersen graphs P(n, 2),
n = 4k, k ≥ 5

rn(P(n, 2)) ≥


4k2 + 11k

2
, for even k;

4k2 + 15k − 1
2

, for odd k.
Note that, for a generalized Petersen graph, P(n,m) n ≥ 3

and 1 ≤ m ≤ b n−12 c, the vertex set is

V (G) = {αi , βi : i = 1, 2, ...n}

and the edge set is
E(G) = {αiαi+1, βiβi+m, αiβi| with indices taken modulo

n}.
The following remark is useful in proving our main

theorems.
Remark 1 [8]: For the generalized Petersen graphs

P(n, 2), n > 6,

diam(P(n, 2)) =


n
4
+ 2, if n = 4k;

n− 2
4
+ 3, if n = 4k + 2.

II. A LOWER BOUND FOR P(N, 2), N = 4K + 2
In this section, the lower bound for rnP(n, 2)where n = 4k+2
is determined. Here,

V (G) = {αi , βi : i = 1, 2, ...n}

and an edge set E(G) = {αiαi+1, βiβi+2, αiβi| with indices
taken modulo n}.

The vertex set can be divided into two classes. The vertices
that lies on inner cycle are called as interior vertices and the
vertices that lies on the outer cycle are called exterior vertices.
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Note that, diam(P(n, 2)) = n−2
4 + 3 = k + 3 when

n = 4k + 2.
Lemma 1: Let P(n, 2) be the generalized Petersen graphs

for n = 4k + 2, then the following statements holds:

i. For each exterior vertex α1 , there exist exactly one vertex
at distance equal to diameter of P(n, 2).

ii. For each interior vertex β1 , there exist exactly one vertex
at distance equal to diameter of P(n, 2).
Proof:

i. We show that d(α1, α2k+2) = k + 3. Since n = 4k + 2,
there are equal vertices on the left and right half of
cycle. So, the path starting from α1 to α2k+2 has length
k + 3 as
α1 → β2(0)+1 → β2(1)+1 → β2(2)+1 → ...β2(k)+1 →

α2k+1→ α2k+2.
ii. d(β1, β2k+2) = k + 3
β1 → β2(1)+1 → β2(2)+1 → ...β2(k)+1 → α2k+1 →

α2k+2→ β2k+2. �

Lemma 2: Let α, β, γ are 3 vertices lies on the exterior
cycle of P(n, 2), where n = 4k + 2 then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d + 2.
Proof: By Lemma 1, d(α1, α2k+2) = k + 3 = d . Now

d(α2k+2, α4k−5) = k − 1 and a path of length k − 1 between
α2k+2 to α4k−5 is
α2k+2 → β2(k+1) → β2(k+2) → β2(k+3)... → β2(2k−3) =

β4k−6→ α4k−6→ α4k−5
and d(α4k−5, α1) = 6 because
α4k−5 → β4k−5 → β4k−3 → β4k−1 → β4k+1 →

β4k+3 = β1→ α1
Therefore, d(α1, α2k+2) + d(α2k+2, α4k−5) + d

(α4k−5, α1) = (k+3)+ (k−1)+6 = (k+3)+ (k+3)+2 =
2d + 2

So if α, β, γ are 3 vertices on exterior cycle of P(n, 2) then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d + 2.

Lemma 3: If α, β, γ are 3 vertices lies on the interior
cycles of P(n, 2), n = 4k + 2, then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d .
Proof: By Lemma 1, d(β1, β2k+2) = k + 3 = d .

Now d(β2k+2, β4k−5) = k − 1 and a path of length k − 1
between β2k+2 to β4k−5 is
β2k+2 = β2(k+1) → β2(k+2) → β2(k+3)... → β2(2k−3) =

β4k−6→ α4k−6→ α4k−5→ β4k−5
and d(β4k−5, β1) = 4 as
β4k−5→ β4k−3→ β4k−1→ β4k+1→ β4k+3 = β1
Therefore, d(β1, β2k+2) + d(β2k+2, β4k−5) + d(β4k−5,

β1) = (k + 3)+ (k − 1)+ 4 = (k + 3)+ (k + 3) = 2d
Thus if α, β, γ are 3 vertices lies on interior cycles P(n, 2)

then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d .

Lemma 4: Let α, β, γ be three vertices of P(n, 2), n =
4k + 2 such that 2 vertices are on the exterior cycle and
1 vertex lies on the interior cycle then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d .
Proof: By Lemma 1, d(α1, α2k+2) = k + 3 = d .

For any vertex β1 that lies on the interior cycle, we have
exactly 1 vertex α2k+2 that lies on the exterior cycle at a
distance d − 1. i.e d(β1, α2k+2) = d − 1,
Therefore, d(α1, α2k+2)+d(α2k+2, β1)+d(β1, α1) = d+

(d − 1)+ 1 = 2d
Thus if α, β, γ are 3 vertices such that 2 of them are at

exterior cycle and 1 of them is at interior cycle of P(n, 2),
n ≡ 2(mod 4), then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d .

Lemma 5: Ifz is a RL of P(n, 2), n = 4k+2, k ≥ 3. Then
we have following statements:
i. Let {µi : 1 ≤ i ≤ n} represents the vertex set of exterior
cycle and z(µi) < z(µj) whenever i < j.
Then |z(µi+2)−z(µi)| ≥ φ(n),where

φ(n) =


k
2
+ 2, for even k

k + 1
2
+ 2, for odd k.

ii. Let {ωi : 1 ≤ i ≤ n} is the vertex set of interior cycles
and z(ωi) < z(ωj) whenever i < j. Then |z(ωi+2) −
z(ωi)| ≥ ψ(n), where

ψ(n) =


k
2
+ 3, for even k;

k + 1
2
+ 3, for odd k.

Proof:
i. Consider {µi, µi+1, µi+2} are any 3 vertices of exterior

cycle ofP(n, 2), n = 4k+2.By applying radio condition
to every pair of vertex set {µi, µi+1, µi+2} and take the
sum of the following three inequalities.
|z(µi+1)−z(µi)| ≥ diam(G)− d(µi+1, µi)+ 1
|z(µi+2)−z(µi+1)| ≥ diam(G)− d(µi+2, µi+1)+ 1
|z(µi+2)−z(µi)| ≥ diam(G)− d(µi+2, µi)+ 1
|z(µi+1)−z(µi)|+|z(µi+2)−z(µi+1)|+|z(µi+2)−
z(µi)| ≥ 3diam(G)+3−d(µi+1, µi)−d(µi+2, µi+1)−
d(µi+2, µi)
By omitting absolute sign because z(µi) < z(µi+1) <
z(µi+2) and by using Lemma 2, we get:
2[z(µi+2)−z(µi)] ≥ 3+ 3d − (2d + 2) = d + 1
[z(µi+2)−z(µi)] ≥ d+1

2 =
k+3+1

2 =
k+4
2 =

k
2 + 2

Thus,

φ(n) =


k
2
+ 2, for even k;

k + 1
2
+ 2, for odd k.

ii. Consider {ωi, ωi+1, ωi+2} are 3 vertices of exterior
cycles of P(n, 2), n = 4k + 2. By applying radio
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condition to every pair in the same way as we did in
above and utilizing Lemma 3, we have,
2[z(ωi+2)−z(ωi)] ≥ 3+ 3d − 2d = d + 3
[z(µi+2)−z(µi)] ≥ d+3

2 =
k+3+3

2 =
k+6
2 =

k
2 + 3

Thus

ψ(n) =


k
2
+ 3, for even k;

k + 1
2
+ 3, for odd k.

Theorem 3: For P(n, 2), with n = 4k + 2 and k ≥ 3,
we have

rn(P(n, 2)) ≥


4k2 + 21k + 8

2
, for even k;

4k2 + 25k + 9
2

, for odd k.
Proof: P(n, 2) has 2n vertices. First we divide the

vertex set into two classes {α1, α2, α3, ..., αn} and {β1, β2,
β3, ..., βn}. Letz be the RL for P(n, 2). We order the vertices
of P(n, 2) that lies on exterior cycle by µ1, µ2, µ3, ..., µn
withz(µi) < z(µi+1) and the vertices that lies on the interior
cycle by ω1, ω2, ω3, ..., ωn with
z(ωi) < z(ωi+1). We have d = n−2

4 + 3 = k + 3.
For i = 1, 2, 3, ...n − 1, set di = d(µi, µi+1) and

zi = z(µi+1)−z(µi)
Then zi ≥ d − di + 1 for all i.
By using Lemma 5(i), the span of RL z of P(n, 2) for

vertices of exterior cycle is given by

z(µn) =
n−1∑
i=1

zi = z1 +z2 +z3 + ....+zn−2 +zn−1

= [z(µ2)−z(µ1)]+ [z(µ3)−z(µ2)]+ ...

+[z(µn−1)−z(µn−2)]+ [z(µn)−z(µn−1)]

= (z1 +z2)+ (z3 +z4)+ (z5 +z6)+ ...

+(zn−3 +zn−2)+zn−1

=

n−2
2∑
i=1

(z2i−1 +z2i)+zn−1

≥
n− 2
2

φ(n)+ 1

z(µn) ≥


n− 2
2

.(
k
2
+ 2)+ 1, for even k;

n− 2
2

.(
k + 1
2
+ 2)+ 1, for odd k.

z(µn) ≥

{
k2 + 4k + 1, for even k;
k2 + 5k + 1, for odd k.

Using Lemma 4 and Lemma 5(ii) to vertices µn−1, µn, ω1
such that

z(µn−1) < z(µn) < z(ω1), then

|z(ω1)−z(µn−1)| ≥
{ k

2 + 3, for even k;
k+1
2 + 3, for odd k .

z(ω1) ≥


z(µn−1)+ k

2 + 3 = k2 + 4k + k
2 + 3, for even k;

f (µn−1)+ k+1
2 + 3 = k2 + 5k + k+1

2 + 3, for odd k .
By using lemma 5(ii), the span of RL z′ of P(n, 2) for the

vertices that lies on interior cycles is

z(ωn)−z(ω1) =
n−1∑
i=1

z′i = (z′1 +z′2)+ (z′3 +z′4)+ ...

+(z′n−3 +z′n−2)+z′n−1

=

n−2
2∑
i=1

(z′2i−1 +z′2i)+z′n−1

≥
n− 2
2

ψ(n)+ 1

z(ωn)−z(ω1) ≥


n− 2
2

.(
k
2
+ 3)+ 1, for even k;

n− 2
2

.(
k + 1
2
+ 3)+ 1, for odd k.

z(ωn) ≥

{
k2 + 6k + 1+z(ω1), for even k;
k2 + 7k + 1+ f (ω1), for odd k.

z(ωn) ≥


4k2 + 21k + 8

2
, for even k;

4k2 + 25k + 9
2

, for odd k.

Hence

rn(P(n, 2)) ≥


4k2 + 21k + 8

2
, for even k;

4k2 + 25k + 9
2

, for odd k.

III. AN UPPER BOUND FOR P(N, 2), N = 4K + 2
In order to complete our proof for the Theorem 1, we remain
to give RL of P(n, 2) having span exactly equal to our desired
number. The required labeling can be generated with the help
of following three sequences:

• the distance gap sequence (DGS)

D = (d1, d2, d3, ...., dn−1)

D′ = (d ′1, d
′

2, d
′

3, ..., d
′

n−1)

• the color gap sequence (CGS)

F = (f1, f2, f3, ...., fn−1)

F ′ = (f ′1, f
′

2, f
′

3, ..., f
′

n−1)

• the vertex gap sequences (VGS)

T = (t1, t2, t3, ...., tn−1)

T ′ = (t ′1, t
′

2, t
′

3, ..., t
′

n−1)

We have two cases
Case 1:When k is even.

VOLUME 7, 2019 142003
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FIGURE 1. Ordinary labeling and radio labeling for P(14, 2).

The DGS are

di =

k + 3, for odd i;
k
2
+ 3, for even i.

and

d ′i =


k + 3, for odd i;

k
2 + 2, for even i.

For every i, we have
d(µi, µi+1) = di,
d(ωi, ωi+1) = d ′i
and

d ′ = d(µn, ω1) =
k
2
+ 2.

The CGS are

fi =

1, for odd i;
k
2
+ 1, for even i.

f ′i =

1, for odd i;
k
2
+ 2, for eeven i.

f ′ =
k
2
+ 2.

The VGS are

ti =

{
2k, for odd i;
k, for even i.

t ′i =

{
2k, for odd i;
k − 2, for even i.

Take ti as the number of vertices lies between µi and µi+1
on exterior cycle and t ′i are number of vertices lies between
ωi and ωi+1 on interior cycles.

Consider 0,0′ : {1, 2, 3, ..., n} → {1, 2, 3, ..., n} be
defined as 0(1) = 1 and 0′(1) = 1

0(i+ 1) = 0(i)+ ti + 1(mod n)

0′(i+ 1) = 0′(i)+ t ′i + 1(mod n)

We are to show that for every sequence given below, the cor-
responding 0,0′ are permutations.

Let µi = α0(i) for i = 1, 2, 3, ..., n
ωi = β0′(i) for i = 1, 2, 3, ..., n.
Then µ1, µ2, µ3, ..., µn is an ordering of the vertices of

P(n, 2) lies on exterior cycle and ω1, ω2, ω3, ..., ωn is an
ordering of the vertices of P(n, 2) lies on interior cycle.
f (µ1) = 0
f (µi+1) = f (µi)+ fi
Then for i = 1, 2, 3, ..., 2k + 1

0(2i− 1) = (i− 1)(2k + 1)+ (i− 1)(k + 1)+ 1(mod n)

0(2i) = i(2k + 1)+ (i− 1)(k + 1)+ 1(mod n)

and

0′(2i− 1) = (i− 1)(2k + 1)+ (i− 1)(k − 1)+ 1(mod n)

0′(2i) = i(2k + 1)+ (i− 1)(k − 1)+ 1(mod n)

We prove that 0 and 0′ are permutations.
Note that g.c.d .(n, k) = 2 and 3k + 2 ≡ −k(mod n)

Thus, (3k + 2)(i − i′) ≡ k(i′ − i) 6≡ 0(mod n), if 0 <

i − i′ < n
2 . Because if it does so then k(i′ − i) ≡ k.0(mod n)

as g.c.d .(n, k) = 2, we have i′ − i ≡ 0(mod n
2 ) which is

impossible when 0 < i− i′ < n
2 .

This implies that, 0(2i − 1) 6= 0(2i′ − 1) and 0(2i) 6=
0(2i′), if i 6= i′

If 0(2i) = 0(2i′ − 1), then we get:
i(2k + 1) + (i − 1)(k + 1) + 1 = (i′ − 1)(2k + 1) +

(i′ − 1)(k + 1)+ 1
i(2k + 1+ k + 1) = i′(2k + 1+ k + 1)− (2k + 1)
(i− i′)(3k + 2) = −2k − 1 ≡ 2k + 1(mod n).
It follows that,

2(i′ − i)k ≡ 0(mod n)

As k is even therefore, g.c.d .(2k, n) = 2, and

i′ − i ≡ 0(mod
n
2
).

But this is not possible.
Now, to show 0′ is a permutation.
Since g.c.d(n, k) = 2 and 3k ≡ −k − 2(mod n). Thus,

(i− i′)3k ≡ (k + 2)(i− i′) 6≡ 0(mod n) if 0 < i− i′ < n
2

This implies that 0(2i − 1) 6= 0′(2i′ − 1) and 0′(2i) 6=
0′(2i′ − 1) if i 6= i′.
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If 0′(2i) = 0′(2i′ − 1), then similarly we get:
i(2k + 1) + (i − 1)(k − 1) + 1 = (i′ − 1)(2k + 1) +

(i′ − 1)(k − 1)+ 1
i(2k + 1+ k − 1) = i′(2k + 1+ k − 1)− (2k + 1)
(i− i′)3k = −2k − 1 ≡ 2k + 1(mod n).
Thus,

2(k + 2)(i′ − i) ≡ 0(mod n)

As k is even and g.c.d .(2k + 4, n) = 2, it follows that
i′ − i ≡ 0(mod n

2 ). But this is impossible.
The span of RL z is equal to

z1 +z2 +z3+, ...,zn−2 +zn−1 +z′ +z′1
+z′2 +z′3+, ...,z

′

n−2 +z′n−1
= [(z1 +z3 +z5+, ...,+zn−1)]

+[(z2 +z4 +z6+, ...,+zn−2)]+z′

+[(z′1 +z′3 +z′5+, ...,+z
′

n−1)]

+[(z′2 +z′4 +z′6+, ...,+z
′

n−2)]

=
n
2
(1)+

n− 2
2

(
k
2
+ 1)+

k
2
+ 2

+
n
2
(1)+

n− 2
2

(
k
2
+ 2)

=
4k2 + 21k + 8

2

Case 2:When k is odd.
The DGS are

di =

k + 3, for odd i;
k + 1
2
+ 2, for even i.

and

d ′i =

k + 3, for odd i;
k + 1
2
+ 1, for even i.

d ′ = d(µn, ω1) =
k + 1
2
+ 1.

The CGS are

fi =

1, for odd i;
k + 1
2
+ 1, for even i.

f ′i =

1, for odd i;
k + 1
2
+ 2, for even i.

f ′ =
k + 1
2
+ 2.

The VGS are

ti =

{
2k, for odd i;
k − 1, for even i.

t ′i =

{
2k, for odd i;
k − 3, for even i.

Let θ, θ ′ : {1, 2, 3, ..., n} → {1, 2, 3, ..., n} are defined as
1(1) = 1 and 1′(1) = 1

1(i+ 1) = 1(i)+ ti + 1(mod n)

1′(i+ 1) = 1′(i)+ t ′i + 1(mod n)

Then for i = 1, 2, 3, ..., 2k + 1

1(2i− 1) = (i− 1)(2k + 1)+ (i− 1)k + 1(mod n)

1(2i) = i(2k + 1)+ (i− 1)k + 1(mod n)

and

1′(2i− 1) = (i− 1)(2k + 1)+ (i− 1)(k − 2)+ 1(mod n)

1′(2i) = i(2k + 1)+ (i− 1)(k − 2)+ 1(mod n),

We will prove that 1 and 1′ are permutations.
Note that g.c.d .(n, k) = 1 and 3k + 1 ≡ −k − 1(mod n).

Thus,
(3k + 1)(i − i′) ≡ (k + 1)(i′ − i) 6≡ 0(mod n) when 0 <

i− i′ < n
2 .

This implies that 1(2i − 1) 6= 1(2i′ − 1) and 1(2i) 6=
1(2i′) if i 6= i′.
If 1(2i) = 1(2i′ − 1), then we get:
i(2k + 1)+ (i− 1)k + 1 = (i′− 1)(2k + 1)+ (i′− 1)k + 1
(i′ − i)(3k + 1) = −2k − 1 ≡ 2k + 1(mod n)
2(i′ − i)(k + 1) ≡ 0(mod n)
Since k is odd therefore, g.c.d .(2k+ 2, n) = 2 and i′− i ≡

0(mod n
2 ). But this is not possible.

Now, to show 1′ is a permutation

1′(2i− 1) = (i− 1)(2k + 1)+ (i− 1)(k − 2)+ 1(mod n)

1′(2i) = i(2k + 1)+ (i− 1)(k − 2)+ 1(mod n)

Since g.c.d(n, k) = 1 and 3k − 1 ≡ −k − 3(mod n),
(3k−1)(i−i′) ≡ (k+3)(i′−i) 6≡ 0(mod n) if 0 < i−i′ < n

2 .
This implies that 1(2i − 1) 6= 1′(2i′ − 1) and 1′(2i) 6=

1′(2i′ − 1) if i 6= i′.
However, if 1′(2i) = 1′(2i′ − 1), then we get
i(2k + 1) + (i − 1)(k − 2) + 1 = (i′ − 1)(2k + 1) +

(i′ − 1)(k − 2)+ 1
i(2k + 1+ k − 2) = i′(2k + 1+ k − 2)− (2k + 1)
(i− i′)(3k − 1) = −2k − 1 ≡ 2k + 1(mod n)
2(3k − 1)(i− i′) ≡ 0(mod n)
2(k + 3)(i′ − i) ≡ 0(mod n)
Since k is odd and g.c.d .(n, k) = 1 it follows that

g.c.d .(2k + 6, n) = 2 and i − i′ ≡ 0(mod n
2 ). But this

contradicts the fact that 0 < i− i′ < n
2 .

The span of RL z is equal to

z1 +z2 +z3+, ...,zn−2 +zn−1 +z′ +z′1
+z′2 +z′3+, ...,z

′

n−2 +z′n−1
= [(z1 +z3 +z5+, ...,+zn−1)]

+[(z2 +z4 +z6+, ...,+zn−2)]+z′

+[(z′1 +z′3 +z′5+, ...,+z
′

n−1)]

+[(z′2 +z′4 +z′6+, ...,+z
′

n−2)]
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=
n
2
(1)+

n− 2
2

(
k + 1
2
+ 1)+

k + 1
2
+ 2

+
n
2
(1)+

n− 2
2

(
k + 1
2
+ 2)

=
4k2 + 25k + 9

2

IV. A LOWER BOUND FOR P(N, 2), N = 4K
In this section, the lower bound for radio number of P(n, 2),
where n = 4k is determined. Here,

V (G) = V (P(n, 2)) = {αi , βi : i = 1, 2, ...n}

and an edge set E(G) = {αiαi+1, βiβi+2, αiβi| with indices
taken modulo n}.
Note that, diam(P(n, 2)) = n

4 + 2 = k + 2 when n = 4k.
Lemma 6: Let P(n, 2) be the family of generalized

Petersen graphs, n = 4k.
i. For every vertex α1 that lies on exterior cycle there are
only 3 vertices α2k , α2k+1 and α2k+2 at a distance d of
P(n, 2).

ii. For every vertex β1 lies on the interior cycle there are
only 2 vertices β2k , β2k+2 at a distance d of P(n, 2).

Lemma 7: Let α, β, γ are any 3 vertices that lies on exte-
rior cycle of P(n, 2), n = 4k then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d + 3.

Lemma 8: If α, β, γ are any 3 vertices that lies on interior
cycles of P(n, 2), n = 4k then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d + 1.

Lemma 9: Let α, β, γ are any 3 vertices in P(n, 2), for
n = 4k such that 2 of them lies on exterior cycle and 1 of
them lies on interior cycle, then

d(α, β)+ d(β, γ )+ d(γ, α) ≤ 2d .

Lemma 10: Let z be RL of P(n, 2), for n = 4k and k ≥ 5.
Then we have
i. Let {µi : 1 ≤ i ≤ n} is vertex set lies on exterior cycle
and z(µi) < z(µj) whenever i < j.
Then |z(µi+2)−z(µi)| ≥ φ(n),where

φ(n) =


k
2
+ 1, for even k;

k + 1
2
+ 1, for odd k.

ii. Let {ωi : 1 ≤ i ≤ n} is vertex set of interior cycles and
z(ωi) < z(ωj) whenever i < j.
Then |z(ωi+2)−z(ωi)| ≥ ψ(n), where

ψ(n) =


k
2
+ 2, for even k;

k + 1
2
+ 2, for odd k.

Proof:
i. Consider {µi, µi+1, µi+2} are any 3 vertices lies on

exterior cycle of P(n, 2) with n = 4k . Using the radio

condition to every pair of vertex set {µi, µi+1, µi+2} and
taking sum of three inequalities.
|z(µi+1)−z(µi)| ≥ diam(G)− d(µi+1, µi)+ 1
|z(µi+2)−z(µi+1)| ≥ diam(G)− d(µi+2, µi+1)+ 1
|z(µi+2)−z(µi)| ≥ diam(G)− d(µi+2, µi)+ 1
|z(µi+1)−z(µi)|+|z(µi+2)−z(µi+1)|+|z(µi+2)−
z(µi)| ≥ 3diam(G)+3−d(µi+1, µi)−d(µi+2, µi+1)−
d(µi+2, µi)
We can omit the absolute sign, because z(µi) <

z(µi+1) < f (µi+2) and utilizing Lemma 7, we obtaine
2[z(µi+2)−z(µi)] ≥ 3+ 3diam(G)− (2d + 3) = d
[z(µi+2)−z(µi)] ≥ d

2 =
k+2
2 =

k
2 + 1

Thus

φ(n) =


k
2
+ 1, for even k;

k + 1
2
+ 1, for odd k.

ii. Now suppose {ωi, ωi+1, ωi+2} are any 3 vertices of inte-
rior cycle of P(n, 2) with n = 4k . Using radio condition
to everypair in the above manner and utilizing Lemma ,
we obtain
2[z(ωi+2)−z(ωi)] ≥ 3+3diam(G)− (2d+1) = d+2
[z(µi+2)−z(µi)] ≥ d+2

2 =
k+4
2 =

k
2 + 2

Thus

ψ(n) =


k
2
+ 2, for even k;

k + 1
2
+ 2, for odd k.

Theorem 4: For P(n, 2) with n = 4k and k ≥ 5 we have

rn(P(n, 2)) ≥


4k2 + 11k

2
, for even k;

4k2 + 15k − 1
2

, for odd k.
Proof: A generalized Petersen graph has 2n ver-

tices. Let us divide the set of vertices into two sub-
sets {α1, α2, α3, ..., αn} and {β1, β2, β3, ..., βn}. Suppose z
is a distance labeling for P(n, 2). We order the vertices
of P(n, 2) on the outer cycle by µ1, µ2, µ3, ..., µn with
z(µi) < z(µi+1) and the vertices on the inner cycles by
ω1, ω2, ω3, ..., ωn with

z(ωi) < z(ωi+1). Denote the diam(P(n, 2)) by d , then
d = k + 2.
For i = 1, 2, 3, ...n − 1, set di = d(µi, µi+1) and

zi = z(µi+1)−z(µi)
Then zi ≥ d − di + 1 for all i.
By Lemma 10(i), the span of a distance labeling z of

P(n, 2) for the vertices on the outer cycle is

z(µn) =
n−1∑
i=1

zi = z1 +z2 +z3 + ....+zn−2 +zn−1

= [z(µ2)−z(µ1)]+ [z(µ3)−z(µ2)]+ ...

+[z(µn−1)−z(µn−2)]+ [z(µn)−z(µn−1)]

= (z1 +z2)+ (z3 +z4)+ (z4 +z5)+ ...
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+(zn−3 +zn−2)+zn−1

=

n−2
2∑
i=1

(z2i−1 +z2i)+zn−1

≥
n− 2
2

φ(n)+ 1

z(µn) ≥


n− 2
2

.(
k
2
+ 1)+ 1, for even k;

n− 2
2

.(
k + 1
2
+ 1)+ 1, for odd k.

z(µn) ≥


2k2 + 3k

2
, for even k;

2k2 + 5k − 1
2

, for odd k.

Applying Lemma IV and Lemma 10(ii) to the vertices µn−1,
µn, ω1 such that

z(µn−1) < z(µn) < z(ω1), then we have:
|z(ω1)−z(µn−1)|

≥


k
2
+ 2, for even k;

k + 1
2
+ 2, for odd k.

z(ω1)

≥


z(µn−1)+

k
2
+ 2 = k2 + 2k + 1, for even k;

z(µn−1)+
k + 1
2
+ 2 = k2 + 3k + 1, for odd k.

By Lemma 10(ii), the span of distance labeling f of P(n, 2)
for the vertices on the inner cycles is

z(ωn)−z(ω1) =
n−1∑
i=1

zi = (z1 +z2)+ (z2 +z3)

+...+ (zn−3 +zn−2)+zn−1

z(ωn)−z(ω1) =

n−2
2∑
i=1

z2i−1 +z2i)+zn−1

≥
n− 2
2

φ(n)+ 1

z(ωn)−z(ω1) ≥


n− 2
2

.(
k
2
+ 2)+ 1, for even k;

n− 2
2

.(
k + 1
2
+ 2)+ 1, for odd k.

z(ωn) ≥


2k2 + 7k − 2

2
+z(ω1), for even k;

2k2 + 9k − 3
2

+z(ω1), for odd k.

z(ωn) ≥


4k2 + 11k

2
, for even k;

4k2 + 15k − 1
2

, for odd k.

Hence

rn(P(n, 2)) ≥


4k2 + 11k

2
, for even k;

4k2 + 15k − 1
2

, for odd k.

V. CONCLUSION
The radio range is the part of the electromagnetic range with
frequencies from 3 Hz to 30000 GHz (3 THz). Electromag-
netic waves in this recurrence extend, called radio waves, are
amazingly generally utilized in current innovation, especially
in media transmission. To forestall interference between var-
ious users, RL is brisk alter in this course on the grounds
that the level of interference. Very few graphs have been
proved to haveRL and achieve the radio number. In this paper,
we have investigated the values of radio number for Peterson
graphs [28]–[30]. Graph labeling has many applications in
coding theory, x-ray crystallography, radar, astronomy, cir-
cuit design, communication network addressing, data base
management.

RESEARCH QUESTIONS
It is an important problem to determine Radio labeling and
radio number for different families of graphs. Radio number
of only few families of graph is known. The interesting
researchers can compute the radio number of the families of
graphs studied in [37]–[41].
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