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ABSTRACT Smart meter popularity has resulted in the ability to collect big energy data and has created
opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for
forecasting, such as neural networks, involve computationally intensive training typically with data from a
single building or a single aggregated load to predict future consumption for that same building or aggregated
load. With hundreds of thousands of meters, it becomes impractical or even infeasible to individually train
a model for each meter. Consequently, this paper proposes Similarity-Based Chained Transfer Learning
(SBCTL), an approach for building neural network-based models for many meters by taking advantage of
already trained models through transfer learning. The first model is trained in a traditional way whereas all
other models transfer knowledge from the existing models in a chain-like manner according to similarities
between energy consumption profiles. A Recurrent Neural Network (RNN) was used as the base forecasting
model, two initialization techniques were considered, and different similarity measures were explored. The
experiments show that SBCTL achieves accuracy comparable to traditional ML training while taking only
a fraction of time.

INDEX TERMS Big data, deep learning, energy forecasting, gated recurrent units, recurrent neural network,

smart meters, transfer learning.

I. INTRODUCTION

Smart meters are being installed in industrial, commercial,
and residential buildings at increasing rates: presently there
are over 70 million smart meters in the USA and over 96 mil-
lion in China [1]. A number of smart meters together with
their possibly frequent reading intervals results in a massive
quantity of electricity consumption data. These Big Data have
created new opportunities for analyzing energy use, designing
demand-response programs, identifying savings opportuni-
ties, and measuring energy efficiency, but they also caused
challenges related to processing such large data.

Energy forecasting has been attracting significant research
interest because of the increased importance of preserving
the environment, availability of smart meter data, and fore-
casting importance for both, retailers [2] and consumers [3].
Sensor-based energy forecasting relies on historical data
from smart meters or other sensors, often in conjunction
with meteorological information, to infer future energy
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consumption. Examples of Machine Learning (ML) tech-
niques used for this task include Neural Networks (NN) [4],
Support Vector Machine (SVM) [4], and their variants [5].
These ML techniques achieve good accuracy [1]; however,
they are typically computationally complex and, with a high
number of readings, it may be time-consuming to train a
prediction model even for a single building/meter [6].

Recently, Recurrent Neural Networks (RNN) have out-
performed other energy forecasting models [7]. An RNN is
a type of NN where connections span adjacent time steps
and form a directed graph along a temporal sequence. This
makes them suitable for capturing time-dependencies and
for dealing with time series data such as smart meter data.
Because of spanning adjacent time steps, the total number
of connections among neurons in an RNN is larger than
in a traditional feed-forward neural network. Consequently,
the number of weights to learning during training is increased,
and so is the training time.

Many machine learning techniques, including RNNs,
require training a forecasting model with historical data from
a single building or a group of buildings to predict future
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consumption for that same building or the group of buildings.
As training even a single forecasting model can be compu-
tationally expensive and time-consuming [6], repeating the
same process for hundreds of thousands of meters becomes
impractical or even infeasible.

Transfer learning has been identified as one of the open
research areas in smart meter data analytics [1]; it is motivated
by the fact that people can intelligently apply knowledge
learned in the past to solve new problems in a new context
in a faster and/or better way [8]. In traditional ML, models
are built for a specific domain (e.g. specific smart meter)
and task (e.g. energy prediction), and then used for the same
domain and task (e.g. predict future consumption for the
same meter). On the other hand, transfer learning aims to
take advantage of knowledge gained on one domain/task and
apply it to a different domain/task. Consequently, transfer
learning has the potential to enable training machine learning
models for many meters/buildings without the computational
cost involved with training each model separately.

This paper proposes Similarity-based Chained Transfer
Learning (SBCTL), a novel solution for building neural
network-based forecasting models for a large number of
smart meters. The model for the first meter is trained in
a traditional manner using a Sequence-to-Sequence RNN;
hyperparameters are optimized and weights learned using
data from that meter. Next, the model is built for the meter
with the energy consumption pattern the most similar to
the pattern of the first meter, but the training process starts
with the pre-trained model from the first meter. The process
continues in a chain-like manner according to similarities in
energy consumption patterns. Note that the SBCTL objective
is not to improve accuracy for an individual meter, but to
reduce training time when dealing with many meters. In the
three experiments with different data sets (one with over
400 smart meters), SBCTL achieved accuracy comparable to
traditional NN models while taking only a fraction of time.

The rest of the paper is organized as follows: Section II
describes the background, Section III discusses the related
work, Section IV presents SBCTL, Section V explains the
experiments and corresponding results, and finally Section VI
concludes the paper.

Il. BACKGROUND
This section introduces the feed-forward and recurrent neural
networks and presents transfer learning concepts.

A. FEED-FORWARD AND RECURRENT NEURAL
NETWORKS

Feed-forward neural network (FFNN) consists of intercon-
nected neurons organized in an input layer, hidden layer(s),
and an output layer [9]. Neurons in each hidden layer are fully
connected with neurons in the preceding and the subsequent
layer; however, there are no connections among neurons in
the same layer. The training process starts with initializing
weights w between neurons to random values [9]; this initial
state if referred to as the seed. The training samples are
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passed forward through the network and back-propagation
is applied to minimize the objective function by updating
the weights w [9]. An epoch refers to one forward pass and
one backward pass of all training data; training typically
requires a number of epochs for weights to converge. When
the weights are updated using gradient descent, there is a
possibility of getting stuck in a local minimum. To avoid this,
training is often repeated by starting from different initial
random states or seeds.

Recurrent neural networks (RNNs) are NN where connec-
tions between nodes form a directed graph along a temporal
sequence [9]. RNN cells contain internal states capable of
remembering information in sequential time steps, which
makes them well-suited for time series forecasting tasks such
as energy prediction. In traditional RNNs, the weights w
are updated using back-propagation through time (BPTT)
algorithm; however, this method suffers from the vanishing
gradient problem [10]. To overcome this problem, the Long-
Short Term Memory (LSTM) cell was designed [9]. To sim-
plify LSTM while still maintaining the core functionality,
the Gated Recurrent Unit (GRU) cell was introduced [11].
GRU cells compute reset gate r, update gate z, cell activation
k, and hidden state & as [11]:

i) = 0 (Waxi + byr + Whrhpe—17 + bar) (D
2p1) = 0 (WaeX(r) + baz + Wizhyi—1y + biz) )
ki = tanh(Wyex) + b + 10 © Wikhy—11 + b)) (3)
hisp = (1 = z117) © kep + 211 © hye—1g “4)

where o is the sigmoid activation function, tanh is the hyper-
bolic tanh activation function, and © represents element-
wise multiplication. The input-hidden weight matrices are
W,’s and hidden-hidden weight matrices are W),’s. Similarly,
the b,’s and by,’s are the corresponding biases.

Sequence-to-Sequence (Seq2eqS) RNNs have been exten-
sively used for language translation and recently have demon-
strated success in energy forecasting [7]. They consist of two
RNN:gs, an encoder and decoder RNN. This structure improves
consecutive sequence prediction and allows Seq2Seq RNNs
to have varying input and output lengths. Seq2Seq RNN can
be used with LSTM or GRU cells.

B. TRANSFER LEARNING

Transfer learning is a machine learning approach where
knowledge gained while performing a task in one domain is
used to improve learning in a different domain or applied for
a different task [8]. It is defined as follows [8]:

Definition 1 (Transfer Learning): Given a source
domain Dg and learning task Tg, a target domain D7 and
learning task 77, transfer learning aims to help improve the
learning of the target predictive function rr(-) in Dr using the
knowledge in Dg and T, where Dg # Dr, or Ts # Tt [8].

Here, a domain is a pair D = {F, P(X)}, where F =
{f1,...,fx} is a feature space, X is a set of learning sam-
ples X = {x1,...,x,}, and P(X) is the marginal proba-
bility distribution of X. Domains are considered different if
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FIGURE 1. Traditional machine learning and transfer learning.

either marginal probability distributions or feature spaces are
different.

Fig. 1 illustrates the difference between traditional
machine learning and transfer learning. The traditional ML
algorithms learn from a single domain for each model sepa-
rately, whereas transfer learning uses the knowledge gained
from multiple source domains to improve learning on the tar-
get domain. Different knowledge, such as instances, parame-
ters, and relational knowledge, can be transferred across tasks
and domains [8].

In the energy forecasting with smart meter data, there
is a single task (energy forecasting), but there are differ-
ent domains: smart meters are considered different domains
because they differ in energy consumption patterns and
marginal probability distributions. SBCTL proposed here
transfers weights and hyperparameters learned on the source
domain (meter) to improve learning on the target domain.
Thus, SBCTL belongs to the category of parameter transfer
approaches.

Ill. RELATED WORK

Many approaches have been used for sensor-based energy
forecasting; examples include fuzzy Bayesian [12], Sup-
port Vector Machine (SVM) [13], neural network [4] and
ARIMA [14]. Tang et al. [12] were interested in predicting
energy on an annual basis and they proposed probabilistic
energy forecasting based on fuzzy Bayesian theory and expert
prediction. Grolinger et al. [6] combined local learning with
support vector regression (SVR) to reduce computation time
while maintaining forecasting accuracy. Amber et al. [4]
compared Multiple Regression (MR), Genetic Programming
(GP), Artificial Neural Network (ANN), Deep Neural Net-
work (DNN), and Support Vector Machine (SVM). Atrtificial
Neural Network achieved better accuracy than the remaining
four algorithms.

Several algorithms were combined to form ensemble learn-
ing models. Li et al. [15] proposed teaching-learning based
optimization with artificial neural network for hourly energy
prediction. Khairalla ez al. [16] investigated Stacking Multi-
Learning Ensemble (SMLE) model and combined Support
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Vector Regression (SVR), neural network, and linear regres-
sion learners. Hassanpouri Baesmat and Shiri [5] proposed
the weighted combination of ARIMA and RELM for city-
level energy forecasting.

In recent years, recurrent neural networks have gained pop-
ularity in forecasting because of their ability to capture time-
dependencies. Han et al. [17] proposed wind and photovoltaic
power generation prediction based on copula function and
LSTM network whereas Jiao et al. [18] designed multiple
sequence LSTM RNN for non-residential load forecasting.
Bouktif et al. [10] also used LSTM for energy forecasting but
they combined it with genetic algorithm (GA) to find optimal
time lags and the number of layers for the LSTM model.
Standard LSTM was compared to Sequence-to-Sequence
(Seq2Seq) architecture [19] and on one-minute time-step
resolution datasets, Seq2Seq performed better. Similarly,
in experiments performed by Sehovac et al. [7], Seq2Seq
RNN also outperformed standard RNN.

As can be seen, the use of NN-based solutions has been
quite popular [7], [10], [15]-[19] and recently Seq2Seq RNN
provided increased prediction accuracy [7], [19]. Neverthe-
less, all the reviewed NN approaches focus on building a
prediction model for a specific building or an aggregated
load using historical data from that same building or the
same aggregated load. In contrast, our work aims to reduce
computation needed to create prediction models for a large
number of smart meters taking advantage of transfer learning.

Transfer learning has been applied in different domains
and for different tasks. For visual recognition,
Zhu and Shao [20] proposed a weakly-supervised cross-
domain dictionary learning method. In Natural Language
Processing (NLP), Hu et al. [21] improved mispronunciation
detection with a deep neural network trained acoustic model
and transfer learning-based Logistic Regression classifiers.
In software engineering, Ma et al. [22] and Nam et al. [23]
addressed cross-company software defect classification. In
contrast to domain-specific solutions [20]-[23], Li et al. [24]
aimed to develop a transfer learning model for a variety of
applications and presented augmented feature representations
for domain adaptation. Similarly, Mozafari and Jamzad [25]
were interested in transfer between different domains and
proposed a SVM-based model-transferring method for het-
erogeneous domain adaptation. These works [20]-[25] focus
on feature augmentation whereas our work belongs to the
parameter transfer category as it transfers model parameters.

Parameter transfer is often found associated with
pre-trained neural networks in computer vision [8].
Krizhevsky et al. [26] trained ImageNet, a large, deep Con-
volutional Neural Network (CNN) for classifying 1.2 million
pictures. It is computationally expensive and time-consuming
to train such a neural network with 650,000 neurons and
60 million parameters; nevertheless, once such a network is
trained, it is a good foundation for other image classification
problems. Menegola et al. [27] used pre-trained ImageNet
to develop an approach for melanoma screening. Similarly,
a pre-trained AlexNet, another deep CNN architecture, was
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FIGURE 2. Similarity-based chained transfer learning (SBCTL).

used to detect pathological brain in magnetic resonance
images [28]. These parameter-transfer approaches deal with
image classification whereas SBCTL addresses forecasting
with time series data.

In the energy domain, Mocanu et al [29],
Grubinger et al. [30], and Ribeiro et al. [31] applied transfer
learning to provide prediction models for buildings with lim-
ited historical data by using data from other similar buildings
with rich data sets. Wile those studies [29]-[31] aim to solve
the limited data issue for target buildings, our objective is to
reduce computation needed to train prediction models for a
large number of buildings.

IV. SIMILARITY-BASED CHAINED TRANSFER LEARNING
This paper proposes the Similarity-Based Chained Transfer
Learning (SBCTL) approach for building neural network-
based energy forecasting models for a large number of
buildings by applying transfer learning. The approach takes
advantage of the initial neural network model trained with a
single meter data to initialize training models for other smart
meters. SBCTL is illustrated in Fig. 2 and details of each stage
are described in the following subsections.

A. DATA PREPARATION
The smart meter data typically contain energy readings such
as consumption and demand, and the corresponding date and
time. If the reading intervals are different, all smart meter
data are processed to make intervals between the readings the
same. In the case of energy consumption, meters with finer
reading granularity are converted to a coarser granularity by
adding consumption readings.

Whereas feature selection is often considered in energy
forecasting studies [32], SBCTL does not include it,
as SBCTL is primarily designed for forecasting using smart
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meter data with limited number of features; in experiments we
used only seven features. Nevertheless, when working with
more features, SBCTL could be augmented by adding feature
selection step.

Let us denote this meter data as my,mp, ..., m; € M,
where M is the set of all meters and k is the number of meters.
This data is processed into two data sets: the similarity set D
and the forecasting set G. Meter n data in D is denoted as
dy, d, € D, and the same meter data in G is denoted by g,
gn € G. Although both d,, and g, belong to the same meter,
they are different in the number of features and time spans.

Similarity set D is created for calculation of similarities
among energy consumption patterns recorded by different
meters. It contains only energy consumption readings without
any additional features because similarity is concerned solely
with usage patterns. To capture quarterly and monthly pat-
terns, D set must contain at least one year of energy readings.
Each meter data d,, must start at the same date/time to ensure
alignment of temporal patterns.

Forecasting set G, in addition to energy readings, contains
other features generated from date and time such as day
of the year, and weekday/weekend. Data pre-processing for
this set depends on the type of the forecasting model used.
As Sequence-to-Sequence (Seq2Seq) RNNs [7] have shown
great results in energy forecasting for individual smart meters,
they are used in SBCTL to build the initial model as well as
to refine transferred models.

To enable the use of Seq2Seq RNN, data is pre-
pared applying the sliding window techniques proposed by
Sehovac et al. [7]. One input sample consists of a matrix
X € RT*/, where T is the length of the input sequence or the
number of time steps in a window and f is the number of
features. Note that energy readings for all time steps of the
input sequence are included as input features. If the input
sample ends at time ¢, the corresponding target sequence
consists of load values for time steps t + 1 to ¢ + N. This
way, T time steps are used to predict the next N time steps
ahead. The next sample is generated by sliding the window
for one time step and repeating the same process.

The forecasting set is divided into training and test sets:
first 80% of data is assigned for training and the last 20%
for testing. This way, older data is used to train the model,
and newer (test) data is used to evaluate and compare models.
To capture monthly and quarterly patterns, the training set
must contain at least one year of data; thus, the forecasting
set G contains at least 15 months of data.

The complete SBCTL approach is given by Algorithm 1.
For simplification, in the algorithm, G refers to only the
training part of the forecasting set. The approach starts with
data preparation, specifically by creating sets D and G,
lines 3 and 4, and continues with the steps described in the
remaining subsections.

B. SIMILARITY CALCULATION
Similarity calculation gives a numeric value to similarities
between each possible pair of meters. Here, we are interested
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Algorithm 1 SBCTL
1: Input : Set M consisting of all meter data, initialization
2: Qutput : Models for all meters

D <« transform1 (M) // similarity set

G < transform2 (M) // forecasting set (training)

D < normalization(D)

L(d;, dj) < similarity (d;, d;), for all d;, d; € D,i < j
T < M // initialize target set

S <« {} // initialize source set

e

9: if initialization == A // From the most similar pair
10: (p, q) < argmin L(d;, d)), for d;,dj € D,i <j

i.j
11: elseif initialization == B // From the center
12: deenter < mean(d;), ford; € D
13: p < argmin L(d;, deepter), ford; € D

14: q <« arglmin L(dy, d;), ford; € D,i #p
i

15: m[’j’ <—train initial model for m,, with g, data
16: S =SJ{m,} //add to source

172 T=T/S /l remove from target

18: while T # {} do

19:  mg <« transfer learning (m)') with g, data

200 S =S8{my} //add tosource

21: T=T/S // remove from target

2 fT#Y)

23: (p, q) < argmin L(d;, dj), form; € S,m; € T

i.j
24: Return : Models for all meters {m}', m3' ...m;'}

in energy patterns and not in the actual values of energy
consumption. Therefore, all values from similarity data set D
are first scaled to bring them to the same range (line 5 in
Algorithm 1). Min-max normalization is performed for each
meter separately resulting in each meter values in [0,1] range.

Next, similarity between all pairs of meters is calculated
(line 6, Algorithm 1); four different metrics are considered.
Euclidean, Cosign, and Manhattan distances between meter i
and j are calculated as follows:

N
Y @ —aly (5a)

t=1

Lguci(d;, dj) =

S @)

LCosign(di» d/) =1- m N (5b)
JEL @2 [T @y
N
Lotann(di, dj) =) |(d] — )| (5¢)
=1
fordi,dieD, i<j (5d)

The fourth metrics considered is Dynamic Time Warping
(DTW) distance [33]. DTW was selected because it is capable
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of measuring similarity between the two temporal sequences
which may vary in speed. A well known example of a DTW
application is automatic speech recognition where DTW is
capable of handling different speaking speeds. In energy data,
DTW could potentially capture peak shifts or prolonged peak
periods. To control how much the sequences can be “warped”’
for the comparison calculation, a locality constraint referred
to as the window is commonly added. In our work, exper-
iments consider different window sizes in order to examine
their impact on the forecasting accuracy.

For k number of meters, the outcome of the similarity cal-
culation is a k * k upper oblique matrix; this similarity matrix
is denoted as Si]j:k . The lower the distance value between two
meters, the more similar are the meters.

C. SET FIRST SOURCE-TARGET METER PAIR

The main idea behind SBCTL is to use a similarity measure
to determine the source and target meters for the transfer
process. To start with, none of the meters have an associated
prediction model. Therefore, as indicated in lines 7 and 8,
Algorithm 1, all meters belong to the target set 7 and the
source set S is empty. Throughout the process, the target
set will always have only the meters that do not yet have
the corresponding prediction model and the source set will
contain meters with an already trained model. Two different
initialization techniques are considered:

Initialization A: Starting from the pair of the most similar
meters. As indicated in Algorithm 1, line 10, the two meters
that correspond to the minimum value in the similarity matrix
Si’j;l"k are assigned as a starting source-target pair (p, q). Either
one of the two meters in the pair can be set as the source
p; experiments will evaluate switching p and g in the first
source-target pair.

Initialization B: Starting from the meter that is the closest
to the center. First, the center is calculated from the similarity
data set D (Algorithm 1, line 12). For each time step ¢ in the

similarity set, the arithmetic mean d?,,,,, is calculated as:

1
déenter = x Z dit (6)

i=1

where k stands for the number of meters and dl.t is a reading
from meter i at time step 7.

The meter that is the closest to this center C according to
selected similarity metrics is chosen as the initial meter p
(Algorithm 1, line 13). The meter that is the most similar
to the initial meter p is selected as meter g (Algorithm 1,
line 14).

D. BUILD INITIAL MODEL

This step is responsible for building the first prediction model
which will serve as a starting point for the transfer learning.
The initial model is built for the meter that was assigned as the
source p (line 10 or 13, Algorithm 1). As indicated in line 15,
the initial model for meter m,, is trained using forecasting data

set gp.
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FIGURE 3. Sequence-to-sequence recurrent neural network.

SBCTL is designed for NN-based algorithms; therefore,
all models, including the initial one, must be built using
a same NN approach. Specifically, a Seq2Seq RNN [7] is
used because of its recent success. A Seq2Seq RNN [7]
consists of an encoder RNN and decoder RNN as illustrated
in Fig. 3. An input sequence x(1j, . . ., X[7] is passed through
the encoder RNN to obtain an encoded representation of
the input vector referred to as the context vector (¢). The
decoder RNN extracts information from this context vector
at each output time step to obtain the prediction sequence
{3111, - - - » Yv1}- The initial input for the decoder RNN is the
context value yjo; derived from the context vector.

This first model is trained in a traditional way: weights
are initialized to random values and model is trained for a
sufficient number of epochs ensuring that weights converge.
To avoid local minimum, the process is repeated starting with
a different set of random initial values referred to as seeds.
The best model among all runs with different seeds is chosen
for forecasting and used in the following SBCTL steps.

NN hyperparameters such as a number of layers and neu-
rons, are also tuned in this step by splitting the training data
into the training and validation sets; model selection is done
on the validation set. After tuning hyperparameters for the
initial model, they remain the same throughout the transfer
learning and for all meter models. In contrast, the weights
learned during the initial model training are used as a starting
point for other models, but the weights do change.

The result of the training and tuning is the prediction model
for meter p denoted as mzl (Algorithm 1, line 15). Note that
my, indicates meter data for the meter p and m;’f denotes the
trained model for the same meter p. Because meter p now has
the forecasting model, it is added to the set of source meters S,
line 16, and removed from the set of target meters 7', line 17.
This initial model is now available for transfer learning.

E. TRANSFER LEARNING
The initial model )’ is used as a seed for building all other
prediction models through transfer learning. The assumption
is that if the meters share some similarity, so should their
trained models. Thus, if we use the initial prediction model
as a starting point for building the model for the most similar
meter, the training should be reduced.

The meter to transfer knowledge to is the g meter from the
(p, @) pair. Because the pair is determined according to sim-
ilarities, SBCTL ensures that the transfer happens between
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more similar meters. As indicated in line 19, existing model
ml’f trained previously for meter p and with data set g, is now
used as a starting point for building meter ¢ model. Model
! continues training, but now with the target meter data g4
to obtain model mj'". Network structure and hyperparameters
determined during training for the first meter remain the
same throughout the transfer learning and for all forecasting
models. The weights from the source meter model m;’f are
transferred to the target meter ¢, but they change through
training with the target meter data g,. The number of training
epoch needed for the weights to converge is lower because
the training starts from the pre-trained weights.

If the two meters from the pair are very similar, the trans-
ferred model, without any training with the target meter data,
may already provide reasonable accuracy: we refer to transfer
without additional training as epoch 0. The evaluation will
explore how many epochs with target data are needed to
achieve comparable accuracy to traditional NN training.

The result of the training with the transferred model is
the new model mg’, line 19. Next, as meter ¢ now has the
forecasting model, it is added to the set of source meters S,
line 20, and removed from the set of target meters T, line 21.
This additional model now is available for transfer learning.

If there are still meters that do not have a corresponding
prediction model, in other words, if the target set 7 is not
empty (lines 22 and 18), the SBCTL will proceed to Set
Next Source-Target Meter Pair step. If forecasting models are
trained for all meters, the SBCTL process is completed.

F. SET NEXT SOURCE-TARGET METER PAIR

In this step, the next source-target meter pair (p,q) is
selected for transfer learning. As indicated in the algorithm’s
name SBCTL, the processed is chained: building the next
forecasting model depends on the previously built models.
In each loop of the chained process, the forecasting model
will always be transferred from one meter in the source set S
to one meter in the target set T'.

To determine which model should be trained next, the sim-
ilarity distances calculated in line 6 are used. Because the
transfer needs to happen from an already trained model,
we are interested in finding a meter from the target set 7' that
is the most similar to any meter in the source set S. Thus,
line 23 in Algorithm 1 finds the pair with minimum distance L
under the constraint that m;, € § and m, € T. The model will
be transferred from from m, to m,.

When the next source-target pair (p, g) is set (line 23),
SBCTL continues to transfer learning, line 19, described in
subsection IV-E.

G. ML MODELS FOR ALL METERS

This is the final output of the SBCTL process. As indicated
in line 18, the transfer learning process completes when the
target setis empty 7 = {} and all meters belong to the source
set S. The algorithm results are the trained ML models for all
meters my', my ...mj".
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V. EVALUATION
This section introduces the evaluation process, describes the
three experiments with different data sets, and discusses the
findings. Experiments one and two consider smaller data sets
consisting of 7 and 19 meters, respectively. A small number of
meters in these two experiments allows for detailed examina-
tion of the transfer process as well as for accuracy comparison
for each individual meter. On the other hand, the third data set
consisting of 456 meters allows for evaluation at scale and
demonstrates SBCTL forecasting accuracy and time savings
with larger data. The used hardware was different for each
data set and reflects the increase of data set size.

All of the experiments applied SBCTL with initializations
A and B. Also, Euclidean, Cosine, Manhattan, and DTW
distance with window size of 3, 6, 12, and 24 were evaluated.
SBCTL was implemented using Python with Pandas and
PyTorch libraries. GRU cells were used in Seq2Seq RNN
because they achieved higher accuracy than LSTM in single
meter forecasting [7]. The hyper-parameters used for the
initial model as well as for all other models were: Hidden
dimension size = 64, Batch size = 256, Epochs = 10, Opti-
mizer = Adam, Learning rate = 0.001, Encoder size = 8 and
Decoder size = 4.

A. EVALUATION PROCESS
For each meter in each experiment, SBCTL was compared to
the traditional machine learning:

« Traditional ML. For each meter, an individual Seq2Seq
RNN model was trained using that meter training data.
The process was repeated with 10 seeds and the model
with the best MAPE was selected for comparisons.
As a large number of models from the two experiments
converged around the 10th epoch, the comparison was
carried out with 10 epochs. For each epoch, the model
was tested on the test set and accuracy was recorded.

o SBCTL. The models are built using SBCTL approach.
In each experiment, the first model is built using the
traditional approach. All other models are built using
SBCTL transfer learning and only trained for 5 epochs
because the training starts from the pre-trained weights.
For each epoch, including O epoch (no training on tar-
get), the models were tested on the test set and accuracy
was recorded.

To evaluate model accuracy, Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) were selected
because of their frequent use in energy forecasting studies [1]:

N/
1 R
MAE = - [y =i (7)
t=1
100% < |y, — 5,
MAPE = s 8
TP s ®)

t=1

where y is the actual value, y is the predicted value, and
N’ stands for the number of test set samples.
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FIGURE 5. Daily load profile - meter 5.

Other metrics such as Mean Absolute Error (MSE) and
Root Mean Square Error (RMSE) were also calculated in the
experiments, but they are not shown here as they exhibit the
same patterns as MAE and MAPE.

B. EXPERIMENT ONE

This experiment was performed on MacBookPro with
2.9 GHz Intel Core i7 processor and 16 GB LPDDR3
memory.

1) DATA SET

Experiment one used a private data set from seven real-
world meters measuring commercial buildings energy con-
sumption in 15 min intervals. This data set, as well as data
sets in remaining experiments, consist of reading date/time
with corresponding energy consumption. For experiment one,
the total number of readings was: 4 readings in one hour x
24 hours x 487 days = 46,752 for each meter.

Daily consumption profiles for meters 4 and 5 are depicted
in figures 4 and 5, respectively. Meter 4 shows different
patterns for weekend and weekdays, whereas meter 5 displays
similar patterns for all days (no weekday/weekend distinc-
tion) but different from meter 4. Although the patterns and
average consumption are different among meters, SBCTL is
able to transfer knowledge among the models.

2) EXPERIMENT

The similarity set D contained one year of energy readings
without any additional features. The forecasting set G con-
tained additional generated features (month and day of the
year, day of the month, day of the week, weekend, hour,
season, holiday) and included readings from all 487 days.
A few samples from G are shown in Table 1.
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TABLE 1. Example data from forecasting data set.

Index | Month  Day of Year Day of Month  Weekday = Weekend Holiday = Hour  Season  Usage (kW)
0 6 158 6 0 0 0 0 3 881.36

11661 10 279 5 2 0 0 11 4 1507.47

42978 8 239 27 6 1 0 16 3 983.60

TABLE 2. Experiment one: Chained transfer path.

Step | Source Meter  Target Meter  Euclidean Distance
1 my mo 135.2
2 ma mry 135.5
3 my me 160.4
4 my mi 202.9
5 mi ms 198.4
6 ms ms 264.0

In Similarity Calculation step, the usage readings were nor-
malized and the distance matrices were calculated. Set First
Target-Source Meter Pair step with initialization A selected
meters 2 and 4 as the meters with the smallest distance;
thus, the first pair can be (2, 4) or (4, 2). Experiments were
performed for both transfer paths (2, 4) and (4, 2). With ini-
tialization B, the initial meter was meter 4, and the transfer
path was the same as for initialization A with 4 as the starting
meter. Here, the following steps are described assuming (4, 2)
order. The experiments were performed for both transfer
paths (2, 4) and (4, 2).

Next, in Build Initial Model step, the model for meter 4 is
trained with the training part of g4. After the best model nz'
for meter myq was completed, ms was removed from target
set T and added to source set S.

In Transfer Learning step, model nrj was transferred to
meter 2 making . The model m7' was first tested directly
on the test set of g, (transfer 0 epoch) and then trained with
the training set of g, for 5 epochs. Upon completed training,
my was removed from the target set 7 and added to source
set S.

Next, Set Next Source-Target Meter Pair step determines
the order of remaining transfers. In this experiment, initial-
ization A with the first meter 4 and initialization B shared the
same chained transfer path presented in Table 2. The first row
indicates transfer from meter 4 to meter 2; the second row
shows transfer from meter 2 to 7, and so on. The pairs were
chosen to satisfy the condition of minimum distance value
under constraints that one meter belongs to the source set S
and one to the target set 7" as indicated in line 18, algorithm 1.
The process ends when all meters have the corresponding
prediction model.

3) RESULT

The main objective of the experiments is to compare SBCTL
accuracy with that of traditional machine learning when the
model is trained for each meter individually. Thus, SBCTL is
deemed successful if it is able to achieve similar accuracy to
traditional ML but with reduced computation.
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TABLE 3. Experiment 1: Average training time.

Traditional SBCTL  epoch
10 0 1 2 3 4 5
Time (s) 365.47 0 353 7.00 1048 14.09 17.64
Std.Dev 0.13 0 007 0.08 0.11 0.21 0.32
Variance 0.018 0 0.005 0.006 0.012  0.046 0.100

Fig. 6 compares the accuracy of SBCTL and traditional
ML in terms of MAE for the six meters. Meter 4 is not
included because it was the initial meter and, thus, follows the
traditional ML training. The horizontal dashed line indicating
the SBCTL accuracy at 5 epochs is included to ease visual
comparison. It can be seen that when the model is transferred
without additional training (epoch 0), MAE is relatively high.
Nevertheless, MAE drops sharply in epochs 1 and 2, and
after 5 epochs, 5 out of 6 meters achieve better accuracy than
the traditional ML and the sixth meter mg achieves MAE
within 0.01 difference. Moreover, after 3 epochs, all meters
achieve accuracy comparable to traditional ML.

In addition to accuracy, it is important to compare compu-
tational cost; thus, the average elapsed time, standard devia-
tion, and variance for traditional ML and SBCTL are shown
in Table 3. For SBCTL, the initial meter 4 is not included
as it is trained in a traditional way. It can be observed that
for SBCTL with three epochs, time was reduced to 10.48s
from 365.47s achieved with traditional ML what is about 97%
reduction. Note that traditional training was repeated with
10 different seeds (initializations) while the SBTCL starts
from the single initial state transferred from an already trained
meter.

For the initial pair or meters (4,2), two paths are possible;
starting with meter 4 or with 2 as the initial meter. Irrelevant
of the starting meter, the transfer path, Table 2, remained the
same with the exception of the source and target reversal in
the first row. Fig. 7 shows the comparison between the two
SBCTL paths with 3 epochs and traditional ML: MAPE was
used in contrast to MAE used in Fig. 6 to bring all errors to
similar scales. Meters 2 and 4 are missing the bar for the path
in which they were used as the initial meter and therefore
trained in a traditional way. Both paths resulted in similar
MAPE values; moreover, MAPE values were comparable to
those achieved with traditional ML.

Overall, in experiment one, SBCTL achieved similar accu-
racy to traditional ML while taking only about a fraction of
time.

C. EXPERIMENT TWO
This data set is larger; thus, the experiment was performed
on a computer with 3.80 GHz Intel i7-9800X processor,
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FIGURE 6. Experiment 1: Test set MAE for SBCTL and traditional ML.
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FIGURE 7. Experiment 1: Test set MAPE for the two SBCTL paths.

32 GB RAM, and NVIDIA GeForce RTX 2080 Ti graphics
card. GPU acceleration was used for training ML models.

1) DATA SET

This experiment used an open source data set [34] containing
readings from 20 meters recorded in the one-hour intervals.
Readings from the same 487 consecutive days were taken for
each meter: 24 x 487 = 11,688 readings for each meter.

2) EXPERIMENT

The same process was used as in experiment one. Meter 7 had
the same readings as meter 3 for all time steps; thus, meter 3
was removed from further evaluations. The chained transfer
path for Euclidean distance is shown in Table 4.

3) RESULT

The starting meter for initialization B was the same as one
of the meters in the initialization A starting pair. The mean
MAPE and MAE across all meters for different distance
metrics are compared in Fig. 8. Different similarity metrics
resulted in different chained transfer paths with exception of
Euclidean and Cosine distances which had the same path;
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TABLE 4. Experiment two: Chained transfer path.

Step | Source Target Distance | Step|Source Target Distance
1 my mo 0.001 10 | mi9 mi7 26.49
2 my meg 2.96 11 | mi9g mq 28.85
3 me mog  33.74 12 | mog ma3 32.73
4 | mog myg 31.69 13 | mig mi2 34.11
5 | mig mio 22.17 14 | mi2 m11 17.35
6 | mig mig 2274 | 15| ms ms 36.82
7 mig8 ms 23.64 16 mi13 my 42.39
8 | mig mis 2396 | 17| mg mig 81.84
9 | mig mia 26.3 18 | mig mg 134.74
9.00% —— MAPE

—— MAE
8.90% | {4000
8.80% | 13900
% 8.70% | |- g
8.60% |
{3700
8.50%
8.40% 13600
Tradi:tional Eucli'dean Cityll)lock DTWS DTWG DTV'V12 DT\;V24

Cosine . .
Different distance measurements

FIGURE 8. Experiment 2: Mean MAPE and MAE for different distance
metrics.

thus, in Fig. 8 they share the same values. In all metrics,
SBCTL out-performed the traditional machine learning with
Euclidean/Cosine distance achieving the best accuracy.

SBCTL with initialization B and Euclidean distance is
compared to traditional ML for each meter in Fig. 10; the
order of meters in the figure follows the chained transfer path
from Table 4.
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FIGURE 9. Experiment 2: Test set MAPE at first and fifth epoch.

Similar to graphs in experiment one, each graph shows the
comparison for the specific meter not including the initial
meter 7. In experiment two, MAPE is used in place of
MAE, to use more similar scales in figures, nevertheless,
MAE exhibited the same patterns. The horizontal line indi-
cates SBCTL accuracy at 1 epoch as opposed to 3 epochs
used in experiment one because most meters from this data
set already achieve accuracy comparable to traditional ML
in the first epoch. For all metes except meters 4 and 9,
direct transfer, without any training with target data
(epoch 0) already achieved comparable MAPE to
traditional ML. After the first epoch, MAPE surpassed the
traditional ML MAPE. For meter 9, SBCTL with O epoch
exhibited high MAPE, but already after the first epoch,
accuracy approached traditional ML values. For meter 4 tra-
ditional ML exhibited lower MAPE than SBCTL; however,
it is important to note that for this meter MAPE is overall
high, irrelevant of the approach used, what may be caused by
high energy consumption variability.

Fig. 9 compares accuracy of traditional ML with SBCTL at
the first and fifth epoch corresponding to the chained transfer
path from Table 4. The first epoch was considered instead
of the third epoch used for experiment one (Fig. 7), because
most models achieved good accuracy already after the first
epoch. It can be seen that SBCTL with one epoch achieved
better accuracy than traditional ML with 10 epochs for all but
two meters (4 and 9).

The average training time is shown in Table 5. Overall,
in experiment two, SBCTL (initialization B, Euclidean dis-
tance) with one epoch achieved 0.55% reduction in MAPE
and 474.88 in MAE compared to traditional ML while taking
less then 1% of time.

D. EXPERIMENT THREE

This experiment was performed on a machine with Intel
i7-9800X processor, 32 GB RAM, and four NVIDIA
GeForce RTX 2080 Ti graphics cards. As in experiment two,
GPU acceleration was used for training machine learning
models.
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TABLE 5. Experiment 2: Average training time.

Traditional SBCTL  epoch
10 0 1 2 3 4 5
Time (s) 94.53 0 0.88 1.75 2.60 3.48 4.35
Std.Dev 0.19 0 0.01 0.02 0.02 0.03 0.04
Variance 0.04 0 0 0 0.001  0.001  0.001
1) DATA SET

An open source data set provided by the Building Data
Genome project [35] was used in this experiment. This data
set contains one year of hourly, whole building electrical
meter data for 507 non-residential buildings. Meters with
missing data and with less than one year of data were removed
resulting in a set of 456 meters. For each meter there are
24(hours) * 365(days) = 8760 readings. Data were collected
between 2010 and 2015 and, as data for each building spans
only one year, the collection time periods vary among build-
ings. The meters are located in 9 different time zones and
there are five primary use types: office, primary/secondary
classroom, college laboratory, college classroom, and
dormitory.

2) EXPERIMENT
The challenge with this data set is that it contains only one
year of data and for SBCTL ideally, data set should have
at least one year for training and additional data for testing.
Nevertheless, the last 20% of data was used for testing and the
first 80% for training prediction models and for calculating
similarities. It is expected that this will not result in as high
accuracy as if the hole year of data was used for training.
While in experiments one and two, accuracy could be
visualized and observed for each meter separately (as in
figures 6 and 10), this is more difficult for experiment three as
it contains 456 meters. Thus, traditional machine learning was
performed with up to 30 epochs with early stopping when the
loss function did not decrease in five consecutive epochs. This
allows more epochs to achieve convergence, and, at the same
time, helps remedy overfitting and avoids higher number of
epochs if convergence is achieved earlier.

3) RESULT
In this experiment, transfer paths were different for the two
initialization approaches A and B. Fig. 11 compares MAPE
and MAE achieved with the two initializations for each of
the distance metrics. The traditional approach does not have
different initializations, thus accuracy for initializations A
and B is the same. In terms of MAPE, initialization B out-
performed initialization A for all distance metrics. This is
slightly different for the MAE, where the initialization A
achieved better accuracy for DTW with window of 3 time
steps (DTW3). Nevertheless, irrelevant of the metrics used,
the overall best model is with initialization B and Cosine
distance.

Table 6 shows the data from Fig. 11 for further comparison.
It can be observed that the best SBCTL model (initializa-
tion B with Cosine) achieved reduction of 7.3% in average
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FIGURE 10. Experiment 2: Test set MAPE for SBCTL and traditional ML.
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TABLE 6. Experiment 3: MAPE and MAE for initializations A and B, for each distance metrics.

Traditional — Euclidean Cosine  Manhattan DTW3 DTW6 DTWI2 DTW24
MAPE-A 30.1% 29.7% 30.6% 27.4% 33.0% 31.9% 36.5% 34.1%
MAPE-B 30.1% 25.1% 22.8% 25.2% 25.8% 27.4% 27.9% 25.9%
MAE-A 7.662 7.661 7.652 7.596 7.553 7.714 7.732 7.737
MAE-B 7.662 7.646 7.500 7.593 7.699 7.650 7.709 7.661

—#— MAPE-A
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32% 1

30% 1
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—#— MAE-A
7.70 { —4— MAE-B

7.50
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FIGURE 11. Experiment 3: MAPE and MAE for different initializations and
distance metrics.

TABLE 7. Experiment 3: Average training time.

Traditional SBCTL  epoch
10 0 1 2 3 4 5
Time (s) 30.33 0 0.16 0.31 0.46 0.62 0.77
Std.Dev 10.24 0 001 0.03 0.04 0.05 0.06
Variance 104.78 0 0 0.001 0.002  0.003  0.004

MAPE and.163 in average MAE in comparison to traditional
ML training.

The average elapsed time for all meters with the traditional
ML and SBCTL are shown in Table 7. SBCTL used only
about 2.6% of time needed to train the models in a traditional
way.

E. DISCUSSION
In all three experiments, SBCTL achieved improved average
accuracy in comparison to traditional ML. Overall, the best
performing model was SBTCL with initialization B (from
the center) and Euclidean distance. This can be observed
from figures 8 and 11 for experiments one and two, whereas
there was no difference among SBCTL approaches in the
experiment one.

In experiments one and two, SBCTL models trained for
5 epoch achieved higher accuracy than traditional ML with
10 epoch. An exception was meter 4 in experiment two;
nevertheless, that meter achieved low accuracy irrelevant of
the approach, possibly because of high data variability. This
demonstrated that transferring weights according to SBCTL
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approach is a promising direction for training a large number
of energy forecasting models.

Note that in experiment two SBCTL needed only 1 epoch
to achieve comparable results to traditional ML where it
needed 3 epochs in experiment one. Moreover, in experiment
two, even direct transfer without additional training (epoch 0)
achieved good accuracy. The reason for this is a higher simi-
larity between meters in experiment two. In experiment one,
the lowest Euclidean distance was 135.2 (Table 2) and the
mean was 182.65. Meanwhile, the lowest Euclidean distance
in experiment two was 0.001 (Table 4) and mean was 34.58.

In all experiments, the time to train SBCTL models was
only a fraction of time in comparison to traditional ML while
they achieved comparable accuracy. Training time reduction
depends on the number of epoch needed after the transfer
what is impacted by the similarity between meters.

SBTCL requires all smart meter data sets to have the same
sampling frequency or the data sets need to be pre-processed
to convert them to the same frequency. If there are any missing
data, they need to be imputed in the preparation step in order
to enable the similarity calculations. As SBCTL transfers NN
weights from one meter to another, and continues training
from those weight, there is a possibility of the transferred
model getting stuck in a local minimum. However, the pre-
sented experiments, even the third one with 456 meters,
demonstrate high accuracy in spite of a possibility of a local
minimum.

VI. CONCLUSION

Extensive smart meter deployments have created opportuni-
ties for energy forecasting on a large scale. Machine learning-
based forecasting typically involves training the model with
historical data from a single building and then using this
model to infer consumption for the same building. As training
is computationally intensive, it is not practical to train ML
models individually for many meters.

This paper proposes Similarity-Based Chained Transfer
Learning (SBCTL) to enable building neural network-based
forecasting models for a large number of smart meters. The
initial model is built in a traditional way whereas all other
models use transfer learning in a chain-like manner. SBCTL
is evaluated with three different data sets: in all experiments,
SBCTL achieves similar accuracy to traditional ML training
while taking only a fraction of time. The best results are
achieved with Euclidean distance and starting from the meter
closest to the center. As illustrated in experiments one and
two, the SBCTL time depends on the number of epochs
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needed for convergence after the transfer. When meters are
more similar in terms of their energy consumption profiles,
SBCTL needs fewer epochs and thus, training time is shorter.
The third experiment demonstrates that SBCTL maintains its
high accuracy even with a data set of 456 meters.

Future work will further explore the impact of similarly
on the number of epochs needed after the transfer. Moreover,
possibility to transfer knowledge among data sets of different
duration and with different reading intervals will also be
explored.
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