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ABSTRACT Anomaly detection in home power monitoring can be categorized into two main types:
detection of electrical theft, leakage, or nontechnical loss and monitoring anomalies in the daily activities
of residents. Focusing on the application and practicality of anomaly detection, we propose sample efficient
home power anomaly detection (SEPAD) with improved monitoring performance in terms of electricity
usage as well as changes in the daily living activities of residents via provision of detailed feedback. SEPAD
consists of two classifiers: an appliance pattern matching classifier (APMC) and an energy consumption
habit classifier (ECHC). The APMC uses a single-source separation framework based on a semi-supervised
support vector machine (semi-SVM) model. This semi-supervised learning method requires only a small
amount of labeled data to achieve high accuracy in near real time and is a sample efficient detection
method. The hidden Markov model (HMM)-based ECHC improves the rationality of SEPAD by providing
anomaly detection functionality with respect to the daily activities of householders, especially the elderly and
residents in developing areas.When SEPAD detects the appearance of an unknown pattern or known patterns
contrary to the household’s electricity usage habits, it triggers an alarm. SEPAD was applied to monitor
power consumption data from Mkalama, a rural area in Tanzania with 52 households containing nearly
150 occupants connected to a solar powered off-grid network. The results of the practical test demonstrate
the high accuracy and practicality of the proposed method.

INDEX TERMS Anomaly detection, power monitoring, support vector machine, semi-supervised learning.

I. INTRODUCTION
Currently, an emphasis on environmentally friendly practices
has prompted society to seek more sustainable energy prac-
tices, with ambitious targets being set by many countries in
an effort to achieve significant energy savings [1]–[4]. Home
power usage, along with that of the industrial and commercial
sectors, is one of the major routes to reaching these targets.
According to a 2018 study by the Energy Information Admin-
istration, home electricity consumption accounted for 38.5%
(1.46 trillion kWh) of the total annual electricity consumption
in the United States [5]. Therefore, monitoring home power
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consumption is a critical step toward lowering carbon emis-
sions and reducing anthropogenic climate change effects,
as well as a viable first step in curbing unnecessary elec-
tricity use [6]–[8]. Anomaly detection can monitor energy
waste through load usage. Additionally, a good home power
anomaly detector can improve the quality of life of residents
by checking for anomalies related to health and well-being.

In this paper, we propose sample efficient home power
anomaly detection (SEPAD) that has two main applica-
tions: detecting anomalies in electricity usage attributable
to theft, leakage, or nontechnical loss and monitoring res-
ident daily activities. In terms of the first application, pre-
vious research has shown that the detection performance of
a supervised classification-based anomaly detection system
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depends mainly on labeled high-quality training data, and
this dependence limits the scalability and efficiency of the
system [9]. An unsupervised classification-based anomaly
detection system has the disadvantage of lacking detection
references. A regression model-based anomaly detection sys-
tem detects anomalies based on the prediction results of a
forecasting model; however, it is difficult to find an appro-
priate prediction model to monitor the data dynamically.
In addition, deep learning is an important class of machine
learning methods and is widely used in many areas such as
computer vision, energy consumption estimation, and health
monitoring [10], [11]. However, the reasons that deep learn-
ing is unsuitable for our work are as follows: 1) Interpretabil-
ity. In the research field of home power anomaly detection,
interpretability is a very important aspect. Customers should
be given reasonable explanations for why/how we detect
that their power use is abnormal. However, it is well known
that the results of deep learning are difficult to interpret for
why/how a specific outcome is justified; 2) Practicality. Our
work employs existing classification/clustering algorithms to
overcome the limitations of each algorithm and proposes
an efficient anomaly detector. The proposed data clustering
scheme not only saves training cost, but also simplifies cal-
culation process. Meanwhile, the semi-SVM-based pattern
matching proposes a new pattern matching approach which
has low computational complexity and computational cost.
After an actual test on a desktop computer with a relatively
low hardware configuration, both the detection accuracy and
computing speed of our work are demonstrated to be efficient.
Thus, advanced computing infrastructures are not required
for using the proposed method.1

Regarding the second application of the anomaly detector,
i.e., detecting anomalies in the daily activities of residents,
prior research has focused mostly on static analysis of the
daily routines of householders as opposed to using a ‘smart’
design with real-time feedback that addresses changes in
health status. The purpose of this study is to fill these knowl-
edge gaps by introducing SEPAD, a hybrid learning-based
anomaly detection method equipped with an appliance pat-
tern matching classifier (APMC) and an energy consumption
habit classifier (ECHC). The APMC is used to test whether
the monitoring data belong to a learned pattern, which can
directly monitor power consumption data from a smart meter;
this classifier is based on a single-source separation frame-
work that uses a semi-supervised support vector machine
(semi-SVM) model, in which only a small number of labeled
samples are needed to achieve higher accuracy. The ECHC
is based on a hidden Markov model (HMM) that uses data
binning technology to process the data; the ECHC depends on
residents’ electricity usage habits/readings to detect the home
power usage. In terms of home electricity usage, any results
that are contrary to the usage habits of residents may be

1On the other hand, the computational cost of deep learning methods is
high in general. Furthermore, a large amount of data are needed in the training
phase of deep learning, unlike the proposed method.

indicated as anomalies or even health emergencies. In detec-
tion, either of these two classifiers is detected as anomalous,
SEPAD triggers an alarm. The contributions of this work can
be summarized as follows:

1) We focus on developing an anomaly detector for home
energy usage and highlight its flexibility and practical-
ity. SEPAD has low requirements regarding computer
hardware and can be applied to any device with a visual
interface. Moreover, a series of tests demonstrate that
SEPAD can achieve real-time monitoring with high
detection accuracy.

2) The proposed SEPAD is based on a semi-SVM model,
which is a sample efficient classification method, that
provides a simple but efficient way to reduce training
costs and uses a small quantity of labeled data to per-
form classification with high accuracy.

3) SEPAD employs a two-dimensional monitoring
method, that checks for anomalies in the daily living
activities of residents according to the electricity usage
habits of a household. Moreover, the results can be
further applied to the field of health monitoring to
provide residents with additional information about
their lifestyle and health.

4) SEPAD carefully combines classification and cluster-
ing algorithms to overcome the limitations of each
algorithm and to improve the overall detection perfor-
mance and sample efficiency. Our work provides useful
guidelines for the application of machine learning tech-
nology to home power anomaly detection, particularly
when a computing infrastructure with high specifica-
tions is unavailable.

5) SEPAD was applied in Mkalama (longitude and lati-
tude: 37.2608067, -3.4613795), a rural area in Tanzania
with 52 households containing nearly 150 occupants.
The households lacked a sustainable energy source
and did not have access to local healthcare. SEPAD is
an off-grid power source-based anomaly detector. Its
successful operation addresses the need for improving
quality of life in remote areas through better power
monitoring and anomaly detection accuracy.

The rest of this paper is organized as follows.
Section 2 introduces related work, and Section 3 presents
a system overview. Section 4 describes the data selection
phase. Sections 5 and 6 examine the APMC and ECHC,
respectively, with comparative results presented in Section 7.
Section 8 summarizes our work.

II. RELATED WORK
Based on extensive research in the literature, current anomaly
detectors applied for power usage can be categorized into
threemain types: 1) classification-based, 2) regression-based,
and 3) others.

Classification-based anomaly detection can be subcate-
gorized as supervised classification, unsupervised classifi-
cation and semi-supervised classification. Nagi et al. [12]
presented an SVM-based nontechnical loss detection system.
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Using feature selection and extraction function results to
train the SVM classifier, abnormal load patterns could be
identified with relatively high precision. However, the time
cost of offline training and whether this detector could be
applied to real-time detection, were not mentioned in this
work. Depuru et al. [13] presented a novel SVM-based elec-
tricity theft detection algorithm that combines an SVMmodel
and a rule engine to classify customers as genuine or ille-
gal customers; the algorithm operates at a relatively fast
operating speed. Additionally, the rule engine improved the
efficiency of the detector; however, numerous parameters
must be set in advance. The practicability of supervised
learning-based anomaly detection was further improved by
Makonin et al. [14]; they proposed an HMM-based nonintru-
sive load monitoring system with the ability to disaggregate
appliances with complex multistate power signatures, pre-
serving dependency between loads in real time. To address
the data imbalance caused by insufficient training data in
supervised learning algorithms, Jokar et al. [15] proposed a
hybrid learning model-based electricity theft detector, which
used a cascade classification and clustering method; in the
training phase, k-means clustering and silhouette plots were
applied to determine the number of clusters, from which an
SVM-based classifier was built. Finally, oversampling could
be used to equalize the number of benign and attack samples.
Although the effectiveness of the supervised classification-
based anomaly detector has been verified, its practical value is
limited by the amount of time required to obtain high-quality
training data and the amount of resources required to label all
of the training data [16]. For these reasons, Fan et al. [9] pro-
posed an unsupervised classification-based building power
consumption data anomaly detection system that uses an
autoencoder to classify the data. In the data exploration phase,
dominant periods and influential exogenous variables are
identified by spectral density estimation and a decision tree.
A neural network (NN)-based autoencoder is selected based
on the data exploration results. Finally, the autoencoder is
used to calculate the anomaly score of each observation.
Scores 5%–10% higher than the threshold are identified as
anomaly candidates. The unsupervised classification-based
system provides a newmethod for identifying anomalous data
in real-time. However, due to the lack of anomaly references,
this approach is limited because the detection results cannot
be easily evaluated, and the method has weak interpretability.
During the anomaly detection process, the results should be
strengthened with explanations about the reasons that the data
are detected as abnormal [9], [16].

Semi-supervised classification aims to achieve a balance
between supervised classification and unsupervised classi-
fication and addresses the training cost problem of super-
vised classification and improves the interpretability of the
model. Through observations, some patterns are labeled, and
the algorithm seeks to identify the unlabeled clusters asso-
ciated with the labeled patterns to determine whether the
unlabeled clusters belong to these labeled patterns [17]–[19].
Iwayemi and Zhou [16] invented a semi-supervised learning

based residential appliance annotator. Dynamic time warp-
ing (DTW) is utilized to calculate the distance between
the unlabeled data and all the labeled instances, and the
Mahalanobis distance is employed to identify the boundaries
of appliance clusters. After labeling all the unlearned data,
a k-nearest neighbor (kNN) model is used to learn all the
labeled data. Yan et al. [20] developed a semi-SVM-based
anomaly detector for recognizing air handling unit faults.
To address the insufficient fault samples of air handling units
in real-world industrial applications, the proposed method
divides the original dataset into training and testing sets,
which contain different fault samples. By iteratively inserting
new testing samples to train the SVM model, and comparing
the classification results of each interaction with a preset
threshold, the training pool can be enriched.

A regression-based anomaly detector estimates anomalies
by comparing differences between historical predicted data
and actual data. Zhang et al. [21] proposed a linear regression
anomaly detector that accounted for the effect of temperature
on home power consumption, from which different linear
models were built; the linear regression detector used an
F-test to determine the most suitable number of linear pieces
in the regression model, and then applied the prediction
result from the model as a baseline for comparison with
actual power consumption data. If the real power consump-
tion is far below the baseline, it is classified as an anomaly.
The regression detector provides a newmethod for predicting
the electricity usage of residents, taking into consideration the
environmental conditions. However, this detector may not
be suitable in regions that show little environmental change.
Using a simple linear regressionmodel, Chou and Telaga [22]
presented a real-time building power anomaly detector based
on a hybrid regression forecasting model, an artificial neural
network (ANN) and autoregressive integrated moving aver-
age (ARIMA) model. The main contribution of this work
was that the proposed system could monitor smart meter
data in real time. Here, the detection result depends mainly
on predictions based on previous data; thus, the result is
limited by the selection of a suitable prediction model, a long-
standing issue in this field. Regarding power consumption
data prediction, autoregression may not be appropriate given
that the electricity usage of residents mainly depends on their
usage habits as opposed to previous usage status.

There are several other types of anomaly detectors.
Cabrera and Zareipour [23] proposed an association rule
learning-based anomaly detector to identify power waste pat-
terns in educational institutions. Data binning is used initially
to smooth noisy data and reduce the data size. Five determi-
nation rules are used to identify an energy waste pattern. This
static analysis approach detects anomalies with full consider-
ation of the surrounding environment. Hu et al. [24] presented
a meta-feature based anomaly detector that targets anomalies
in time series. Compared with detecting the anomalies in
complex original time series directly, the proposed method
first locates the data in the meta-feature space and then uses
the simplified results to detect the anomalies.
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FIGURE 1. Overview of the proposed method.

Beyond general anomaly detection, which only detects
electrical theft, leakage, or nontechnical loss, another impor-
tant application of home power anomaly detection is identify-
ing anomalies in the daily living activities of residents, e.g.,
the residents’ unusual health conditions deduced from their
atypical energy consumption patterns. Health monitoring is
important given the growing proportion of single-occupancy
households and the poor medical infrastructure in developing
countries. Compared to traditional smart home monitoring
systems, which require the installation of additional sensors
that tend to invade the user’s privacy, power consumption
data-based anomaly detectors provide nonintrusive monitor-
ing with improved scalability. By monitoring the meter load,
the daily living activities of residents in their own homes
can be detected, which can be further used as a proxy to the
residents’ health conditions [25]. Rahimi et al. [26] developed
a kNN model-based nonintrusive load monitor. By identi-
fying different electrical appliances at home, the proposed
method can efficiently monitor the occupant’s activities of
daily living. However, as discussed above, the limitation of
this work may be the training cost. To achieve high recogni-
tion accuracy, all devices need to be operated and measured
separately in the training phase. Alcalá et al. [25] presented an
energy disaggregation based nonintrusive health monitoring
system. First, an HMM-based appliance detector identifies
appliance usage from smart meter data, and then use frequen-
cies are calculated using a log Gaussian Cox process model.
Finally, the proposed algorithm learns the usage pattern of
each household and issues a warning when any deviation
from the learned pattern is detected. This work presents a new
approach to improve the research on home health monitor-
ing. However, the detecting speed and training cost are not
discussed in this work. Hori et al. [27] introduced a power
consumption-based home health monitoring system in which
a kNN model was used to monitor anomalies in real time.
By dividing time into different time zones, a larger anomaly
score in a specific time zone may indicate the occurrence
of abnormal events. However, the proposed system requires

a number of parameters be set in advance, which may limit
its application.

III. SYSTEM OVERVIEW
We designed an anomaly detector to imitate human decision-
making in the event of abnormal data. The framework of
SEPAD is illustrated in Figure 1. First, monitored data with
large deviations from the other observed samples are iden-
tified as candidate suspicious data. This stage is used for
preliminary screening to identify suspicious data for later
verification. Second, the suspicious data are then analyzed to
determine the reasons for the differences. Here, the suspicious
data are assessed via a two-step process involving an APMC
and ECHC. The APMC is employed for classification and
matching of processed data. The matched patterns in the
APMC cycle are binned and sent to the ECHC, where power
usage is detected depending on the electricity usage habits of
residents. Figure 2 illustrates the proposed anomaly detection
process. The input data set (Figure 2 (a)) is the power con-
sumption data of one household in the test interval. After the
suspicious data selection step, the candidates of suspicious
data have been screened out as shown in Figure 2 (b). Then,
the input data set is assessed byAPMC and ECHC. In APMC,
the data set is divided into three groups, and according to
the results of semi-SVM-based pattern matching, the three
groups belong to two learned patterns. The final detection
result (Figure 2 (c)) shows that there is no anomaly.

IV. SUSPICIOUS DATA SELECTION
As previously mentioned, we focus on improving the flexibil-
ity and practicality of SEPAD. Therefore, tominimizemanual
intervention while ensuring accuracy, k-means clustering and
z-score analyses are used in this phase. k-means clustering
assigns K data samples into k disjoint clusters, and k is the
target number of clusters, a preset parameter [28], [29]. Com-
pared to other clustering methods, the computation speed of
k-means is relatively faster; additionally, k-means clustering
is easy to implement. The z-score is a standardization tool
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FIGURE 2. Illustration of the proposed anomaly detection process.

widely used to compare observations to a theoretical deviate.
The z-score function is defined as [30]:

Zscore(xjn , x̄, σ ) =
xjn − x̄
σ

, (1)

where x̄ and σ are the mean and standard deviation of CN .

Algorithm 1 Suspicious Data Selection

1 Input:Monitored data set X ∈ {x1, . . . , xK }
2 Output: Suspicious data set Csuspicious;
3 Variables and Functions: Normal data set CN ⊆ X ;
4 Uncertain data set CU ⊆ X ;
5 Kmeans(A, k): k-means clustering, where A is the data
set to be clustered and k is the target number of clusters;

6 Zscore(xj, x̄, σ ): z-score function (1);
7 Suspicious Data Selection:
8 (CN ,CU ) = Kmeans(X , 2);
9 x̄ = average(CN ); σ = standard deviation(CN );

10 for n = 1 : N do
11 xjn ∈ CU ,
12 if Zscore(xjn , x̄, σ )) > threshold1 then
13 xjn ∈ Csuspicious
14 end
15 end

The detailed steps for selecting suspicious data are
described in Algorithm 1. Here, X denotes the monitored data
set. First, Kmeans() is used to group the monitored data set X
into two disjoint clusters (line 8). The cluster with the most
data is selected as the normal class CN . Second, the mean
value x̄ and standard variance σ of CN are calculated (line 9).
Third, the z-score function is used to calculate the z-scores
of all items in CU , which are then compared to threshold1.
If the z-score of xjn is larger than threshold1, xjn is selected
as suspicious data (lines 10–15). Threshold1 is a parameter,
used for preliminary screening the suspicious data. It varies
with σX (the standard deviation of X ). If σX is large, the value
of threshold1 should be set to a large value, which avoids the
high computational cost in the following steps. Conversely,
if σX is small, the value of threshold1 should be set to a

small value to ensure the suspicious data with large deviations
from the other monitored data can be identified. In this study,
the value of threshold1 is selected as follows:

threshold1 =

{
0.01σX + 0.5 if 0 < σX < 10
0.01 otherwise,

(2)

where the parameters are determined based on practical con-
sumption data from an investigation. Figure 3 shows an exam-
ple of suspicious data selection. After using Kmeans() to
group the processed data set X into two clusters, the cluster
that has more data is labeled as CN (green), and the other is
labeled asCU . The red points in Figure 3 represent suspicious
data.

FIGURE 3. Example of suspicious data selection.

V. APPLIANCE PATTERN MATCHING CLASSIFIER
USING SEMI-SUPERVISED LEARNING
To improve the accuracy of SEPAD, it is important to deter-
mine the status of the target load at any given time. Sus-
picious data stand out due to their high deviations from
the average of most of the other data. It is necessary to
know whether the causes of these deviations are electricity
theft, leakage, or some other reasons. The APMC is based
on a semi-SVM model, which separates single power con-
sumption data obtained from the smart meter into k disjoint
clusters [30]. Here, we introduce the APMC as an optimal
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clustering scheme followed by semi-SVM-based labeled pat-
tern matching.

A. DATA CLUSTERING SCHEME USING
SILHOUETTE COEFFICIENT
We begin by introducing the silhouette coefficient (SC) as
a measure of how similar an object is to its own cluster
compared to other clusters [31]. The SC is applied in this
stage to overcome the weakness of k-means clustering in
setting parameter k in advance. Additionally, this coefficient
provides single-source separation by effectively reducing the
computation associated with pattern matching. The SC func-
tion is defined as

SC(k) =
b(k)− a(k)

max (a(k), b(k))
, (3)

where a(k) denotes the mean intra-cluster distance and b(k)
denotes the mean nearest-cluster distance for k , Figure 4
illustrates an example of a(k) and b(k). The value of SC(k)
ranges from −1 to +1, with +1 corresponding to the best
value. The detailed steps of the optimal clustering scheme are
presented in Algorithm 2.

Algorithm 2 Data Clustering Scheme

1 Input:Monitored data set X ∈ {x1, . . . , xK };
2 Suspicious data set Csuspicious;
3 Output: Clustered data sets C1, . . . ,Cn, where n is the
number of clusters;

4 Variables and Functions: Kmeans(A, k);
5 Zscore(xj, x̄, σ ): z-score function (1);
6 SC(k): silhouette coefficient (3), where k is the number
of target clusters;

7 Clustering Algorithm:
8 for i = 2 : m do
9 Compute SC(i);
10 end
11 Set n := argmaxiSC(i);
12 if n > threshold2 then
13 Compute Kmeans(X , n), and divide X into n cluster;
14 else
15 Take X as a single cluster, and set n := 1;
16 end

Because we do not know how many patterns appear in this
monitoring, we assume that there may be at most m groups
(with no prior knowledge, m is set to 9). Using i to repre-
sent each scenario, i ranges from 2 to m. In every scenario,
Kmeans() is used to cluster the data, and the SC function is
used to evaluate the results of the clustering scenario. Afterm
cycles of clustering, we obtain m SC scores, and then select
the maximum value SC(m) among these scores (lines 8–11).
SC(n) is then compared to threshold2,2 if SC(n) is larger than

2threshold2 is a preset parameter, ranges from 0 to 1. The determination
of threshold2 is related to the variance of the training set. In general, to avoid
clustering error, the smaller the variance is, the higher the value of threshold2.
In this study, threshold2 is set to 0.7.

threshold2, the number n of clusters is accepted and k-means
clustering Kmeans(X , n) is performed to obtain n clusters.
Else, all of the data belong to a single cluster, and n is set
to 1 (lines 12–16).

B. SEMI-SVM-BASED PATTERN MATCHING
After grouping the data into n clusters, the next step is to
determine if these clusters have been learned before. Because
the semi-SVMmodel presented in this study is a sample effi-
cient classification method that does not need a large number
of training data, only a small amount of data are labeled as the
training set. Additionally, to study the effect of different ker-
nel functions on the classification results, this paper proposes
multiclass SVM models with two kernel functions: a Gaus-
sian function and a linear function. Algorithm 3 describes the
detailed steps of semi-SVM-based pattern matching.

After dividing the data into n clusters, the algorithm cycles
n times and executes the same script in each cluster. In each
cluster, first, the mean value and standard variance of the
cluster are calculated (lines 12–13); second, the z-score is
used to select the center point Dci and the edge point Dei ;
and third, the test point generation function Test() is used to
calculate the test point for classification, where

Test(x̄i,Dei ,Dci ) := αx̄i + βDei + δDci (4)

Here, α, β and δ are constants, and α + β + δ = 1.3

The test point designed in this phase is used to improve the
classification efficiency. Different from other works using
distance measurements to find the similarity/dissimilarity
between two data sets, in our work, we calculate a test point
to represent all of the data in the cluster. The accuracy and
practicability of this method are discussed for comparison
results in Section VII. The kNN model is then used to find
the closest group to the test point in the training set. kNN
is a simple classification method that is widely used due to
its simplicity and practicability. Here, k is a positive integer,
corresponding to the number of nearest neighbors to be used
in the decision. In this study, we used the simplest kNNmodel
1-NN [15], [32].

The SVM algorithm is used to classify the training set.
The cross-entropy loss function Loss() is used to calculate
the classification loss, loss1. The cross-entropy loss function
is widely applied in evaluating classification and clustering
performance by virtue of its simplicity, accuracy and adapt-
ability in global optimization. This function is defined as
follows [33]:

Loss(y, ŷ) =
T∑
i=1

yi log(̂yi), (5)

where y represents the real labeling results in the training
dataset, ŷ denotes the classification results of SVM, and T is

3Test() is a weight function, which calculates the test point by considering
themean value of the cluster, the point withmaximum deviation and the point
with minimum deviation. In this study, through investigating the influence of
the value of α, β and δ on the classification results, α is set to 0.4, β is set to
0.3, and δ is set to 0.3.
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FIGURE 4. Appliance pattern matching classifier (APMC).

the size of the training dataset. Lower values of cross-entropy
loss indicate better classification results. In this study, two
kinds of kernel functions can be selected; their effect on
classification accuracy is discussed later.

The test point is then labeled by using the kNN result and
placed into the training set. With the updated training set,
the SVM algorithm is again used and loss2 is calculated.
If loss2 minus loss1 is smaller than thresholdG, it proves that
the test point belongs to the labeled set and the other data in
this cluster also belong to this labeled set. If the cluster and
Ccandidate have common data, the common data in Ccandidate
are removed and SEPAD places the test point into the training
set. Else if loss2minus loss1 is larger than thresholdG, then the
cluster has an unknown pattern. If the cluster and Ccandidate
have common data, the common data are placed intoCanomaly,
and the system issues a warning.4

Figure 4 illustrates the key steps in the APMC. After the
optimal grouping phase, the processed data set is divided
into three clusters. Among the three clusters, the classifier
calculates the mean of each cluster, screens out the center
point and edge point in every cluster, and generates the test
point of the cluster. In the next step, the kNNmodel is used to
select the closest cluster to each of the three clusters among
the training set. For ease of discussion, the different appliance
patterns are denoted as numbers. The result of this step shows
that the first cluster is closest to pattern 3, the second cluster
is closest to pattern 2, and the last cluster is closest to pattern
0. Finally, the semi-SVMmodel is used to verify the results of

4thresholdG is a preset parameter, which is determined based on the loss
of classification from an investigation. In this study, thresholdG is set to 0.2.

the aforementioned stages; the model indicates that all three
clusters match a labeled pattern (3, 2, and 0, respectively).

VI. ENERGY CONSUMPTION HABIT CLASSIFIER
In the APMC, the monitored data set is divided into different
groups, and each group is verified by a semi-SVM-based
pattern matching classifier. The outputs are the unknown
power usage patterns and the anomalous data set. In the
ECHC, even suspicious data can be classified into a learned
appliance usage pattern; however, the anomaly detector must
still determine whether the matched pattern depends on the
household’s electricity usage habits [25].

A. DATA BINNING
Data binning is widely applied in denoising and concept hier-
archy generation, and this process divides data into different
buckets or bins [23]. In this study, the bin value is the labeling
of matched patterns in the APMC. Figure 4 illustrates an
example of data binning.

B. HMM
Many classifiers can be used for classification, such as
SVMs, decision trees, and NNs. However, these classification
approaches do not satisfy the characteristics of home power
consumption data, which ignore the temporal relations that
exist in a time series [34]. An HMM is a type of Markov
chain in which the target states are hidden and can only be
predicted. The Markov chain itself is a mathematical model
consisting of a number of states and computable probabilities.
The Markov chain has the property that the present state
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FIGURE 5. Energy consumption habit classifier (ECHC).

depends only on the previous state, as opposed to a sequence
of states [25], [35], [36].

1) DATA PROCESSING
To balance training dataset quality with system accuracy,
the training data in this phase are processed separately (in
hours). Therefore, there are 24 training datasets, and each
training dataset consists of a benign dataset and a mali-
cious dataset. Because the normal power consumption data
series reflect the power usage habits of residents, these series
are regular. Therefore, we select the most representative
power consumption data series as the normal data series.
The selected data series are first divided into 24 training
sets according to chronological order. Then, in each training
dataset, the APMC is used to classy the series into different
patterns. At last, the data binning is employed to process the
results of APMC, and the obtained chains are used as the
benign dataset. Because the algorithm is trained to estimate
abnormal power usage based on the normal usage habits
of householders, all other chains different from the benign
dataset can be considered as the malicious dataset. In the
training phase, to prevent the classification error caused by
imbalanced data and reduce the training cost, the malicious
dataset usually contains the same amount of samples as the
benign dataset.

2) TRAINING
To describe the HMM, we define the following:

1) Set of possible states:
S = {s1, . . . , sN }, where si is a possible state, and N is
the number of states. Because this work focuses only on

identifying anomalies, there are two states, i.e., N = 2,
and S = {0, 1}, where 0 means normal and 1 means
abnormal.

2) Set of observations:
P =

{
p0, p1, p2, âĂę, pM−1

}
. The observation vari-

ables in this work are the appliance usage patterns in
training dataset L. Additionally, M is the number of
patterns.

3) Observation sequence:
O =

{
Datasetbenign,Datasetmalicious

}
.

Where, Datasetbenign and Datasetmalicious denote
the benign dataset and malicious dataset. The length
of the observation sequence in this study is the length
of the results of data binning in the training phase.

The training data are used to build the following matrices:
1) Transition probability matrix:

A = [ai,j]n×n, where ai,j = Prob(si|sj) is the probability
that the next state is si given that the current state is sj.

2) Measurement output probability matrix:
B = [bi,j]n×m, where bi,j = Prob(Pj|si) is the probabil-
ity of observing Pj given that the current state is si.

3) Initial state probability vector:
π = (π1, . . . , πN ), where πi = Prob(Y1 = si), where
Y1 denotes the state at stage 1.

Therefore, the HMM is defined as a 3-tuple, (A,B, π).
Figure 5 shows the training process of HMM. Five data chains
(Figure 5 (a)) were selected as the normal data series for
7 PM, and the corresponding data binning results were used
as the benign dataset as shown in Figure 5 (b). After selecting
five chains which are different from the benign dataset as the
malicious dataset, (A,B, π) were obtained. Figure 5 (c) shows
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the implementation of ECHC, the trained model is used to
detect the results of APMC from 7 PM to 8 PM.

3) IMPLEMENTATION
1) Test sequence:

T =
{
Zprevious,Znow

}
, where, Zprevious and Znow denote

the previous and monitored (current) patterns, respec-
tively. The length of the observation sequence in this
study is two. Every matched pattern in Algorithm 3 is
composed of an observation sequence with thematched
pattern in previous step, and

{
Zprevious,Znow

}
∈ P.

2) Detection result:
Yt = the final result of the ECHC. If Yt is 0, the test
sequence depends on the learned energy consumption
habits, and this power use is under the normal condi-
tion. Conversely, if Yt is 1, the ECHC judges that the
test sequence does not depend on the learned habits.
Eventually, SEPAD issues a warning to the manager to
take further action. The ECHC selects the appropriate
training set to train the HMM based on the current
time t .

As shown in Figure 5 (c), in this test, the matched pattern
chain in Algorithm 3 was {p2, p3, p2}; therefore, the system
executed three times, and the inputs were {p2, p2} at 7 PM,
{p2, p3} at 7 PM, and {p3, p2} at 7 PM. It should be noted
that, in the first input {p2, p2}, the previous pattern was the
most recently matched pattern. The results of the first two
tests were 0. However, in the last time, Yt was 1. Finally,
the results of ECHC showed that the power usage is abnormal,
which does not depend on the learned usage habits.

VII. EXPERIMENTAL RESULTS
The data used in our experiments are obtained fromMkalama.
The wiring diagram of Mkalama is shown in Figure 6.
A radio frequency-based wireless energy monitoring sys-
tem was built to monitor the power consumption of each
household in the village, and the time resolution of mea-
surement is 1 second. This system consists of two parts: a
local energy monitoring part that resides in Tanzania and a
remote part, i.e. the proposed SEPAD, located in SouthKorea.
The home power consumption data are collected in Tanzania
and transmitted to South Korea at a controllable test interval.
Considering the underdeveloped communication infrastruc-
ture of Mkalama and ensuring the timeliness of detection,
the test interval is usually set from 5 to 30 minutes. In South
Korea, after receiving the data, SEPAD identifies anoma-
lies in real time. SEPAD has a low computer hardware
requirement; it is implemented using a desktop computer
with a 3.4GHz Intel Core i5 processor, 4 GB RAM, and
the Windows 10 operating system. To further simplify data
mining, the detector design is based on C# and Python.
In addition to processing the data, C# is used to build the
visual interface, providing more options to users. Figure 7
shows the overall power consumption of Mkalama from
July 2018 to March 2019. Benefiting from the detailed power

Algorithm 3 Semi-SVM Based Pattern Matching

1 Input: Suspicious data set Csuspicious obtained from
Algorithm 1;

2 Training data set L;
3 Grouped clusters C1, . . . ,Cn;
4 y: labels of training data set
5 Output: Anomalous data set Canomaly;
6 Variables and Functions:
7 SVM(): support vector machine;
8 Test(): test point generation function (4);
9 Loss(): classification loss function (5);
10 kNN(k, x,L): k-Nearest Neighbor, where x is the test

point and L is the training data set;
11 Pattern Matching:
12 Initialize Ccandidate as Csuspicious;
13 for i = 1 : n do
14 x̄i :=average(Ci);
15 σi :=standard deviation(Ci);
16 Dei := argmaxxc∈CiZscore(xc, x̄i, σi);
17 Dci := argminxc∈CiZscore(xc, x̄i, σi);
18 Dti :=Test(x̄i,Dei ,Dci ); (test point generation)
19 Li :=kNN(1,Dti ,L);
20 ŷ : prediction results of SVM(L);
21 loss1 :=Loss(y, ŷ);
22 Label Dti as Li, and place it into the training set;
23 ŷ : prediction results of SVM(L);
24 loss2 :=Loss(y, ŷ);
25 if (loss2 − loss1) < thresholdG then
26 Place Dti into the training set;
27 Ccandidate := Ccandidate \ Ci;
28 else
29 Canomaly := Canomaly ∪ (Ccandidate ∩ Ci);
30 end
31 end

consumption feedback and the inference of energy consump-
tion habits, with the application of SEPAD, the electricity
usage of Mkalama has increased by 238.10 %. An increasing
number of residents in villages have begun to use electricity.
This increased access to electricity may contribute to improv-
ing the quality of life. To further demonstrate the performance
of SEPAD, two experimental cases are presented: a normal
monitoring case and a test case.

A. CASE 1
Case 1 is a normal monitoring case in which the same
consumption data are tested by three functions of SEPAD.
Test A uses only suspicious selection to screen out suspicious
data; Test B uses the APMC to match the appliance patterns;
and Test C estimates anomalies by using both the APMC
and ECHC. In monitoring, users can choose the functions
according to their own specific needs. The kernel function of
the semi-SVM model is chosen to be a linear function. The
parameters in the tests are listed in Table 1.
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FIGURE 6. Wiring diagram of Mkalama.

FIGURE 7. The overall power consumption of Mkalama from July 2018 to
March 2019.

TABLE 1. Parameter of case I.

1) TEST A
The results of Test A are shown in Figure 8 (a). The average
power consumption from the monitoring data was 10.22 W,
and threshold1 in this case was set to 0.56. The 0th to the 29th
data entries were identified as suspicious.

2) TEST B
In Test B, APMC verification identified two clusters corre-
sponding to p0 and p2; suspicious data belong to p0, whereas
the other data are categorized as p2, as shown in Figure 8 (b).
Therefore, SEPAD reported no anomalous data.

3) TEST C
After the APMC, the ECHC was used to determine whether
the matched patterns depend on any power usage habit.
SEPAD showed a monitoring time of 5 PM (Tanzania time);
the previous pattern matched from the last iteration was p0.
Therefore, the first input to the HMM was {p0, p0} at 5 PM,
and the output ‘‘0’’ indicated that this input was dependent on
the power usage habit of the household. The second input to
the HMMwas {p0, p2} at 5 PM; again, the output was normal.
Eventually, after all phases of anomaly detection, these data
were proven to be normal. Thus, the result of Test C is the
same as that of Test B, as shown in Figure 8 (b).

B. CASE 2
To test the sensitivity of SEPAD, several new electrical appli-
ances were used during monitoring. To verify the complex
data processing capabilities of the system, the test interval
was 30 minute, and the data source did not change.

1) TEST A
In test A, SEPAD employs both the APMC and ECHC.
The kernel function of the semi-SVM model is chosen to
be a Gaussian function. The results of Test A are shown in
Figure 9. According to the APMC results, three appli-
ance usage patterns p1, p2, and p3 were matched in this
test. SEPAD also detected and warned of the existence
of an unlearned cluster. In the ECHC, after data bin-
ning, theMarkov chain was {p2, p1, p3, p2, unknown, p2, p1}.
When SEPADmonitored the thirdmatched pattern p3, the test
time was 6 PM. The input of the HMM was {p1, p3} at
6 PM. The prediction result of the HMM was 1, indicating
an anomaly; therefore, a warning was issued by the system.

2) TEST B
Test B is a comparison test that shows the detection results
of the APMC using different kernel functions for the same
process. The testing environment of Test B is the same as
that of Test A. Figure 10 (a) shows the results obtained
with a Gaussian kernel function, and Figure 10 (b) presents
the results obtained with a linear kernel function. Accord-
ing to the Gaussian results, four clusters were identified.
Three clusters were matched using the APMC {p2, p1, p2}.
The last cluster corresponded to a new electrical appliance.
The detection results are in accordance with the actual test
situation. However, using the linear kernel function, not only
the first three clusters matched, but also the last cluster with
the labeled pattern p3. Misclassification can be avoided by
modifying the threshold; however, after several actual tests,
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FIGURE 8. The result of case 1. (a) Suspicious data selection results: Some data were screened out as suspicious data. (b) Results
of APMC and ECHC: There were two appliance usage patterns matched in APMC, and ECHC determined the matched patterns
depending on the usage habits of this household.

FIGURE 9. The result of Test A. According to the APMC results, there are
three labeled appliance usage patterns and an unknown pattern in this
test. Moreover, according to the ECHC results, these matched patterns do
not depend on the usage habits of the household.

the Gaussian kernel function showed higher accuracy in the
complex process than the linear kernel function. In addi-
tion, it should be noted that the pattern p2 appeared twice
at different time points in this test. However, the results
based on Gaussian kernel function and linear kernel function
identified them correctly, which benefits from the accurate
classification results of the data clustering scheme and semi-
SVM based pattern matching proposed in this study.

C. COMPARISON RESULTS AND EVALUATION
To demonstrate how SEPAD achieves a high degree of
anomaly detection in monitoring the power consumption
data and detects anomalies according to the electricity usage
habits of residents, we compared SEPAD to three other
detectors, based on two parameters: accuracy and training
cost and speed. We compared SEPAD against the results of
Nagi et al. [12], Chou and Telaga [22], and Hori et al. [27].
The Nagi et al. method is a SVM-based anomaly detec-

tor (SVM-AD), the Hori et al. method is a kNN-based
anomaly detector (kNN-AD), and the Chou et al. method
is an ARIMA and ANN-based anomaly detector (ARIMA-
ANN-AD). Because both the SVM-AD and kNN-AD are

supervised classifiers, to further prove the sample efficiency
of SEPAD, we used the same one month smart meter data
as a training set to train the two supervised classifiers, and
only 7 days of data to train SEPAD. The training set of the
ANN model in the ARIMA-ANN-AD is same as the other
supervised classifiers, and both the autoregressive terms and
lagged forecast errors of the ARIMA model in the ARIMA-
ANN-AD are chosen to be 1. The test data are taken from one
household in Mkalama from July 2018 to March 2019. The
comparison results are reported in Table 2.

TABLE 2. Comparison results between SEPAD and others.

1) ACCURACY
For a more comprehensive explanation of detection accuracy,
two accuracy measurement methods, an accuracy function
and F1 score, are employed to verify the comparison results.
The accuracy is defined as follows [37]:

Accuracy :=
TN + TP

TN + FP+ FN + TP
, (6)

where TP represents the number of time points at which nor-
mal data are correctly classified, FP represents the number of
time points at which anomalous data are classified as normal,
TN represents the number of time points at which anomalous
data are detected as abnormal, and FN represents the number
of time points at which normal data are detected as abnormal.
F1 score is a measure, that provides a balanced evaluation of
the overall performance of a classifier. The F1 score consists
of precision p and recall r , which were developed by the
information retrieval community. The precision p, recall r and
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FIGURE 10. The result of Test B. (a) Results of the APMC with the Gaussian kernel function: The last cluster was determined to be an
unknown pattern. (b) Results of the APMC with the linear kernel function: The last cluster was misclassified into a labeled
pattern, P3.

F1 score are defined as follows: [16]

p : =
TP

FP+ TP
, (7)

r : =
TP

FN + TP
, (8)

F1 score is the harmonic mean of the precision p and recall r
as follows:

F1 :=
2× p× r
p+ r

, (9)

As shown in Table 2, the ARIMA-ANN-AD shows both
the lowest accuracy and F1 score among all the detectors.
After actual verification, the occurrence of random events is
not easy to predict. ARIMA is an autoregression model that is
not suited for nonlinear prediction. Another reason for the low
accuracy of the ARIMA-ANN-AD may be the insufficient
training data for the ANN, which may also explain the low
accuracy of the SVM-AD. The kNN-AD show high accuracy
and F1 score in anomaly detection and can effectively detect
abnormal changes in the data; however, for real-time moni-
toring, we recommend setting parameter a in the nonactivity
level function to less than 10. Finally, the Gaussian kernel-
based SEPAD shows both the highest accuracy and F1 score
among all classifiers. As opposed to the other approaches
that use distance measurements to determine the degree of
similarity between two data sets, the APMC, after clustering
data into different groups, calculates the test point of each
group for classification. The kNN model is used to find
the closest pattern in the training set, and then, the semi-
SVM model is used to verify the kNN result and update the
training set. This method of using test points to classify and
combine the semi-SVMmodel greatly improves the detection
efficiency and reduces unnecessary calculations.

In our study, to verify the ability of the ‘‘kNN + semi-
SVM’’ set to improve the accuracy and speed of SEPAD,
we also compared the accuracy and running speed results with
those of two other models. First, we replaced the ‘‘kNN +
semi-SVM’’ set with DTW. After clustering using Algo-
rithm 2, the DTWs between every clustered group and pattern

in the training set were calculated. If the minimum DTW
was less than a set threshold, the group was determined to
belong to this pattern. We used this method because DTW
is a well-known similarity measure for time series data and
addresses the limitation of equal-length alignment. However,
in actual testing, the computation speed is too slow for real-
time monitoring.

The second method is to replace the kNN model with
the mean value in this step. After calculating the test point,
the mean values of all patterns in the training set were com-
puted and compared to the test point. The pattern with the
smallest difference between the test point and the mean was
selected as the input of the semi-SVM. However, although
this method showed a faster running speed, its accuracy
dropped sharply. In real tests using the same data, the accu-
racy of this method was 0.7540 and its F1 score was 0.8559.
In terms of a comparison between the two kernel functions,
it can be seen that the kernel function directly affects the clas-
sification result. In normal states, the accuracy and F1 score
of the Gaussian kernel function-based SEPAD are higher.

2) TRAINING COST AND SPEED
SEPAD consists of two parts: the APMC and ECHC. Because
the APMC is based on a semi-SVMmodel, the training cost is
significantly lower than that of the other classifiers, and this
effect provides a sample efficient classification method and
improves the application availability. The ECHC is an HMM-
based classifier. Although we created the training set in hours
to reduce the training cost, the training cost of the ECHC was
still high. To further evaluate the semi-SVM-based APMC,
the K-fold cross-validation was employed to test all the clas-
sifiers with 50 data samples containing different patterns with
K = 5. The last column in Table 2 exhibits the mean accuracy
of each classifier. Because the ARIMA-ANN-AD identifies
anomalies based on the difference between the regression
result and real data, the K-fold cross-validation is not suit-
able for evaluating this model. Finally, the semi-SVM based
APMC shows the highest accuracy among all the methods.
In terms of calculating speed, all of the compared anomaly
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detectors showed high running speeds. SEPAD can realize
near real-time monitoring of less than 1 second.

VIII. CONCLUSION
In general, it is a challenging task to monitor appliance usage
patterns and anomalies in the daily activities of residents
using only power readings at a main connection. In this work,
we have proposed a real-time anomaly detector, SEPAD, with
improved monitoring performance with respect to electricity
usage, as well as the usage habits of householders via the
provision of detailed feedback. The semi-SVM based APMC
uses a small amount of labeled data to disaggregate power
data with high accuracy and high computation speed. The
ECHC monitors home power, using an HMM to optimize
the anomaly detector to monitor and warn residents of any
anomalies in their daily living activities. In addition, this
component can be further used to provide additional infor-
mation about their lifestyle and health condition to identify
potential emergencies, as well as the early stages of disease.
Additionally, it is worth mentioning that the proposedmethod
is applied in Tanzania, which is located near the equator. Due
to its special geographical location, the external environment
has no obvious seasonal changes during a year. However,
if this method is applied in other regions, the impact of dif-
ferent seasons on power consumption can also be considered
to improve the detection performance. SEPAD is designed
based on the programming languages C# and Python, pro-
viding a high computation speed for real-time home monitor-
ing. Notably, this is an off-grid power source-based anomaly
detector. It is our hope that the demonstrated accuracy and
practicality of this detector can be applied widely, particularly
in remote areas of developing countries with a large pro-
portion of single-occupancy households and/or poor medical
infrastructures.
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