
Received September 8, 2019, accepted September 22, 2019, date of publication September 25, 2019,
date of current version October 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943632

Towards an Energy Efficient Computing With
Coordinated Performance-Aware Scheduling
in Large Scale Data Clusters
PRINCE HAMANDAWANA 1, RONNIE MATIVENGA 1, SE JIN KWON 2, (Member, IEEE),
AND TAE-SUN CHUNG 1
1Department of Computer Engineering, Ajou University, Suwon 16499, South Korea
2Department of Computer Engineering, Kangwon National University, Chuncheon 24341, South Korea

Corresponding author: Tae-Sun Chung (tschung@ajou.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant NRF-2019R1F1A1058548 and Grant NRF-2017R1D1A3B04031440.

ABSTRACT Many prior works have investigated on how to increase the job processing performance and
energy efficient computing in large scale clusters. However, they employ serialized scheduling approaches
encompassed with task straggler ‘‘hunting’’ techniques which launches speculative tasks after detecting slow
tasks. These slow tasks are detected through node instrumentation which collects system level information
whilst tracking the task execution progress. Such approaches are however detrimental towards achieving
maximum processing performance and preserving cluster energy as they increase communication overheads.
In this paper, we observe that node instrumentation and serialized scheduling in existing works does not only
degrade the job processing performance, but also increase cluster energy consumption. To alleviate this,
we propose EPPADS, a light-weight scheduler which eradicates the need for instrumentation modules for
job scheduling purposes. EPPADS schedules tasks in two stages, the slow-start phase (SSP) and accelerate
phase (AccP). The SSP schedules initial tasks in the queue using baseline FIFO scheduling and records
the initial execution times of the processing nodes, whilst tagging the effective and straggling nodes. The
AccP uses the initial execution times to compute the processing nodes task distribution ratio of remaining
tasks and schedules them in parallel using a single scheduling I/O, boosting up the processing performance.
To amortize the computing energy costs, EPPADS implements a power management module that coordinates
with the scheduling module and leverage on node tagging information, to place nodes in two different power
transition pools, i.e., high and low state power pools. A single power transition signal per pool is then
broadcasted to lower or raise the energy state in the low-power state pool and high-power state pool. Our
evaluation using a Hadoop cluster shows that EPPADS achieves 30% and 22% performance improvement
and 15% to 20% energy savings as compared to the FIFO and DynMon schedulers, respectively.

INDEX TERMS Distributed processing, energy efficiency, scheduling.

I. INTRODUCTION
For the past two decades, there has been a continuous trend in
big data proliferation, with the amount of stored data doubling
every 2 years [1]. To process this huge amount of stored data,
a new generational approach is needed which offers high per-
formance parallel data processing with minimal power con-
sumption in large scale data clusters. Prior research [2]–[4]

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuan Chee .

proved that the job completion time is a key performance
indicator that needs serious attention to achieve high job pro-
cessing throughput in big data processing clusters. To achieve
this, jobs are divided into smaller manageable tasks which
are then distributed to several nodes for processing. How-
ever, the job processing time is frequently slowed down by
one or more tasks which may be executing on a slower node.
These slower nodes are referred to as straggler nodes while
the slower tasks executing on the straggler nodes are referred
to as stragglers. The straggler nodes often occur as a result of

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 140261

https://orcid.org/0000-0002-1030-3844
https://orcid.org/0000-0002-5093-4616
https://orcid.org/0000-0002-6295-7014
https://orcid.org/0000-0001-5992-1136
https://orcid.org/0000-0002-9202-7192

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

congestion/overloading or system crash at processing nodes.
In order to achieve high job processing performance, it is
vital to amortize the performance degradation caused by the
stragglers.

Because of its popularity and robustness, MapReduce [5]
has been increasingly adopted in the cloud community to
provide a high performance, parallel framework in large scale
job execution clusters. One significant benefit of MapRe-
duce is that it hides the problems of managing stragglers
from the developers, through the automatic re-assignment
of redundant tasks of stragglers onto free slots of effective
job execution nodes. This automated process is known as
speculative execution (SE) and it often results in decreased
job response time. Prior research [5], proved that SE decrease
the job processing time by almost 44%.

However, in the MapReduce system, the default scheduler
divides the tasks evenly across all available processing nodes
called task trackers (TT), for parallel task processing in a
FIFO way. Such task scheduling presume that all TTs have a
homogeneous computing capacity. In cases where heteroge-
neous cluster set-ups are provisioned, the default MapReduce
schedulers will not produce optimal performance because
some TTs will have higher computing capacity leading
to better performance as compared to others. Previous
research work, LATE [6], demonstrated that when the default
FIFO scheduler is subjected to heterogeneous clusters set-
ups, multiple unnecessary speculative invocations of tasks are
initiated which increase the job response time. To avoid such
unwarranted speculative execution invocations, the LATE
scheduler thoroughly chooses only tasks that lead in reduced
job execution time, for speculative execution. But previous
research [7], proved that LATE only improve the execution
time of the first job in the queue.

Several self adaptive schedulers [7]–[10], which dynami-
cally adapts to heterogeneous clusters have been presented.
These proposed schedulers operates by frequently gathering
up to date system level information and use it to dynamically
distribute job tasks to the heterogeneous task trackers, based
on their computing capabilities. This is accomplished through
implementation of additional software modules in the Job
tracker node (also known as master node) which instruments
all task tracker nodes computing capabilities. By so doing,
it therefore impose the use of system level information that
is always up to date and consequently, only speculative tasks
that result in lower job response times are invoked. However,
such instrumentation add more overheads as the number of
task trackers to be monitored exceeds a certain threshold.

In a nutshell, existing MapReduce schedulers suffer from
several limitations that hinders the achievement of maxi-
mum job processing performance in large scale data clusters;
i) sequential scheduling of tasks, where the succeeding task in
a job/task queue can only be scheduled only if the preceding
task has completed its execution. This results in longer job
execution time as all tasks has to wait until the scheduled
task finishes. ii) Current implementations adopt the straggler
‘‘hunting’’ technique. In this approach, speculative execution

is only initiated after the detection of a straggler. This means
that speculative execution is invoked in the middle of a
task execution which introduces some lag time between the
beginning of task execution and the launch of its correspond-
ing speculative task. Consequently, the job response time is
often degraded as the speculative task is often invoked late.
iii) Increased instrumentation overheads which are caused by
the frequent collection of system level information of the task
tracker nodes to forecast the task completion time in order
to make scheduling decisions. However, such communication
overheads result in significant performance degradation and
also increased cluster power consumption.

These communication and power consumption costs
increase dramatically as the cluster scales out. Nowadays,
the power consumption in large scale clusters, is an important
factor which needs to be taken into account when designing
high performance and energy efficient clusters. Therefore,
effective energy saving approaches needs to be designed to
solve the power consumption problems faced in large scale
data processing clusters [11]–[16]. Previous works [17], tried
to resolve the performance penalty caused by node instrumen-
tation, but it did not resolve the power consumption problem
faced in large scale clusters. To address the discussed limita-
tions of the existing approaches, we propose an energy effi-
cient Enhanced Phase-based Performance Aware Dynamic
Scheduler (EPPADS). Rather than using heavy instrumenta-
tion modules to make scheduling decisions, EPPADS uses an
opportunistic rolling window implementation where inbound
tasks are divided into smaller partitions, with each partition
representing a scheduling window instance.

To predict the compute capability of each task tracker and
also pre-determine straggling nodes during the first phase
called the slow-start phase (SSP), EPPADS launches the first
tasks in the current scheduling window instance in the usual
baseline FIFO scheduling approach. At this stage it predicts
the effectiveness of each task tracker and flag them as either
effective or straggler. This exterminate the purpose of node
instrumentation used in prior works. During the second phase
of EPPADS, called the accelerate phase (AccP), EPPADS
addresses the problem caused by serialized task schedul-
ing through scheduling the outstanding tasks in the current
scheduling window at one go, using a single scheduling I/O.
As the straggling nodes are determined during the SSP, all
tasks scheduled to task trackers flagged as stragglers, are
invoked simultaneously with their respective redundant spec-
ulative tasks. This helps to eradicate the problem caused by
delayed speculative execution in previous works. The pre-
scheduling of speculative tasks at the same time with their
pre-determined straggling tasks helps to amortize the heavy
instrumentation overheads by removing the need for the addi-
tional instrumentation modules that frequently monitors the
task trackers’ system level information.

Finally, our approach achieves effective energy computing
through the use of a straggler tagging technique that transit all
slow nodes into a low power state, whilst transiting all effec-
tive processing nodes into high power state. This technique

140262 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

is called power transition tagging. This is motivated by the
idea that, for all the tasks which are scheduled to straggling
nodes, we fuse the speculative task launching together with
the original task, then it is more likely that the speculative
tasks have an increased chance to finish first. Hence, we prior-
itize power to non-straggling nodes. To maximize the power
conservation in large clusters, we build our power conser-
vation module which works on top of the existing OS built
power saving configurations such as system idle time, sleep
modes etc.

We summarize the contributions of our work as
follows;

• Problem Identification: We expose the current limita-
tions of existing implementations which inhibit the attain-
ment of high job processing performance in large scale data
processing clusters.
• Lightweight dual-phased opportunistic scheduler: We

propose EPPADS, a lightweight dual-phase opportunistic
job scheduler, which drastically diminish the performance
penalty caused by processing nodes instrumentation and
sequential scheduling of tasks.
• Highly accelerated job processing performance: We

design a rolling scheduling window strategy that enables
the fusion of job scheduling and task pre-speculation
based on the computational effectiveness of each process-
ing node. The dual-phase nature of EPPADS enables an
accelerated scheduling performance on the second phase
(AccP), where a single I/O is used to schedule all outstand-
ing tasks at once.
• Effective and simple cluster power management:

EPPADS provision an efficient energy computational
model by providing a simple yet effective power man-
agement scheme that tightly integrate the job schedul-
ing together with the power management functions.
We achieve this through the implementation of a pool based
software defined dynamic frequency scaling that transit
the power usage of nodes between high and low power
states.
• EPPADS prototyping: We implemented a real proto-

type of EPPADS in Hadoop, achieving 30% and 22%
performance improvement as compared to baseline FIFO
scheduler and existing dynamic self adaptive schedulers,
respectively. In terms of energy efficiency, EPPADS
achieves between 15% to 20% as compared to FIFO and
the dynamic scheduling approaches.

The rest of the paper is organized as follows: Section II
outlines a detailed description of the background, limita-
tions and motivation. Section III discusses our approach
in addressing the limitations in existing works. We discuss
our proposed technique towards achieving effective energy
efficient computing in Section IV. Section V shows the
details of our implementation in Hadoop. In Section VI,
we present our evaluation results followed by related work
in Section VII. Finally we share our concluding remarks
in Section VIII.

FIGURE 1. MapReduce framework.

II. BACKGROUND AND MOTIVATION
A. MAPREDUCE SCHEDULING MECHANISM
In-order to fully understand the drawbacks that are associated
with current MapReduce job processing techniques, we will
first look at how jobs are processed. Figure 1 depicts the
general architecture of a MapReduce job processing cluster.
Firstly, client nodes issue job requests to the job tracker node,
and the job tracker node divides the incoming job requests
into smaller manageable tasks which are equally distributed
to the task trackers for parallel processing. The job tracker has
the responsibility to track the progress of the scheduled tasks
in each task tracker node (also known as worker nodes). All
issued jobs pass through a map and a reduce phase and again
the job tracker is responsible for coordinating between the
map and reduce phases of every MapReduce job. During the
Map stage, all the incoming data is partitioned and the output
of the map stage is some intermediate key-value pairs. These
intermediate key-value pairs are then sorted and combined in
a way that same key-value pairs will be processed by the same
reducer on the reduce stage. The reducers will then finally
process the sorted key-value pairs and outputs the final key-
value pairs.

The way in which these map reduce jobs are scheduled is
vital to attain maximum job processing performance. In the
MapReduce parallel framework, jobs are split and distributed
equally for processing across task tracker nodes using the
default FIFO scheduler. During the job execution time, the job
tracker continuously monitors the progress of each job task.
If there is any task that is below the average progress rate of
all tasks (straggler), a redundant/speculative task is launched
on an effective task tracker with an available processing slot.
The result of whichever task finishes first is sent as output
and the corresponding lagging task is immediately termi-
nated. This speculative execution of tasks helps to signifi-
cantly boost the job processing performance [5]. However,
this performance gain is significantly degraded when the
default FIFO scheduler runs on a cluster provisioned with
heterogeneous nodes [6]. The reason is that the default FIFO
scheduler was designed to work effectively in homogeneous
clusters where all nodes have uniform compute capabilities.
To avert this problem, it is important to design efficient

VOLUME 7, 2019 140263

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 2. Node instrumentation.

performance-aware dynamic schedulers that helps to improve
job processing performance in clusters equipped with hetero-
geneous processing nodes.

B. PERFORMANCE-AWARE DYNAMIC SCHEDULING
A lot of prior research works have already put a lot of effort in
trying to improve the job processing performance in clusters
provisioned with heterogeneous nodes [6]–[10], [17]–[20].
This heterogeneity, coupled with fluctuating workload con-
ditions, leads to degraded job processing performance and
this can become worse in large scale data processing clus-
ters which handles exabytes of data per day. Consequently,
there is a need to provision an effective speculative execution
strategy that can consistently respond to the fluctuations in
task tracker node system level loading [7], [9], [21]. Based on
the system level information of task trackers, the speculative
execution of tasks can be invoked judiciously only if their
invocation can result in an improved job runtime.

The widely adopted node instrumentation technique which
was implemented in prior works [2], [3], [7]–[9], [18],
[21], [22] is depicted in Figure 2. In this approach, extra
instrumentation modules are added which are responsible
to track and record the system level information of all
task tracker nodes. Scheduling decisions are then invoked
based on the collected task tracker system level informa-
tion. By so doing, this avoids blindly scheduling tasks to
processing nodes which are already overloaded and hence
the job processing time is significantly decreased as the jobs
are scheduled in a load-aware fashion. However, the current
scheduling schemes suffer from the following limitations
that inhibits the achievement of maximum job processing
performance;

FIGURE 3. An analysis of the default FIFO scheduler. JT in Y-axis means
job tracker.

1) INSTRUMENTATION OVERHEADS
Node instrumentation helps to improve job processing perfor-
mance through enforcing precise speculative task execution
by using up to date system level information. However, as the
number of nodes scales to hundreds of nodes the instrumen-
tation overhead can cause serious performance degradation.
This performance penalty can emanate from the communi-
cation and network overhead that often leads to degraded
cluster performance. To analyze the effect on performance
from instrumentation/monitoring overheads in large scale
data processing clusters, we carried out an experiment using
the setup described in Section V - Table 1.

We used the Scan traces from the HiBench suite as work-
loads.We ran this experiment by starting with a 4 node cluster
and doubling the cluster nodes at each experimental run,
whilst capturing the effect of increased node instrumentation
on the cluster. Figure 3 shows the results of our experiment.
Our observation shows that an initial increase in the number
of cluster nodes, will have a corresponding increase in the
job processing performance. Nevertheless, this performance
increase reaches a ceiling point (in our case 64 task tracker
nodes) and a continuous increase in the number nodes starts
to degrade the job processing performance. We also observed
that, at above 64 nodes the CPU usage on the job tracker
node start to shoot up to above 90% creating a central bottle-
neck in cluster job processing performance. This observation
demonstrates that the performance penalty which is caused by
the instrumentation/monitoring overheads is non-negligible
in large scale data processing clusters.

2) SEQUENTIAL SCHEDULING OF TASKS
The existing job scheduling techniques, adopts the traditional
sequential way of scheduling tasks. This means that all the
consecutive tasks in the job queue can be scheduled only
when any of the currently scheduled tasks has finished execu-
tion. This presents a major constraint towards achieving max-
imum job execution performance. Mostly, it is because the
serialization of task scheduling results in increased schedul-
ing time considering the large number of jobs that are sched-
uled in large scale data processing clusters. Also, this can
increase the task transfer time if the tasks are scheduled in
neighboring nodes in which the data is not stored in. Further-
more, the average waiting time of successive tasks in the task
queue consequently increases which add more performance
degradation.

140264 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 4. Global data center electricity usage demands in Tera-Watts per
hour (TWh) from 2010-2030 [23].

3) DELAYED SPECULATIVE TASK EXECUTION
In order to detect straggling tasks during job execution, there
should be amechanism that tracks down the progress of all the
tasks running in all task tracker nodes. Existing approaches
adopts a straggler ‘‘hunting’’ technique that tracks all tasks
that are running below the average execution time. This
entails that a straggling task can only be detected in the
middle of execution time and only at that time that is when
a redundant task can be speculatively invoked on another
slot of a faster task tracker node. However, this creates a lag
time before the speculative task is scheduled. Consequently,
invoking a speculative task at this time maybe too late to limit
the slowdown effect on job performance caused by straggling
tasks. A more effective approach is needed to prevent the
effects on performance caused by this delayed scheduling of
speculative tasks.

4) ENERGY EFFICIENT DATA PROCESSING
The deployment of large distributed data clusters in public
and private clouds has lead to the escalating operating power
costs ($/Watt) [11]. This is mainly due to the amount of data
movement inbound, outbound andwithin the cloud platforms.
Also, the highly compute intensive nature related to work-
loads processed in these huge parallel processing clusters
increase the computational energy costs [11], [23], [24]. This
Big Data phenomenon raises new challenges that associate
with how data is scheduled and processed in large scale
data clusters. Works such as [25]–[27] outlines the need to
effectively cut the data processing costs whilst improving the
way the data is communicated, stored and processed within
and across clusters.

Figure 4 shows that the global electricity energy demands
across data centers will grow significantly towards 2030 [23].
This trend shows that if data centers adopt effective energy
computing approaches, they will be able to save about 61%
in energy costs (depicted by Data center best trend Figure 4).
On the contrary, data center energy usage would sky-rocket
by more than 160% if effective energy computing is not
applied (depicted by Data center worst trend in Figure 4).
In this regard, energy efficient data processing has become
a priority in large scale distributed data clusters.

Many prior works [24], [28]–[36] tried to cut the energy
savings by utilizing idle, inactive (sleep) and scaling the

power for transition servers from high to low voltage. How-
ever in large scale data processing clusters, it is difficult to get
sufficient idle and inactive windows to guarantee a significant
energy savings. Worse off, it is difficult to get this idle-
ness because of the heavy node instrumentation which guar-
antees continuous communication (heartbeat, task-tracking,
resource weighting, etc) between job trackers and task tracker
nodes. This frequent communication also leads to increased
power consumption and needs to be optimized. From this
perspective there is need to come up with a way of transiting
power states in such a way that we can guarantee significant
energy savings.

To amortize the above mentioned drawbacks we propose
EPPADS, a lightweight data processing scheduler, which
achieves high performance job execution without the need
for heavy node instrumentation, schedules multiple tasks
in the same scheduling window instance in a parallelized
manner and fuse job scheduling and task pre-speculation at
the same time. EPPADS aims to achieve effective energy
computing through the use of pool based node power transi-
tions. Section-III and section-IV explains in detail our pro-
posed design and the efficient energy computing approach
in EPPADS.

III. EPPADS DESIGN
Due to the existing limitations in existing works, we aim to
achieve the following goals in EPPADS;

• Elimination of monitoring overheads: Frequent communi-
cation due to monitoring of system level information of
all task tracker nodes results in communication overheads.
This overhead cost is significant as the cluster scales out.
The objective of our proposed design is to reduce signifi-
cantly this monitoring overhead.
• Amortize the slow down caused by sequential scheduling:

Scheduling tasks in a serialized manner limits the job
execution performance. Consequently, the average waiting
time of jobs in the queue is increased due to the sequential
scheduling of tasks. We aim to amortize this drawback in
our proposed approach.
• Reduce the time delay in launching speculative tasks: In

order to initiate a speculative task, existing works often
wait until a job task starts to straggle. This degrades the
job processing performance as it is often late to limit the
performance degradation caused by the straggling tasks.
We also aim to limit this overhead caused by the delay in
invoking speculative tasks.
• Effective energy efficient data processing: As the amount

of data to be processed and the number of nodes increase,
it is important to take care of the power consumption factor
in large scale data processing clusters. Our Approach aims
to amortize the power consumption costs involved with
large scale data processing.

A. EPPADS DESIGN OVERVIEW
In this section we discuss a brief overview of the EPPADS
architecture. EPPADS is built on top of the existing Hadoop’s

VOLUME 7, 2019 140265

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 5. An overview of EPPADS architecture.

MapReduce architecture and is composed of clients, a job
tracker node and several task tracker nodes which executes
the task processing. The architecture of EPPADS is depicted
in Figure 5. Firstly, EPPADS divides the processing of
inbound jobs which are issued by client applications into
three distinct buffer regions, receiving zone, staging zone and
scheduling zone. The function of the receiving zone is to
chunk the incoming jobs submitted by clients into smaller
manageable tasks that can be processed quickly by the task
tracker nodes. The receiving zone also forwards the smaller
tasks into the second buffer area called the staging zone. This
staging zone is a pinned/fixed buffer regionwhich is responsi-
ble for preparing the tasks for scheduling. The staging zone is
pinned so that tasks which are staged for scheduling cannot be
swapped during periods of memory stress. Inside the staging
zone there is a small sliding window buffer area called the
scheduling zone and is where the actual task scheduling
occurs.

Recap that when the job tracker node receives job requests
from clients, these jobs are chunked into smaller equal sized
tasks. By default, these smaller tasks are then shared equally
among existing task tracker nodes for task execution. This
task distribution is done in a sequential manner following
the FIFO scheduling approach. On the Contrary, in order
for EPPADS to achieve high performance job processing,
it pipelines the incoming job requests in the following flow; i).
In the receiving zone, the client job requests are first chunked
into smaller equal tasks just as in the baseline. EPPADS then

forwards these chunks into the staging zone which stages the
tasks in preparation for the actual scheduling. These staged
tasks are then absorbed onto the smaller scheduling zone
buffer area as the rolling scheduling window slides across the
staging zone buffer area as depicted by Figure 6. The details
of this rolling scheduling window are discussed in detail
in Section III-B.

EPPADS utilizes a dual pipeline based scheduling strategy
to amortize the performance penalty caused by tracking sys-
tem level information of task trackers. In the first pipeline
stage called the Slow Start Phase (SSP), the first tasks within
the current scheduling window instance, are scheduled to the
available task trackers in the usual FIFO way. An Execution
Time Prediction Table (ETP) then records and store the initial
execution time for the first FIFO scheduled tasks. The ETP
is discussed in more detail in Section III-C. At the second
pipeline stage, called the Accelerate Phase (AccP), EPPADS
then utilizes the computed execution time ratios of the first
tasks scheduled in the SSP and calculates the task distribution
ratio to be used in distributing the rest of the remaining tasks
in the scheduling window. The task distribution ratio is then
used to schedule all the remaining tasks in the scheduling
window using a single I/O operation and the scheduling
window rolls by an offset which is equal to the size of the
scheduling zone.

Most importantly, EPPADS uses the SSP stage to detect
the slow task tracker nodes and these nodes are tagged with
a straggler flag. The details of straggler node detection are

140266 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

explained in detail in Section III-C. This is done so that
EPPADS can simultaneously invoke a redundant speculative
task to the closest non-straggler nodewhen a task is scheduled
to a task tracker flagged as a straggler. This helps to reduce
the performance slowdown caused by the problem of delayed
speculative invocation in current approaches.

Lastly, in order to improve power consumption, EPPADS
is provisioned with a power management module that con-
trols the power consumption of processing nodes. The power
management module consist of two sub-modules i) Power
Transition Tagging (PTT)module and the Pool-Based Energy
Conversation (PBEC) module. The main goal of PTTmodule
is to flag nodes with power transition tags (PTT = 0 for low
power and PTT = 1 for high power.) The PBEC module
then groups the nodes into two power transition pools based
on the information provided by the PTT module. Power
transition decisions are then executed on a per pool basis
rather than individual nodes using a single power transition
broadcast signal rather than per individual node. We discuss
in detail our approach to achieve effective energy computing
in Section IV. Next, we discuss in detail the scheduling
mechanism in EPPADS.

B. TASK STAGING AND SCHEDULING MECHANISM
To schedule job tasks in EPPADS, the tasks must first be
forwarded onto the pinned staging zone area. The scheduling
zone, which is made up of a small rolling scheduling window
takes the responsibility of initializing the scheduling of all the
tasks that are forwarded into the staging zone. To understand
the scheduling mechanism inside EPPADS, we first describe
the details of the rolling scheduling window.
Rolling Scheduling window: To predict the task response

times without the need of additional instrumentation mod-
ules, we design our scheduling decision window based on the
number of tasks to schedule rather than using instrumented
periodic time windows. Instead of making scheduling deci-
sions based on the entire number of job tasks in the job queue,
we split the job tasks into several smaller decision windows
called rolling scheduling windows inside the staging zone
area, as depicted by Figure 6. The function of the rolling
window is to initiate the actual scheduling of the tasks that
are staged in the staging zone. This scheduling happens at
offsets equal to the size of the configured scheduling window
at a time, until the scheduling window rolls across all the
tasks in the entire staging zone. After the rolling scheduling
window reaches the offset position at the end of the staging
zone, it then resets back to the starting offset position inside
the staging zone.

It is also important to determine the optimal size of the
staging zone and the scheduling zone (scheduling window)
buffers as they also influence the job scheduling performance.
A small staging zone size increases the task transfer fre-
quency between the receiving zone and the staging zone. This
can impact the overall job processing performance. On the
other hand a smaller scheduling zone, will result in less par-
allelism as it reduces the number of tasks to be scheduled in

FIGURE 6. Design of EPPADS rolling scheduling window.

FIGURE 7. Buffer size analysis.

FIGURE 8. Job slow down effect by stragglers.

parallel. Therefore, an optimal size ratio between the staging
zone and the scheduling zone must be provisioned to attain
optimal job processing performance.

In our case, we configured the staging zone to the schedul-
ing zone buffer ratio to 4:1. This ratio determines the size
of the scheduling window in our algorithm. The idea is to
amortize the memory copy operations when tasks are copied
from the receiving zone buffer to the staging zone buffer. The
other reason is also to reduce the waiting time to forward
tasks from the staging zone buffer onto the scheduling zone
buffer. Figure 7 shows that setting the staging zone size
greater than 4 times that of the scheduling zone did not have
any performance benefit. During the actual scheduling, each
scheduling instance is made up of a two-staged pipelined
scheduling approach (SSP & AccP). Before we detail the two
phased scheduling approach, we will explain the execution
time prediction table which is used in both the SSP and the
AccP pipeline stages.

C. EXECUTION TIME PREDICTION TABLE (ETP)
In the ETP, each task tracker ID (TT-ID) has a corresponding
initial execution time, time ratio, distribution ratio and a
straggler flag. We define these terms as follows;

• Initial execution Time: This is the total time to execute
the initial task sent to that task tracker during the SSP
stage.
• Time ratio: This is defined as the ratio of time taken to

execute the initial task to the total execution time of all

VOLUME 7, 2019 140267

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 9. Slow-Start Phase(SSP).

the initially scheduled tasks in the SSP phase. Example of
the first scheduled tasks is task-1 to task-4 as depicted
in Figure 9.
• Dist. Value: This value is used in the second pipeline

stage of EPPADS and it defines the number of tasks to be
distributed to a task tracker node during the AccP stage.
It is computed by multiplying the number of remaining
tasks (e.g. task-5 to task-11 in Figure 10) in the current
scheduling window by the time ratio of the task tracker
node. The Dist. Value is rounded to the nearest integer.
• Straggler Flag: This Flag is used to pre-determine the

possibility of the node being a straggler on not. The strag-
gler flag is set to 0 when the processing node is not
straggling or 1 when the node is straggling. We set all
nodes with the initial execution time which is6 θ from the
average execution time of all tasks during the SSP stage as
stragglers. The value θ is a threshold value of the tolerable
negative deviation from the average execution time during
the SSP stage. This value of θ is provisioned as a tunable
parameter which is workload depended. In our case we set
it to 8% negative deviation from average execution time.
To determine the 8% value, we measured the job slow
down caused by the increase in negative deviation from the
average task on the straggler node.We increased the load in
the straggler node at each experimental run as wemeasured
the job slow down. Figure 8 shows that a negative deviation
of less than 8% from the average progress will not cause
significant slowdown. With the Dist. Value and straggler
flag result we can schedule all the remaining tasks in the
scheduling window in parallel rather than in a serialized
manner.

In the next subsection we discuss in detail our proposed
dual phased scheduling approach which is comprised of the
slow start phase and the accelerate phase.

D. DUAL PHASE PIPELINED SCHEDULING
1) KEY IDEA
For high performance job execution, EPPADS consist of two
pipelined scheduling phases (SSP & AccP). The key idea of
the dual-phase pipelined scheduling is to first forecast the
compute capabilities of the task tracker nodes in the first

FIGURE 10. Accelerate Phase (AccP).

pipeline stage (SSP) then distribute the rest of the remaining
tasks in parallel according to the predicted compute capability
of each task tracker in the second pipeline stage. By so
doing, straggling nodes can be detected in advance, thereby
eliminating the need for tracking task progress during the
task execution period. The important idea of this two stage
pipelined scheduling in EPPADS is that task scheduling can
be fused together with task pre-speculation hence, increasing
the job processing performance. Next, we explain the the two
stages of EPPADS scheduling in detail.

2) STAGE-1: SLOW-START PHASE
The scheduling of tasks inside the current scheduling window
instance starts with the slow start phase. Figure 9 depicts
an example of scheduling in the slow start phase. In this
phase, the first tasks, e.g. tasks 1, 2, 3 and 4, at the front
of the task queue in the scheduling window are scheduled
to the available task tracker nodes sequentially just like in
the default FIFO scheduler. The execution time of these
first scheduled tasks are recorded in the ETP table. At this
stage EPPADS also computes for each node, the time ratio,
distribution value and sets the straggler flag to either 0 or 1.
The reason to do this is to get an insight of the execution
time of a single task on each task tracker node. Since the
scheduling window is small we assume; (i) It is fast enough
to execute all tasks in the current scheduling window before
any significant change in task tracker node system load.
(ii) Since it is fast enough to compute all tasks in a scheduling
window instance, we assume that the time to compute each
remaining task on the task-tracker is equal to the recorded
time taken to compute the first issued task. By so doing, our
key idea is to eliminate the overhead caused by task tracker
system level instrumentation. Although the slow start phase
of the EPPADS scheduling limits performance, the worst case
scenario is equal to the performance of the default FIFO
scheduler. This is because at this stage the scheduling is done
in a sequential manner similar to the default FIFO scheduler.

3) STAGE-2: ACCELERATION PHASE
With the knowledge of the time to compute a single task at
each task tracker node (stored in the ETP table), EPPADS

140268 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

Algorithm 1 EPPADS Scheduler.
Input: Ji, ith Requested job to cluster
�, Rolling scheduling size;
α, Initial sequentially scheduled tasks
T, Total tasks for scheduling window
ti, ith task in scheduling window
M, Number of task-trackers in the cluster
Wi, ith window of Ji
Prate, Average Progress Rate
θ i, Tolerable negative deviation of taski
prate, Task Progress Rate
Cti, Clone of Task ti
TSCi, , Completion time of Clone Cti
TSti, Completion time of task Cti
Output: RESULT, key-value pair of task ti;
for Wi 6= 0 do

1 for 0 < ti <T /* begin Slow-Start Phase (SSP) */
2 do
3 Insert ti into scheduling window Wi
4 Query progress for α tasks
5 for all ti with prate < (Prate - θ i) do
6 Mark task-tracker as straggler
7 end
8 for Remaining tasks in Wi /* Initialize

Accelerate Phase */
9 do

10 Preschedule all ti using the time from α

tasks
11 Clone tasks scheduled on stragglers /* using

alg_2*/
12 end
13 for All pre-scheduled Cti do
14 if slot_exists=true then
15 Launch Cti together with corresponding

ti
16 if TSCi < TSTi then
17 RESULT = result of Cti
18 end
19 else
20 RESULT = result of ti
21 end
22 end
23 else
24 Execute Cti on next available slot
25 end
26 end
27 end
28 Slide by offset � to next scheduling window
29 return RESULT
30 end

then schedules the remaining tasks in parallel using a single
I/O. For example, in Figure 10, EPPADS uses the task tracker
distribution value, which is computed from the initial time

FIGURE 11. Clone invocation in AccP.

ratio, to schedule the remaining tasks 5, 6, 7, 8, 9, 10, and 11
at once. The key idea here is to achieve the best overall
execution time by making sure that scheduled tasks in the
AccP phase finish at almost same time on all nodes as they
are scheduled based on the nodes execution capabilities.

Therefore, for any scheduling window instance, we assume
time to compute scheduled tasks on all task-trackers is almost
equal. Consequently, the overall scheduling time is speed up
as the remaining tasks are scheduled at once in the accelerate
phase, rather than in a serialized way. The main benefit of
the acceleration phase is to amortize the drawback caused
by sequential scheduling of tasks. Algorithm 1 shows the
scheduling flow of EPPADS using the SSP and the AccP dual
phase scheduling.

E. SPECULATIVE EXECUTION OPTIMIZATION
In order to increase the job execution performance the man-
ner in which straggler tasks/nodes within the cluster are
detected is important. Two important questions to come up
with a suitable solution arises; (i) At which stage during task
execution is a straggling node detected? (ii) At the time of
straggler node detection, does the launch of a speculative
task avoid the job execution delay or it actually causes more
overheads? To answer these two questions, the dual-phase
design of EPPADS assist in detecting straggler nodes early
before serious degradation in job processing performance.
At the slow start phase a straggling node is flagged.

Later at the accelerate phase, if a task is scheduled to a
straggler node a redundant task called a clone is concurrently
scheduled to the nearest non-straggler node with greatest
distribution ratio. We use a topology-aware mechanism that
prioritizes a faster node within the same rack. The nearest
node here refers to the shortest hop count, location in cabinet,
etc, depending with cluster set-up. Figure 11 shows the invo-
cation of a clone of task-5 which was scheduled to straggler
task tracker-1. The benefit of the concurrent scheduling of
a straggler task and its clone, is that we can fuse the task
scheduling together with the task pre-speculation. This helps
to amortize the delay in speculative execution caused in pre-

VOLUME 7, 2019 140269

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

Algorithm 2 Minimizing Delay in Clone Execution
Input: ti, ith task in scheduling window
DRi, Distribution ratio of task-trackeri
SFi, Straggler Flag of task tracker nodei
Cti, Clone of Task ti
Rti, Remaining time to complete task ti
RCti, Remaining time to complete cloned task Cti
Output: Cti_RESULT, key-value pair of task Cti;
for Cti 6= 0 do

1 while ti.begin = true do
2 if SF = 1 then
3 Cti_Launch on node with max DRi
4 end
5 else
6 Cti_Launch = false
7 end
8 end
9 return Cti_RESULT

10 end

vious works where a straggler is detected at the middle of task
execution. In the event that two or more tasks are scheduled
to a straggler node, then the tasks are shared equally among
the nearest non-straggler nodes. By so doing we improve
the speculative task execution and consequently improve job
processing time. Algorithm 2 depicts the cloning process
in EPPADS.

IV. ENERGY EFFICIENT DATA PROCESSING
In-order to achieve effective energy efficient computation,
EPPADS has to find a way of maximizing energy conser-
vation within the cluster. Recall that one of the idea behind
EPPADS is to remove the heavy instrumentation or commu-
nication overheads between the job tracker and task tracker
nodes. By so doing, this reduces, to some degree, the amount
of power used by the cluster nodes. As depicted in our evalu-
ation Section VI-B, removing the instrumentation overheads
alone is not sufficient enough to achieve maximum power
savings. To further reduce the energy consumption within
the cluster, the PTT module exploits the information from
the ETP module to provide power transition flags between
effective and straggling nodes. Based on the power transition
tags the PBEC module groups the nodes into two different
power pools and then provide an easy and effective power
transition management to a large number of nodes belonging
to the same pool at the same time. We discuss in detail
about the PTT and PBEC modules in Section IV-A and IV-B.
Figure 12 depicts the proposed pool based power manage-
ment design in our approach.

A. POWER TRANSITION TAGGING (PTT) MODULE
Key Idea (Flag Straggling Nodes With Low Power Tag):
As discussed in Section III-D2, EPPADS leverages on the
straggler flag in the ETP module to distinguish between the

effective and straggling processing nodes. Since, for any task
scheduled to a processing node marked as a straggler, we fuse
task scheduling in parallel with its corresponding speculative
task, then it is beneficial to prioritize node power to the effec-
tive nodes as there is high probability of the speculative task
to finish earlier than the original straggling task. In this case,
the PTT module queries the ETP module for the straggler
flag, and based on the straggler flag, it tags all processing
nodes marked as stragglers to a low power transition state,
that is PTT = 0. We call this phenomenon power transition
tagging. The power transition module then transit all the
processing nodes with tag PTT = 0 to a low power state and
all the processing nodes with tag PTT = 1 to a higher power
state.

B. POOL BASED ENERGY CONSERVATION (PBEC)
MODULE
Key Idea: Aggregate Power Savings With Pool Based Power
Management: One challenge that is associated with cluster
power management is how to easily and effectively transit
the power for a large number of nodes. Power transition
decisions per individual node may not give the best power
saving results, and also the number of power transition mes-
sage broadcast may complicate the whole powermanagement
process. In-order to ease the power transition management,
EPPADS uses a dual based node pooling approach depicted
in Figure 12.

We take advantage of the power transition tags to group all
the nodes into two pools, the high power state pool (HPSP)
and the low state power pool (LPSP). Nodes tagged with
transition tag PTT = 1 are pooled in the high power state
pool and vice versa for the nodes with transition PTT = 0.
The power transition module then broadcast power transition
signals to the 2 pools using a single message per pool, that
is, the high power signal (P1) to the HPSP and the low power
signal (P0) to the LPSP. With this approach EPPADS is able
to give a simple power management design for large scale
data clusters.

V. IMPLEMENTATION
A. MODIFICATION IN HADOOP
In-order to implement EPPADS in the existing Hadoop setup,
we modified the Jobtracker and the task tracker implemen-
tations and replaced the TaskReport module with the ETP
module in Hadoop version 2.7.2.Wemodified the JobTracker
module to use 2 classes, the ssp class, and the acc_p class,
for the slow-start and accelerate phase respectively. The ssp
class polls each task tracker node computing time using FIFO
based scheduling and communicates with the etp module
which records and stores the compute capabilities of each task
tracker in an array as described in Section III-C.

After that, the acc_p class uses the information stored in the
etp array and schedules all the remaining tasks in a scheduling
window instance in parallel. Due to the tagging information
stored in the etp array, that indicates effective and straggling
nodes in the cluster, acc_p class schedules a redundant task

140270 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 12. Proposed cluster power management design.

for tasks scheduled to nodes with straggler flag, SF = 1.
This redundant task is scheduled to the node with highest
distribution ratio.

Since we heavily depend on the ETP module for deter-
mining straggling nodes, we disabled most reporting and
tracking functionalities on the JobTracker module to limit
the communication overheads. We modified the TaskTracker
module so that it only sends a few light-weight reporting
messages that are polled by the ETP module.

B. POWER TRANSITION MODULE IMPLEMENTATION
Nowadays, modern processors are provisioned with a num-
ber of different operating frequencies which can be var-
ied dynamically using dynamic voltage frequency scaling
(DVFS) [37]–[40]. To this end, we implemented a software
defined power management scheme that leverages the use of
DVFS to transit the processing nodes between high and low
frequencies.

To simplify our implementation, we designed our proposed
power transition module to operate in dual mode frequency.
We set the higher state frequency to the maximum 2100MHz
of our nodes and the lower state frequency to 250 MHz.
The power transition module makes use of the ETP tagging
information to group the nodes into two pools, HPSP and
LPSP. A single frequency transition broadcast signal is then
send to each of the pools to switch the operating frequency of
the nodes to either the high state frequency or the low state
frequency.

C. TESTBED SETUP
To evaluate the behavior and performance of our proposed
EPPADS scheduler on a large scale data cluster, we con-
figured the modified version of Hadoop [41] that fuses with
our proposed EPPADS scheduler. We configured the mod-
ified hadoop (version 2.7.2) on a real cluster composed
of 128 nodes running on Linux CentOS v7.3 and equipped

with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz. The
number of cores and memory allocated per each node is
depicted in Table 1, which depicts heterogeneity among task
tracker nodes. Each storage server is equipped with a total
of 2TB ATA HDDs. On the Hadoop configuration, we set the
replication factor of 3 and set the number of Map and reduce
tasks per each node to 3.
Workloads: For all experiments irrespective of difference

in workload type, we used a total of 10 TB input data. In cases
where the input data was less than 10 TBwe simply amplified
the input data by a factor which makes it equal or close to
10 Terabytes. For experiments in Figure 13, Figure 14 and
Figure 16 we used the Scan workload traces with the number
of processing nodes equaling to 128. In Figure 15 experiment,
we used a variety of workload traces from the HiBench suite
and also with a fixed number of processing nodes equal
128. For the energy conversation experiments (Section VI-
B) we specify under each subsection the type of workloads
used.

To evaluate the effectiveness of the proposed EPPADS
scheduler, we compared the following approaches:

• FIFO: This is the default scheduler in MapReduce frame-
work. We used this as the baseline in our evaluation. FIFO
schedules tasks equally between task tracker nodes irre-
spective of any difference in processing capabilities that
might exist between the nodes.
• DynMon: To show the impact of node instrumentation

in large scale processing clusters, we implemented a
Dynamic Scheduling Algorithm which uses some instru-
mentation modules to monitor task trackers. The instru-
mentation modules regularly collect task tracker system
level information and compute some utility value which
is used to make scheduling decisions. Like all the exist-
ing Dynamic approaches it follows a First-In First-Out
approach of scheduling job tasks. We called this Approach
DynMon.

VOLUME 7, 2019 140271

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

TABLE 1. Testbed setup with 128 heterogeneous task trackers (TTs) and a single powerful job tracker (JT) node.

FIGURE 13. Scalabilty analysis.

FIGURE 14. Effects of job slow down.

• Proposed:This refers to our proposed EPPADS implemen-
tation approach referred to in Section III.
• Proposed + PBPT: This refers to the pool-based power

transition module built on top of the proposed EPPADS
implementation.

In the next section, we evaluate our proposed EPPADS
scheduling scheme. We first compare the performance with
existing scheduling techniques and then secondly, we evalu-
ate the power saving effectiveness of our pool-based power
transition approach with existing approaches.

VI. EVALUATION
A. PERFORMANCE AND SCALABILITY EVALUATION
1) SCALABILITY ANALYSIS
To show the scalability effectiveness of our proposed
EPPADS scheduler, we first measured the performance effect
caused by increasing the number of the nodes in the cluster.
We started with 4 task tracker nodes and doubled the nodes
at each experimental run until the size depicted a large sized
data processing cluster-128 task trackers. Figure 13 shows
the results of our experiment. The results shows that as the
number of task-tracker nodes increases, the job execution
performance increases for all algorithms. This is because
the contention in the cluster decreases with increasing num-
ber of task-trackers. However as we kept on adding the
cluster processing nodes, we observed that the performance
start to degrade at a certain point (after 64 nodes in our
setup) in FIFO and the DynMon scheduling approaches.

However, EPPADS performance does not suffer from the per-
formance degradation due to continuous increase in cluster
nodes.

This is because of the fact that, though the node instrumen-
tation forms an integral part of dynamic and self adaptive-
ness of scheduling algorithm, it incurs monitoring overheads
as the number of nodes to be monitored increases above a
certain limit. This is mostly due to the frequent communi-
cation overheads between the centralized job tracker node
and the processing task tracker nodes. However, due to the
approach in which EPPADS eliminates the use of instru-
mentation modules, this communication overhead is greatly
amortized, thus no degradation as the cluster size becomes
huge.

2) EXECUTION TIME PERFOMANCE
Figure 14 shows the job execution time comparison between
FIFO, DynMon and proposed EPPADS, at different stages
in their Map phases. NF stands for No-Fault in which
all the tasks associated with that job executed in normal
time without any delay. FJ stands for Faulty Job in which
one or more tasks contributed to the slow down of that
specific job. Each plotted point on the graph depicts a
single job and its execution time at different stages of
the map phase. The solid plotted points depict jobs with-
out failures and the non-solid plotted points represent jobs
which incurred some failure or slow down during their
processing.

We observed a big job execution performance degradation
of 2× or more when there is a job failure in the base-
line FIFO scheduling approach and the DynMon scheduling
approach. We attribute this to the delayed speculative task
invocation caused by the straggler hunting approach. Mostly
a speculative task is invoked at a later stage when the primary
task has been running for quite a number of seconds. The Job
tracker later observes that the task is straggling and decides
to launch a redundant task. This speculative task invocation
is often too late to minimize the slowdown to job processing
performance.

However, the job slowdown is significantly less in our
proposed EPPADS scheduling approach. This is due to the
dual-phase approach used in our approach. The straggler
detection is determined in the Slow Start Phase and then any
task which are scheduled to nodes marked as stragglers has
a corresponding cloned task which is scheduled at the same
time with the straggler task. This drastically reduces the delay
in speculative task invocation caused in current scheduling
approaches. EPPADS reduces the delayed speculative task
invocation by almost 2×, thereby drastically improving the
job processing performance.

140272 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 15. Performance with HiBennch suite.

3) JOB THROUGHPUT ANALYSIS
Figure 15 shows the job throughput comparison between the
baseline FIFO scheduler, Adaptive Dynamic Approach with
monitoring - DynMon, and the proposed EPPADS scheduler.
To do an intensive evaluation of our proposed approach,
we employed the HiBench benchmark suite which consists
of a number of benchmark workloads. We observed that
our proposed EPPADS scheduler have an average through-
put performance improvement of 30% and 22%, com-
pared to the baseline and DynMon scheduling approaches,
respectively.

The reason behind this is the concurrent scheduling of
job tasks in the accelerate phase (AccP) of EPPADS using a
single scheduling I/O. One might argue that the scheduling in
the slow-start phase degrades the job processing throughput,
but the worst case scenario is equal with the best case of
baseline FIFO and DynMon cases which all schedules the
task in a sequential First-In First-Out Approach. However
the AccP of EPPADS increases the job throughput signifi-
cantly as multiple jobs are scheduled at once. Furthermore,
the concurrent scheduling of straggling tasks with their clones
increases the performance as this helps to amortize the spec-
ulative execution delay.

4) JOB QUEUING TIME
Another important factor in determining job processing per-
formance is the amount of time a job spends in the queue
before it can be scheduled for processing. For each approach
we profiled the job waiting time from the time the job tracker
node receives a job request until the first task of that job is
scheduled for processing in any of the task tracker nodes.
Figure 16 shows the results of this experiments. We observed
that when there is no fault in the processing nodes, the job
waiting time in EPPADS is less as compared to baseline FIFO
and DynMon approaches. However this gap increases when
there are job faults within the processing nodes. We observe
that in the existence of job faults, the job waiting time in FIFO
and DynMon approaches increases dramatically.

This is mostly due to the following two factors;
(i) The serialized scheduling of job tasks in FIFO and
DynMon approaches increases the job waiting time. Further-
more, when multiple job failure occurs, other jobs has to
wait whilst the failed jobs execute extra speculative tasks.
(ii) To make it worse there is a delay in launching these
extra speculative tasks in the FIFO and DynMon scheduling

FIGURE 16. Comparison of job waiting time.

FIGURE 17. Job process time breakdown.

approaches. On the other hand, the job waiting time in the
proposed EPPADS scheduler does not increase significantly.
This is because of the early detection of straggler nodes in
EPPADS. Also, the job waiting time is reduced significantly
due to the scheduling of multiple job tasks in parallel during
the accelerate phase. The reduction of job waiting time in the
queue assist in boosting the job processing performance.

5) EFFECTS OF THE DUAL-PHASE SCHEDULING
In this subsection we evaluate the effect of the dual phase
pipelining in terms of the aggregate time spend during the
scheduling stage and task execution phase. Figure 17 shows
the aggregated time that was taken during scheduling and
task processing phases using the Scan workload from the
HiBench benchmark with 10 TB of data as input. i) The
results shows that our proposed EPPADS has a high schedul-
ing performance as compared to the baseline and Dynamic
Monitoring approaches. ii) Even if EPPADS adopts a sequen-
tial scheduling approach to schedule the first initial tasks in
the slow-start phase (SSP), the results shows that during the
accelerate phase, our proposed scheduler speed-up the task
processing by scheduling multiple tasks in parallel using a
single scheduling I/O. By using the dual phased scheduling
in the proposed design we archive a job performance increase
of 43% and 32% as compared to the baseline and DynMon
approaches, respectively.

B. ENERGY EFFICIENCY ANALYSIS
In this section we evaluate the effectiveness of EPPADS
towards attaining energy efficient computing. To achieve
this we first measure the power consumption from the com-
putation of a similar task on all approaches. We compare
the power consumption of the baseline, DynMon approach,
proposed approach (EPPADS without the pool-based power

VOLUME 7, 2019 140273

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

FIGURE 18. Snapshot of cluster power usage over 500 seconds.

FIGURE 19. Power consumption with different workloads.

transitioning modules) and proposed+ PBPT (EPPADS pro-
visioned with the pool-based power transition module).

1) ENERGY CONSUMPTION TREND
To roughly understand the energy consumption effective-
ness of the different approaches, we first took a snapshot
of the first 485 seconds of running a job using the Sort
workload from the Hi-Bench suite. From Figure 19 (a),
we observed that the energy consumption trend from our
proposed approach outperforms the baseline and theDynMon
approaches. However, provisioning the pool-based power
transitioning module in the cluster will further increase the
energy saving effectiveness as shown by the trend of the
proposed+ PBPT in Figure 19.

This is because the proposed EPPADS is free from the
heavy instrumentation modules that is associated with the
baseline and DynMon Approaches. Moreover, when pro-
visioned with the pool-based power transitioning module,
EPPADS lowers the power usage of none performing nodes
in the cluster, which helps to reduce power consumption.
This benefit becomes so significant when the cluster scales
to hundreds of nodes.

2) ENERGY EFFECTIVENESS WITH VARIOUS WORKLOADS
To do a rigorous analysis of the energy efficient computing
of EPPADS, we evaluate the energy consumption with differ-
ent workload characteristics. In this experiment we used the
Wordcount, Terasort and Join workloads from the Hi-Bench
suite to analyze the energy consumption between the different
approaches. Figure 19 shows the average power consumption
of the different approaches with various workloads.

The results shows that our proposed approach provides
consistent energy efficient computing in all the various work-
load characteristics. In all cases, the proposed EPPADS
approach shows superior energy savings as compared to the
baseline and DynMon approaches. Also, in all the different
workload characteristics, the proposed + PBPT approach

FIGURE 20. Energy consumption and CPU utilization.

further decreases the cluster power consumption as compared
to all other approaches. This result shows that our proposed
design can provide for the much needed energy saving com-
puting in large scale cluster environments.

3) POWER CONSUMPTION AND CPU UTILIZATION
In this section we analyze the relationships between the
power consumption and the CPU utilization for the differ-
ent approaches using the Sort workload from the Hi-Bench
suite. Figure 20 shows the correlation between the energy
consumption and CPU utilization of the different scheduling
approaches. The results depict a direct proportional relation-
ship between the power consumption usage and the CPU
utilization. The more the CPU utilization, the more the power
consumption in the cluster.

This is evidenced by the results of the baseline and Dyn-
Mon approaches which shows high power consumption and
high power CPU utilization. On the contrary, our proposed
approach shows both low power consumption and low CPU
resource utilization. The reason behind this is that the power
consumption of the CPUs in the servers contributes to the
larger portion of energy consumption in the cluster. There-
fore, the more the CPU utilization of cluster nodes, the more
the power consumption in the server.

Generally, task schedulers over provision resources for job
processing. However, over provisioning of CPU resources
to non performing nodes can lead to unnecessary over-
utilization of power. EPPADS uses the pool-based power
transitioning (PBPT) scheme to switch all nodes marked as
stragglers (PT = 0) to a low power state, thereby amor-
tizing the over-utilization of CPU resources. By so doing,
the overall power consumption of our proposed approach
provisioned with PBPT is reduced significantly as compared
to the proposed without PBPT, the baseline and the DynMon
approaches altogether. In overall, EPPADS with PBPT shows
an average power savings between 15% to 20% as compared
to the other approaches.

VII. RELATED WORKS
The way in which jobs are scheduled and processed play
a vital role in boosting up the job execution performance
in large scale data processing clusters. The baseline FIFO
scheduling algorithm schedules the tasks equally among all
the available task tracker nodes [5]. On the flip side, when

140274 VOLUME 7, 2019

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

the baseline FIFO scheduler is subjected to clusters pro-
visioned with heterogeneous nodes, it results in significant
performance degradation. This is because of the imbalances
in computational power that exists between the nodes.

Quite a number of previous works on dynamic and self
adaptive schedulers [6]–[10], [18], [20], [42] has been inves-
tigated in order to limit the job execution performance degra-
dation in heterogeneous cluster environments. However, they
adopted node instrumentation and monitoring to frequently
collect the system level information of task tracker nodes
which is consequently used as a basis to make schedul-
ing decisions and speculative task invocations. In spite of
this improvement, additional instrumentation can cause sys-
tem performance degradation as the number of task tracker
nodes increases. Furthermore, all these prior studies follow
a sequential task scheduling approach in which a succes-
sive task can only be scheduled only if one of the already
scheduled tasks is completed, which is a major constraint in
achieving maximum job processing performance.

The authors of [2], [4], [18], [21], [43]–[46], proposed
proactive straggler mitigation techniques to minimize job
processing time in production clusters. The technique of
straggler ‘‘hunting’’ was used in these works which often wait
until tasks are straggling so as to invoke a speculative task.
However, these solutions suffer from enough information
needed to separate between slow nodes and faster nodes.
These approaches are likely to cause some unnecessary over-
utilization of resources without significant improvement in
job completion performance. This is likely due to scheduling
of speculative tasks onto already slower nodes. To avoid such
scenarios our proposed EPPADS scheduler detects the strag-
glers at an early stage of the slow-start phase and speculative
tasks are launched on the nearest effective processing node
using a topology aware policy (preference given to node in
the same rack).

On the contrary, energy efficient computing is an important
issue in amortizing the costs associated with data computa-
tion, especially in large scale cluster environments. A lot of
previous works, [24], [28]–[34], [47]–[49], tried to provision
some techniques that amortize the energy costs associated
with intensive computation in large data centers. Works such
as [47]–[49] achieved the benefits of combining schedul-
ing and power management, but the drawback is that they
assumed this job scheduling and power management in a
uni-processor environment. Most of the other works [24],
[28]–[34], tried to leverage on idle time slots, which might
be challenging to obtain in situations where there is scarcity
of idle times. GreenHDFS [29], amplifies this idle time by
separating hot and cold data and then migrate the cold data
into servers reserved for data that is not frequently accessed.
Consequently, they will transition these servers allocated for
cold data into low power states.

However, it presents a challenge that, in-order for the
migration of cold data to cold region, it requires periods
of inactivity. This might not result in the anticipated maxi-
mum energy savings. To resolve this challenge, our proposed

solution uses straggler flagging, not idleness to transit the
servers flagged as stragglers into low power state. In periods
of idleness EPPADS also leverages on the idle states of
nodes to further reduce energy consumption in the cluster.
Collectively, none of the previous works implemented a
multi-task scheduling approachwhich is employed in our pro-
posed approach. The phase based implementation in EPPADS
greatly improves the job execution performance as evidenced
by our evaluation results.

VIII. CONCLUSION
This paper presents EPPADS, a lightweight and high per-
formance job scheduler for improving job processing per-
formance in large scale data processing clusters. With its
dual phased scheduling approach, EPPADS can drastically
mitigate the job straggler problem in production clusters.
This is achieved through the early detection of stragglers in
the slow-start phase (SSP) and the speed-up in scheduling
performance that occurs at the acceleration phase(AccP).
Furthermore, EPPADS achieves efficient energy computing
by coordinating the scheduling together with its power saving
management scheme.Our experimental evaluation shows that
EPPADS achieves both significant performance increase and
energy savings and can guarantee the much needed energy
savings in large scale clusters.

REFERENCES
[1] P. Swabey. The Data Deluge: Five Years On. Accessed:

May 2, 2019. [Online]. Available: https://www.slideshare.
net/economistintelligenceunit/the-data-deluge-five-years-on

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, ‘‘Reining in the outliers in map-reduce clusters using
Mantri,’’ in Proc. 9th USENIX Symp. Operating Syst. Design Implement.
(OSDI), Vancouver, BC, Canada, Oct. 2010, pp. 265–278.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, ‘‘Effec-
tive straggler mitigation: Attack of the clones,’’ in Proc. 10th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), Lombard, IL, USA, 2013,
pp. 185–198.

[4] H. Xu and W. C. Lau, ‘‘Task-cloning algorithms in a mapreduce cluster
with competitive performance bounds,’’ in Proc. IEEE 35th Int. Conf.
Distrib. Comput. Syst., Jun./Jul. 2015, pp. 339–348.

[5] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[6] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, ‘‘Improv-
ing mapreduce performance in heterogeneous environments,’’ in Proc. 8th
USENIX Conf. Operating Syst. Design Implement., Berkeley, CA, USA,
2008, pp. 29–42.

[7] H.-H. You, C.-C. Yang, and J.-L. Huang, ‘‘A load-aware scheduler for
mapreduce framework in heterogeneous cloud environments,’’ in Proc.
ACM Symp. Appl. Comput., New York, NY, USA,Mar. 2011, pp. 127–132.

[8] S.-J. Yang, Y.-R. Chen, and Y.-M. Hsieh, ‘‘Design dynamic data allo-
cation scheduler to improve mapreduce performance in heterogeneous
clouds,’’ in Proc. IEEE 9th Int. Conf. e-Business Eng. (ICEBE), Sep. 2012,
pp. 265–270.

[9] X. Sun, C. He, andY. Lu, ‘‘ESAMR:An enhanced self-adaptivemapreduce
scheduling algorithm,’’ in Proc. IEEE 18th Int. Conf. Parallel Distrib. Syst.
(ICPADS), Dec. 2012, pp. 148–155.

[10] A. Rasooli and D. G. Down, ‘‘COSHH: A classification and optimization
based scheduler for heterogeneous Hadoop systems,’’ Future Gener. Com-
put. Syst., vol. 36, pp. 1–15, Jul. 2014.

[11] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, ‘‘Energy efficiency for
large-scale mapreduce workloads with significant interactive analysis,’’ in
Proc. 7th ACM Eur. Conf. Comput. Syst., New York, NY, USA, Apr. 2012,
pp. 43–56. doi: 10.1145/2168836.2168842.

VOLUME 7, 2019 140275

http://dx.doi.org/10.1145/2168836.2168842

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

[12] J. A. Aroca, A. Chatzipapas, A. F. Anta, andV.Mancuso, ‘‘Ameasurement-
based analysis of the energy consumption of data center servers,’’ in
Proc. 5th Int. Conf. Future Energy Syst., New York, NY, USA, Jun. 2014,
pp. 63–74. doi: 10.1145/2602044.2602061.

[13] L. Alsbatin, G. Öz, and A. H. Ulusoy, ‘‘An overview of energy-efficient
cloud data centres,’’ in Proc. Int. Conf. Comput. Appl. (ICCA), Sep. 2017,
pp. 211–214.

[14] H. Yuan, C.-C. J. Kuo, and I. Ahmad, ‘‘Energy efficiency in data centers
and cloud-based multimedia services: An overview and future directions,’’
in Proc. Int. Conf. Green Comput., Aug. 2010, pp. 375–382.

[15] J. K. Verma and C. P. Katti, ‘‘A comparative study into energy efficient
techniques for cloud computing,’’ in Proc. IEEE 2nd Int. Conf. Comput.
Sustain. Global Develop. (INDIACom), Mar. 2015, pp. 2062–2067.

[16] Y. Qiu, C. Jiang, Y. Wang, D. Ou, Y. Li, and J. Wan, ‘‘Energy aware virtual
machine scheduling in data centers,’’ Energies, vol. 12, no. 4, p. 646, 2019.
[Online]. Available: https://www.mdpi.com/1996-1073/12/4/646

[17] P. Hamandawana, R. Mativenga, S. J. Kwon, and T.-S. Chung, ‘‘EPPADS:
An enhanced phase-based performance-aware dynamic scheduler for high
job execution performance in large scale clusters,’’ in Proc. 24th Int. Conf.
Database Syst. Adv. Appl., G. Li, J. Yang, J. Gama, J. Natwichai, and
Y. Tong, Eds. Cham, Switzerland: Springer, 2019, pp. 140–156.

[18] J. H. Hsiao and S. J. Kao, ‘‘A usage-aware scheduler for improving mapre-
duce performance in heterogeneous environments,’’ in Proc. Int. Conf. Inf.
Sci., Electron. Elect. Eng. (ISEEE), vol. 3, Apr. 2014, pp. 1648–1652.

[19] H. Fu, H. Chen, Y. Zhu, and W. Yu, ‘‘FARMS: Efficient mapreduce
speculation for failure recovery in short jobs FARMS: Efficient mapreduce
speculation for failure recovery in short jobs,’’ Parallel Comput., vol. 61,
pp. 68–82, Jan. 2017.

[20] A. Rasooli and D. G. Down, ‘‘A hybrid scheduling approach for scalable
heterogeneous Hadoop systems,’’ in Proc. SC Companion, High Perform.
Comput., Netw. Storage Anal., Nov. 2012, pp. 1284–1291.

[21] Q. Chen, C. Liu, and Z. Xiao, ‘‘Improving mapreduce performance using
smart speculative execution strategy,’’ IEEE Trans. Comput., vol. 63, no. 4,
pp. 954–967, Apr. 2014.

[22] H. Xu,W. C. Lau, Z. Yang, G. de Veciana, and H. Hou, ‘‘Mitigating service
variability in mapreduce clusters via task cloning: A competitive analy-
sis,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 10, pp. 2866–2880,
Oct. 2017.

[23] A. S. G. Andrae and T. Edler, ‘‘On global electricity usage of communica-
tion technology: Trends to 2030,’’ Challenges, vol. 6, no. 1, pp. 117–157,
2015.

[24] M. Anan and N. Nasser, ‘‘SLA-based optimization of energy effi-
ciency for green cloud computing,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2015, pp. 1–6.

[25] J. Wu, S. Rangan, and H. Zhang, Green Communications: Theoretical
Fundamentals, Algorithms and Applications. Boca Raton, FL, USA: CRS
Press, 2012.

[26] J. Wu, S. Guo, J. Li, and D. Zeng, ‘‘Big data meet green chal-
lenges: Greening big data,’’ IEEE Syst. J., vol. 10, no. 3, pp. 873–887,
Sep. 2016.

[27] C. Ge, Z. Sun, N. Wang, K. Xu, and J. Wu, ‘‘Energy management in cross-
domain content delivery networks: A theoretical perspective,’’ IEEE Trans.
Netw. Service Manag., vol. 11, no. 3, pp. 264–277, Sep. 2014.

[28] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan,
‘‘Robust and flexible power-proportional storage,’’ in Proc. 1st ACM
Symp. Cloud Computing, New York, NY, USA, Jun. 2010, pp. 217–228.
doi: 10.1145/1807128.1807164.

[29] R. T. Kaushik and M. Bhandarkar, ‘‘GreenHDFS: Towards an energy-
conserving, storage-efficient, hybrid Hadoop compute cluster,’’ in Proc.
Int. Conf. Power Aware Comput. Syst., Berkeley, CA, USA, 2010, pp. 1–9.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1924920.1924927

[30] D. Cheng, X. Zhou, P. Lama, M. Ji, and C. Jiang, ‘‘Energy efficiency
aware task assignment with DVFS in heterogeneous Hadoop clusters,’’
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 70–82, Jan. 2018.

[31] V. Getov, A. Hoisie, and P. Bose, ‘‘New frontiers in energy-efficient com-
puting [Guest editors’ introduction],’’Computer, vol. 49, no. 10, pp. 14–18,
Oct. 2016.

[32] D. Cheng, P. Lama, C. Jiang, and X. Zhou, ‘‘Towards energy efficiency
in heterogeneous Hadoop clusters by adaptive task assignment,’’ in Proc.
IEEE 35th Int. Conf. Distrib. Comput. Syst., Jul. 2015, pp. 359–368.

[33] W. Liu, H. Li, and F. Shi, ‘‘Energy-efficient task clustering scheduling on
homogeneous clusters,’’ inProc. Int. Conf. Parallel Distrib. Comput., Appl.
Technol., Dec. 2010, pp. 381–385.

[34] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, ‘‘No
‘power’ struggles: Coordinated multi-level power management for the
data center,’’ SIGARCH Comput. Archit. News, vol. 36, no. 1, pp. 48–59,
Mar. 2008. doi: 10.1145/1353534.1346289.

[35] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi, ‘‘Energy-
aware scheduling of mapreduce jobs for big data applications,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 10, pp. 2720–2733, Oct. 2015.

[36] Y. Shao, C. Li, W. Dong, and Y. Liu, ‘‘Energy-aware dynamic resource
allocation on Hadoop YARN cluster,’’ in Proc. IEEE 18th Int. Conf. High
Perform. Comput. Commun., IEEE 14th Int. Conf. Smart City, IEEE 2nd
Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Dec. 2016, pp. 364–371.

[37] J. Lee, B.-G. Nam, and H.-J. Yoo, ‘‘Dynamic voltage and frequency
scaling (DVFS) scheme for multi-domains power management,’’ in
Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2007,
pp. 360–363.

[38] E. Le Sueur and G. Heiser, ‘‘Dynamic voltage and frequency scaling: The
laws of diminishing returns,’’ in Proc. Int. Conf. Power Aware Comput.
Syst., Berkeley, CA, USA, 2010, pp. 1–8. [Online]. Available: http://
dl.acm.org/citation.cfm?id=1924920.1924921

[39] S. Wang, Z. Qian, J. Yuan, and I. You, ‘‘A DVFS based energy-efficient
tasks scheduling in a data center,’’ IEEE Access, vol. 5, pp. 13090–13102,
2017.

[40] D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Examples of Voltage and
Frequency Scaling Design. Boston, MA, USA: Springer, 2007, pp. 139–
154. doi: 10.1007/978-0-387-71819-4_10.

[41] Hadoop. Accessed: May 8, 2019. [Online]. Available:
http://hadoop.apache.org/

[42] Fair Scheduler. Accessed: May 8, 2019. [Online]. Available:
http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[43] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee, and
S. Mukherjee, ‘‘Scheduling in mapreduce-like systems for fast completion
time,’’ in Proc. IEEE INFOCOM, Apr. 2011, pp. 3074–3082.

[44] F. Chen, J. Liu, and Y. Zhu, ‘‘A real-time scheduling strategy based on
processing framework of Hadoop,’’ in Proc. IEEE Int. Congr. Big Data
(BigData Congr.), Jun. 2017, pp. 321–328.

[45] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin, ‘‘Improving mapreduce performance through data placement in
heterogeneous Hadoop clusters,’’ in Proc. IPDPSW, Apr. 2010, pp. 1–9.

[46] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
‘‘Tarazu: Optimizing mapreduce on heterogeneous clusters,’’ ACM
SIGARCH Comput. Archit. News, vol. 40, no. 1, pp. 61–74, Mar. 2012.
doi: 10.1145/2189750.2150984.

[47] P. Singh and N. Hailu, ‘‘Energy-aware online non-clairvoyant multiproces-
sor scheduling: Multiprocessor priority round robin,’’ IET Comput. Digit.
Techn., vol. 11, no. 1, pp. 16–23, Jan. 2017.

[48] P. Singh and B. Wolde-Gabriel, ‘‘Executed-time round Robin: EtRR
an online non-clairvoyant scheduling on speed bounded processor with
energy,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 29, no. 1, pp. 74–84,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S131915781630009X

[49] P. Singh, ‘‘Energy efficient non-clairvoyant scheduling for unbounded-
speed multi-core machines,’’ Comput. Elect. Eng., vol. 67, pp. 441–453,
Apr. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0045790617305475

PRINCE HAMANDAWANA received the B.Sc.
degree (Hons.) in computer science from the
National University of Science and Technology
(NUST), Bulawayo, Zimbabwe, in 2010. He is
currently pursuing the Ph.D. degree in computer
engineering with Ajou University, Suwon, South
Korea, where he is a member of the Database and
Dependable Computing (DBDC) Lab. He worked
as a Network Engineer in two of the Zimbabwean
leading service providers, Econet Wireless, from

2008 to 2011, and Liquid Telecom, from 2011 to 2016. His research interests
include distributed and parallel storage systems, and GPU assisted cluster-
wide data deduplication.

140276 VOLUME 7, 2019

http://dx.doi.org/10.1145/2602044.2602061
http://dx.doi.org/10.1145/1807128.1807164
http://dx.doi.org/10.1145/1353534.1346289
http://dx.doi.org/10.1007/978-0-387-71819-4_10
http://dx.doi.org/10.1145/2189750.2150984

P. Hamandawana et al.: Towards an Energy Efficient Computing With Coordinated Performance-Aware

RONNIE MATIVENGA received the B.Sc. degree
(Hons.) in computer science from the National
University of Science and Technology (NUST),
Bulawayo, Zimbabwe, in 2010. He is currently
pursuing the Ph.D. degree in computer engineer-
ing with Ajou University, Suwon, South Korea.
His current research interests include emerg-
ing nonvolatile storage arrays, building a high-
performance, reliable SSD-based storage systems,
large database systems, distributed systems, and
simulation tools.

SE JIN KWON (M’16) received the M.S. and
Ph.D. degrees in computer engineering from Ajou
University, South Korea, in 2008 and 2012, respec-
tively, where he was a Research Professor with the
Department of Information and Computer Engi-
neering, from 2013 to 2016. He was a Postdoc-
toral Researcher with the University of California,
Santa Cruz, in 2016. He is currently an Assistant
Professor with the Department of Computer Engi-
neering, Kangwon National University, Kangwon-

do, South Korea. His current interests include nonvolatile memory systems,
reliable storage systems, and large database systems.

TAE-SUN CHUNG received the B.S. degree from
KAIST, Daejeon, South Korea, in 1995, and the
M.S. and Ph.D. degrees from Seoul National Uni-
versity, Seoul, South Korea, in 1997 and 2002,
respectively, all in computer science. He is cur-
rently a Professor with the Department of Com-
puter Engineering, Ajou University, Suwon, South
Korea. His current research interests include flash
memory storages, XML databases, and database
systems.

VOLUME 7, 2019 140277

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	MAPREDUCE SCHEDULING MECHANISM
	PERFORMANCE-AWARE DYNAMIC SCHEDULING
	INSTRUMENTATION OVERHEADS
	SEQUENTIAL SCHEDULING OF TASKS
	DELAYED SPECULATIVE TASK EXECUTION
	ENERGY EFFICIENT DATA PROCESSING

	EPPADS DESIGN
	EPPADS DESIGN OVERVIEW
	TASK STAGING AND SCHEDULING MECHANISM
	EXECUTION TIME PREDICTION TABLE (ETP)
	DUAL PHASE PIPELINED SCHEDULING
	KEY IDEA
	STAGE-1: SLOW-START PHASE
	STAGE-2: ACCELERATION PHASE

	SPECULATIVE EXECUTION OPTIMIZATION

	ENERGY EFFICIENT DATA PROCESSING
	POWER TRANSITION TAGGING (PTT) MODULE
	POOL BASED ENERGY CONSERVATION (PBEC) MODULE

	IMPLEMENTATION
	MODIFICATION IN HADOOP
	POWER TRANSITION MODULE IMPLEMENTATION
	TESTBED SETUP

	EVALUATION
	PERFORMANCE AND SCALABILITY EVALUATION
	SCALABILITY ANALYSIS
	EXECUTION TIME PERFOMANCE
	JOB THROUGHPUT ANALYSIS
	JOB QUEUING TIME
	EFFECTS OF THE DUAL-PHASE SCHEDULING

	ENERGY EFFICIENCY ANALYSIS
	ENERGY CONSUMPTION TREND
	ENERGY EFFECTIVENESS WITH VARIOUS WORKLOADS
	POWER CONSUMPTION AND CPU UTILIZATION

	RELATED WORKS
	CONCLUSION
	REFERENCES
	Biographies
	PRINCE HAMANDAWANA
	RONNIE MATIVENGA
	SE JIN KWON
	TAE-SUN CHUNG

