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ABSTRACT Phase-only nulling under sidelobe and mainlobe constraints is a problem of interest in array
synthesis which is a nonlinear problem without analytical solution. To reduce the computational cost of
phase-only array nulling on-line, this paper proposes a real-time phase-only array synthesis method based
on the deep neural network. The on-line real-time prediction of element excitation phase is achieved by the
trained neural network which can be done off-line. The performance of the trained neural network is related
with the number of data. Firstly, in order to obtain a large enough database for the deep neural network
efficiently, a multi-task phase-only array synthesis model with nulling operation and sidelobe control is
relaxed to a convex problem and solved by direct iterative rank refinement. Then, the deep neural network
is devised to emulate the phase array nulling behavior. This is carried out by the design of the structure of
the network, the dataset structure and the loss function of the network. To validate the performance of the
deep neural network, the phase-only nulling of 10-element and 16-element linear array based on the deep
neural network is realized and tested. Experimental results demonstrate that the proposed real-time array
synthesis method not only satisfies the desired array pattern property but also shows robustness to the array
imperfections. Robustness is validated with Monte Carlo test.

INDEX TERMS Array pattern synthesis, deep neural network, interference nulling, robust array synthesis.

I. INTRODUCTION
Antenna array pattern synthesis is to generate the specific
pattern by determining the amplitudes, phases or positions
of the array elements, which is widely used in radar, sonar
and communication systems [1]–[4]. In order to suppress
the noises and interferences, the array pattern is designed
with low sidelobe levels. Moreover, forming nulls at the
interference directions is a more efficient anti-interference
technique. Phase-only array synthesis has received much
attention due to its economic and simplicity in the feeding
network [5], [6]. Phase perturbation technique [5] enables
the nulling equations to be linearized and then an analyt-
ical solution can be obtained. However, it is incapable of
nulling symmetry jammers and will result in the increas-
ing of sidelobe level. In order to achieve multiple goals in
nulling, several evolution algorithms [7]–[9] have been used
to solve the nonlinear phase-only problem, but it is quite
time consuming since evolution algorithms converge slowly.
To adapt to the changing environment, the array requires a
rapid nulling response. Convex optimization has been applied
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in phase-only pattern synthesis problem after the relaxation
operation [10], [11], and demonstrates that the method is
more efficient than evolution algorithms. But the computation
load of convex problem will increase with the number of the
array elements and the number of the constraints. Further-
more, it is still far more beyond real-time response.

For the sake of response instantly to the changing envi-
ronment with desired pattern, neural network based beam-
former was applied to emulate the given array beamforming
model [12], [13]. After learning the behavior from a certain
number of the input-output pairs, the trained neural network
with well generalization ability can predict the output under
any inputs in the domain. The trained neural network can
response in real-time, since it has extremely low computation
complexity with simple linear and nonlinear transform units.
Phase-only synthesis based on back-propagation neural net-
work was first implemented in [14], in which the scanning
range is divided into several sectors and then the main beam
and null directions are being coded according to the sectors
act as the network inputs. The efficiency of the network is
demonstrated, however, it cannot control the nulls and desired
direction of the array pattern accurately. The interference
direction was used as the input of the back-propagation neural
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network in [15], which means that different networks need
to be trained for different number of interferences. Practi-
cally, the number of interferences is not known in advance.
A three layer radial basis function neural network has been
used to find the optimum weight vector for a robust and
fast beamformer [16], the covariance matrix of the array is
used as the input of the network, the approach shows nearly
optimal weight vector of the beamformer with small dataset.
Since the performance of these neural network basedmethods
heavily relied on the generalization ability of the network, it is
essential to establish a large enough dataset to cover the distri-
butions of different signal number and signal directions. With
the limited hidden neurons, the generalization ability of radial
basis function neural network for the complex array synthesis
problems is restricted. Methods based on deep learning are
able to reconstruct the complicated models [17], [18], which
has been successfully applied in the direction of arrival of
the antenna arrays with a large dataset [19]. With a high
model capacity, the deep neural network (DNN) can learn
a nonlinear function from a large quantities of training data
and generalize well. However, it is hard to generate a large
enough dataset for the phase-only array nulling DNN model
because it takes long time in the calculation of the phase-only
array nulling. Thus, it is not only critical to emulate the com-
plicated array nulling model based on DNN model but also
necessary to find an efficient way to prepare the array nulling
dataset.

Besides, the optimum design of the antenna array is diffi-
cult to accomplish because of the array imperfections, such as
the amplitude and phase errors, the effect of mutual coupling,
etc [20], [21]. All these uncertainties of the array would result
in the increase of the null and sidelobe levels, what’s more,
it will shift the nulling directions. As a matter of fact, the error
not only occurs during the nulling operation but also changes
with the operation conditions, which means that it is hard to
estimate. Generally, the error of the array can be considered
as the error in the steering vector. It has been proved that
robustness is a fundamental attribute for the well generalized
machine learning model [22]. When using the information
of the steering vector of the array as the input of the DNN,
the DNN based array nulling is expected to be robust to the
imperfections of the antenna array without using any prior
array imperfection information.

In this paper, to realize the phase-only array nulling with
sidelobe level control in real-time, a phase-only array nulling
model based on DNN is proposed. Firstly, a phase-only array
synthesis model with sidelobe control is constructed. For
the sake of preparing a large enough dataset for the DNN
in acceptable time, the model is then relaxed to a convex
problem by semidefinite relaxing and solved by direct iter-
ative rank refinement(DIRR), which converges fast in get-
ting the approximated rank one solution of the phase-only
array nulling. After that, the DNN model is established for
the phase-only array synthesis model. A large set of solu-
tions of the relaxed convex array synthesis model are used
to train the DNN. The trained DNN aims to maintain the

desired array pattern properties while steering nulls in the
interference directions. Experiments for different number of
array elements are provided to validate the effectiveness of
the proposed method. Besides, the robustness of the proposed
DNN array nulling model is analyzed.

The outline of the paper is as follows. Section II for-
mulates the phase-only array nulling model and solves
the model by DIRR. In section III, the DNN model is
constructed and described in detail about how it fits the
phase-only nulling model. The array imperfections is listed
in section IV. Numerical results are provided in section V
and conclusions are drawn in section VI. Throughout the
paper, bold lower case and bold capital letters represent
vectors and matrices; <() and =() denote the real and the
imaginary parts of their arguments; ()T and ()H are the
transpose operation and the Hermitian transpose operation
respectively.

II. PHASE-ONLY ARRAY NULLING MODEL
Let us assume anN element linear antenna array, the radiation
pattern of the array can be written as:

f (u) = a(u)Tw (1)

where a = [1, e2jπdu/λ, . . . , e2jπdu(N−1)/λ]
T
, λ is the wave

length, d is the elements spacing, u = sinθ , θ is the obser-
vation angle with respect to the broadside direction and j =
√
−1. w = [w0,w1, . . . ,wN−1]T , wn = αnejφn is the excita-

tion weight of the nth element, combining the amplitude αn
and the phase shift φn.

A. PHASE-ONLY ARRAY NULLING MODEL CONSTRUCTION
The radiation power of the antenna array for a given direction
u is

|f (u)|2 = wHa(u)a(u)Hw (2)

The radiation power can be equivalently formulated by the
real vectors:

|f (u)|2 = xTA(u)TA(u)x = xTQx

with A =
[
<(a(u)T ) −=(a(u)T )
=(a(u)T ) <(a(u)T )

]
, x =

[
<(w)
=(w)

]
(3)

Since matrix Q is a real symmetric matrix and x is a real
vector, assuming that xxT = X∈R2N×2N , the radiation power
of the array becomes

|f (u)|2 = xTQx = Tr(QX) (4)

where Tr(B) is the trace of matrix B, X should be a rank one
matrix.

In the phase-only array synthesis, the excitation amplitude
of the elements remain unchanged, thus the total output power
of the array is fixed. The increase of sidelobe level of the array
pattern will lead to the decrease of main lobe gain. To reduce
the number of constraints, the sidelobe control is replaced by
controlling the desired direction gain since the array output
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power is fixed. The phase-only array synthesis model can be
expressed as:

min Tr(QiX), u∈�i

s.t. Tr(QdX)≥δd , u∈�d (a)

Tr(QmX)≤Tr(QdX), u∈�m (b)

Tr(QnX) = αn
2, n = 0, 1, . . . ,N − 1 (c)

rank(X) = 1 (d)

(5)

where �i, �m, �d denotes the interference directions,
the region near the desired direction and the desired direction
respectively.Qn matrix composed of all zeros exceptQn(n, n)
and Qn(n+ N , n+ N ) equal 1. The optimization is to mini-
mize the power at the interference directions while satisfying
the following constraints: preserving the desired direction
power which is expressed by constraint (a), maintaining the
direction stable which is describedwith constraint (b), forcing
the array element amplitude unchanged while alternating the
phase of the elements to form nulls in the array pattern which
is shown in constraint (c) and remaining the rank of matrix X
to one which is denoted as constraint (d).

The optimization problem in (5) is a NP-hard problem
because of the rank constraint. When relaxing the rank
constraint, the optimization in (5) becomes a semidefinite
programming problem (SDP), which can be solved by con-
vex optimization using interior point methods [23]. How-
ever, standard interior point methods almost never return a
low-rank solution. To get low rank solutions, several iterative
techniques have been proposed to minimize the rank of the
solution [24]. In this paper, direct iterative rank refinement is
applied to solve (5), because it converges fast to an approxi-
mately rank one solution matrix [25].

B. DIRECT ITERATIVE RANK REFINEMENT FOR THE
ARRAY SYNTHESIS MODEL
Since X is a symmetric matrix, its singular value decomposi-
tion is formed as follows:

X =
2N−1∑
n=0

σnvnvTn (6)

where σ1≥· · ·≥σ2N are the ordered singular values and vn is
the corresponding singular vector. When the ratio R

R = σ1/(
2N−1∑
n=0

σn) (7)

approximates 1, the solution of X is approximated as rank
one, then the candidate solution of the model can be formu-
lated as

w̃ =
√
σ1v1 (8)

Since the solution obtained from the convex optimal is
not always the rank one solution, hence, we are going to

iteratively minimize the rank of W . At each iteration k ,
the following SDP is solved:

min Tr((1− γk )Qi − γkv
k
1v
k
1
T
)Xk+1, u∈�i

s.t. Tr(QdX)≥δd , u∈�d

Tr(QmX)≤Tr(QdX), u∈�m

Tr(QnX) = αn
2, n = 0, 1, . . . ,N − 1 (9)

where γk is the parameter controlling the trade off between
the power of the array pattern at the interference direction
and the rank of the obtained solution. Here, γk is chosen as a
function of R in the kth iteration:

γk =


0, k = 1

1− σ k1 /
2N∑
n=1

σ nk , k > 1
(10)

By maximizing the energy of Xk along the singular vector,
the approximate rank one solution can be obtained in a few
iterations. The corresponding excitation phase of the n-th
element is obtained as:

φn = angle(v1(n)+ jv1(n+ N )) (11)

where angle() denotes the phase angle of the complex value.

III. PATTERN NULLING BASED ON DEEP NEURAL
NETWORK
Deep neural network generally consists of several cascaded
layers. Each layer in the network consists of several neurons.
For a fully connected network, every neuron in every layer is
connected to each neuron in the previous layer. Such a con-
nection is mathematically defined as a linear transformation
using aweightmatrixwith the addition of a bias, which is then
followed by a non-linear activation function. Assuming that
the activation function applied to the l-th layer is denoted by
hl , the relation between the (l − 1)-th layer and the l-th layer
can be expressed as

Zl = hl(W lZl−1 + bl) (12)

where Zl−1 and Zl is the output of the (l−1)-th layer and the
output of the l-th layer, W l is the weight matrix of the l-th
layer and bl is a bias vector.
In the training, the network learns the behavior of the array

synthesis model by adjusting the parameters of the neural
network to minimize the loss function of the network. After
training, the trained network can predict the phases of the
array elements with given input. Because of the generaliza-
tion ability, the trained DNN can predict the phases of the
array elements with similar performance of the original array
synthesis model even though the input of the network never
appears in the trainset.

A. PROPOSED DNN MODEL
The DNN model is a regression model that aims to approx-
imate the array nulling model formulated by (5). In this
paper, we devised a deep neural network specially for the
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FIGURE 1. The structure of the DNN model for the phase-only array
nulling.

phase-only array nulling. TheDNN structure is given in Fig.1.
The activation function, the training dataset structure and the
loss function of the DNN is particularly chosen to fit the
array nulling model better. The network consists of the input
preprocessing, several hidden layers, an output layer and out-
put processing. We choose the ReLU function (ReLU (z) =
max(0, z) ) as the activation function for the hidden layers
to escape the vanishing gradient problem. As the model is a
regression learning model, sigmoid function (Sigmoid(z) =

1
1+e−z ) is chosen as the activation function for the output
layer.

B. TRAINNING DATASET STRUCTURE
Besides the model described in the previous section, the train-
ing dataset plays important roles in the performance of the
DNN. For the purpose of decreasing the input neuron number
and the trainset number of the DNN, the offsets between the
interference directions and the desired direction are adopted
as the unknown parameters of the network. Then, the covari-
ance matrix R of the offset steering vector is considered as
the input of the network:

R =
q∑
i=1

a(ũ)a(ũ)H (13)

where q is the number of the interferences and ũ is the
offset between the interference direction and the desired
direction.

Since the activation function of the DNN model
in Fig.1 can not deal with the complex numbers, the covari-
ance matrix of the steering vector has to be divided into two
layers: the first layer is the real part of matrix R, the second
layer is the imaginary part of the matrix R. Both the input and
the output of the network are normalized between [0, 1]. The
output of the network is the normalized phase of the antenna
element which will convert to excitation phase after output
post-processing.

C. LOSS FUNCTION OF THE DNN MODEL
The network processes the input data by propagating through
its layers and adjusting the weight and bias of the neurons
to minimize the difference between the output of the trainset
and DNN. The difference is measured by the loss function of

the DNN. Since the output of the phase-only convex model
is the approximated rank one solution, which is not always
the optimal phase of the antenna array, Huber Loss function
is chosen as the loss function of the network. The Huber Loss
is widely used in robust regression because it is less sensitive
to outliers than the squared error loss [26]. It comprises two
parts, corresponding to the l1 and l2 losses. Assuming that
the error between the network output and the corresponding
actual output value is t , the loss function can be formally
defined as:

He(t) =


t2

2
if |t| < c

ct −
c2

2
if |t| ≥ c

(14)

where c is the cutting edge parameter. With the same input,
the output of the l1 penalty is smaller than the output of
the l2 penalty function. l1 penalty function has to be applied
when the absolute of the error exceeds the cutting edge.
Thus, even the output of the phase-only convex model is the
approximated solution, the network can generalize well.

IV. CALCULATION OF THE ARRAY IMPERFECTIONS
The array imperfections typically contain the elements posi-
tion error, the excitation error of the elements and the
mutual coupling between the elements. All these imperfec-
tions can be simplified as the inconsistence of the steering
vectors [21]:

ae(u) = 0a(u) (15)

where 0 = I + diag(ε[r0, r1, . . . , rN−1]), I is the iden-
tity matrix, rn are complex random variables with |rn|≤1,
the array error tolerance is ε.
When adopts the steering vector with the array imperfec-

tions, the correction of the offset steering vector R can be
expressed as:

Re =
q∑
i=1

ae(ũ)ae(ũ)H (16)

Re is applied to validate the robustness of the trained DNN
model. Because the DNN model does not utilize the prior
information of the array imperfections. Although the robust-
ness is measured by the simplified formulation of error imper-
fection, it is reasonable to verify the robust performance.

V. SIMULATION RESULTS
To verify the performance of the DNN based array nulling,
the simulation has been carried out on the 10-element and
16-element linear arrays.

In the relaxed convex phase-only nulling model,
the desired direction distortion is set as less than 0.25dB and
the initial amplitude of the array has −15dB Taylor taper.
The simulation environment is based on Python 3.6.3 with
TensorFlow 1.2.1 and Keras 1.0.6 on a laptop with 4 Intel
i7-6500 CPU Cores 2.5GHz, and 8GB of memory. The same
initialization is set for the twoDNNmodel. The DNN updates
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FIGURE 2. Huber Loss of the 10-element array nulling DNN model with different number of hidden
layers: (a) three hidden layers with 128, 256 and 128 neurons; (b) four hidden layers with 128, 256,
256 and 128 neurons; (c) five hidden layers with 128, 256, 256, 256 and 128 neurons; (d) six hidden layers
with 128, 256, 256, 256, 256 and 128 neurons.

FIGURE 3. Radiation pattern comparison between the DIRR solution and DNN for 10-element and
16-element linear array: (a) optimized 10-element array pattern with one null at 0.58; (b) optimized
10-element array pattern with three nulls at −0.71, 0.56 and 0.87; (c) optimized 16-element array
pattern with two nulls at 0.39 and 0.45; (d) optimized 16-element array pattern with three nulls at
−0.86, 0.41 and 0.68.

theweights and biases of the neurons via the adaptivemoment
estimation. The cutting edge of the Huber Loss function is
set as 0.03. The initial value of the learning rate of the DNN
is 0.001. During the training, the learning rate is decreased
adaptively according to the value of Huber Loss of the
proposed DNN model. 20000 input-output pairs of data is
used to train the network within 100 epochs. The interference
angle set is generated from the sidelobe regions by the random
sampling. The inputs and the outputs of the DNN model
trainset are constructed according to the interference angle
sets respectively. In the training, the inputs are generated from
the ideal steering vectors of the interference angles. Besides,
the maximum number of the interference of the array in the
simulation is 3.

A. EVALUATION OF THE DNN MODEL
The Huber Loss generated from the 10-fold cross valida-
tion of the 10-element array synthesis DNN models with
different number of hidden layers are given in Fig.2. The
Huber Loss of the DNN decreases slower when the hidden
layers are greater than 4. Thus, in the following evaluation
of the array synthesis based on the DNN model, four hidden
layer DNN models are constructed for the 10-element array
and 16 element array. The mean DNN Huber Losses from
the 10-fold cross validation are 4.4×10−5 in the trainset
and 6.6×10−5 in the testset for the DNN model based on
10-element array synthesis and 4.6×10−5 in the trainset
and 7.2×10−5 in the testset for the DNN model based on
16-element array synthesis respectively.
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FIGURE 4. Radiation pattern comparison between the DIRR solution and DNN for 10 element and
16 element linear array when the error tolerance is 0.1: (a) optimized 10-element array pattern under
array imperfection with two nulls at −0.49 and −0.47; (b) optimized 10-element array pattern under
array imperfection with three nulls at 0.49, 0.79 and 0.85; (c) optimized 16-element array pattern
under array imperfection with three nulls at 0.46, 0.83 and 0.97; (d) optimized 16-element array
pattern under array imperfection with three nulls at −0.52, −0.51 and −0.36.

TABLE 1. Performance comparison of DIRR and DNN for different
element number.

Both the DNN models for the 10-element array and the
16-element array with four hidden layer are further tested
with 2000 data which never appears in the training set. The
test data is also selected randomly from the interference angle
set. The performance of the DNN model is compared with
the DIRR solutions of the convex phase-only nulling model.
Some examples of the array pattern generated by the DNN
model are shown in Fig. 3, which shows that both the DNN
model achieves the desired array patterns with notching in
the interference direction and preserving the desired direction
gain.

The mean desired direction loss(DDLmean), mean sidelobe
level(SLLmean) and mean null level(NLmean) of the array
pattern are used to measure the performance of the DNN
model. As shown in Table 1, the network works well in
exhibiting similar performance with the original phase-only
nulling model. Both the DNN models succeed in forming
nulls at the interferences with almost the same behavior as

the original phase-only nulling model in the desired direction
loss and the sidelobe level property.

It takes less than 5 iterations for DIRR to get the approx-
imate rank one solution of the phase-only array synthesis
model, which consumes 0.3s and 0.8s for convex optimiza-
tion in solving equation (9) for the 10 element and 16 element
array respectively. However, it takes less than 10−3 seconds
with DNN to get the corresponding array element phase.
These two properties demonstrate that the DNN model suc-
ceed in realizing the given phase-only array synthesis model
in real-time.

B. ROBUST ANALYSIS
Fig. 4 compares some array patterns of the DNN model and
the DIRR solutions when the array error tolerance ε is 0.1.
With the same imperfect covariance matrix, the null level
of the array pattern based on the original array synthesis
deteriorates, while the DNN model still forms nulls at the
interference directions.

Since the array imperfections, such as the amplitude
response error, can be taken as the Gaussian random dis-
tributed. In order to further verify the robustness of the
network, we do Monte Carlo analysis on the ratio between
the signal direction power and the interference direction
power (SINR) under different situations in this section. For
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FIGURE 5. Output SINR with different array error tolerance.

all simulations, Monte Carlo analysis is carried out with
50 times. Then, the mean SINR of the 2000 test data is used
to validate the robustness of the network.

As shown in Fig. 5, with the increase of the array imper-
fection parameter ε, the SINR of the DNN model decreases
slowly, which demonstrates that the DNN model adapts well
to the array uncertainties.

VI. CONCLUSION
In this paper, a DNN model is proposed to emulate the
phase-only array nulling. The on-line phase-only array syn-
thesis based on the DNN is more efficient in terms of compu-
tation time. Simulation results on the 10-element linear array
and 16-element linear array show that the trained DNNmodel
exhibit similar performance with the constructed phase-only
nulling model, which could form nulls in the interference
directions and maintain the gain of the desired direction.
Despite the capability of preserving the desired array pattern
properties, the DNN model also adapts well to the array
imperfections. All these properties make the array synthesis
based on DNN very useful in practice.

However, it takes a long time to prepare a large amount
of data and train the DNN off-line for the array synthesis
model. Therefore, the potential further work is to optimize
the neural network parameters and implement the training
process to reduce the number of the dataset under different
array synthesis requirements.
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