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ABSTRACT In this paper, a novel hybrid firefly-bat algorithm with constraints-prior object-fuzzy sorting
strategy (HFBA-COFS) is put forward to solve the strictly-constrained multi-objective optimal power
flow (MOOPF) problems. The hybrid firefly-bat algorithm (HFBA) integrates the dimension-based firefly
algorithm and the modified bat algorithm to improve the population-diversity and global-exploration ability
of original algorithm. To handle the unqualified state variables and overcome the deficiency of traditional
penalty function approach (PFA), the constraints-prior Pareto-dominant rule (CPR) which takes constraints-
violation and objectives-value into consideration is proposed in this paper. Furthermore, an effective
constraints-prior object-fuzzy sorting (COFS) strategy based on CPR rule is presented to seek the well-
distributed Pareto optimal set (POS) in solving the MOOPF problems. To validate the great advantages
of HFBA-COFS algorithm, ten MOOPF cases optimizing active power loss, total emission and fuel cost
are simulated on the IEEE 30-bus, IEEE 57-bus and IEEE 118-bus systems. In addition, the generational
distance and SPREAD evaluation indexes powerfully demonstrate that the proposed HFBA-COFS algorithm
can achieve high-quality POS, which has great significance to realize the safe and economic operation of
large-scale power systems.

INDEX TERMS Hybrid firefly-bat algorithm, constraints-prior object-fuzzy sorting strategy, multi-objective
optimal power flow problem, economic operation.

I. INTRODUCTION
The optimal power flow (OPF), as a predominant tool to real-
ize the economic and stable operation of electrical systems,
is very vital for the enhancement of power quality. In general,
the OPF problem primarily aims to achieve the minimal
fuel cost or active power loss by adjusting the independent
variables of power systems [1]–[4].

Recently, the multi-objective optimal power flow
(MOOPF) problems, which can evaluate the running status of
power systems more comprehensively, have attracted exten-
sive attention. In essence, theMOOPF problem is a minimum
optimization with multiple contradictory objectives and strict
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constraints [5]–[8]. Unlike the OPF problem determining the
only optimal solution, solving the MOOPF problems focuses
on seeking a high-quality Pareto optimal set (POS) on the
premise of satisfying various constraints. The non-convex and
non-differentiable characteristics of MOOPF problems make
it difficult to be solved by traditional methods.

A. METHOD REVIEW AND ALGORITHM SELECTION
The maturity of computer technology makes it possible
to solve the MOOPF problems by intelligent algorithms.
At present, the meta-heuristic algorithm [9], the improved
strength Pareto evolutionary algorithm [10], themodified bio-
inspired algorithm [11], and the multi-objective dimension-
based firefly algorithm [12] are all effective to handle the
MOOPF problems. However, it is a pity that the common
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algorithms cannot deal well with the tri-objective MOOPF
problems or the bi-objective ones of large-scale power sys-
tems such as the IEEE 57-bus or 118-bus systems.

The original and modified bat algorithms with superior
accuracy and fewer parameters have been applied to many
practical fields such as the wireless sensor network deploy-
ment [13] and the low-carbon job shop scheduling prob-
lem [14]. Besides, the extensive applicability of bat algorithm
makes it suitable to solve the economic dispatch and optimal
power flow problems [15]–[17]. Therefore, the bat algorithm
is chosen to handle the MOOPF problems in this paper and
several improvements are adopted to overcome the defect of
standard algorithm.

B. CONTRIBUTIONS
To realize the safe and economical operation of power system,
a hybrid firefly-bat algorithm with constraints-prior object-
fuzzy sorting strategy (HFBA-COFS) is proposed to solve the
MOOPF problems. Simulation results clearly state that the
HFBA-COFS algorithm has incomparable advantages over
other published methods in dealing with the many-objective
optimizations of large-scale power systems. The main contri-
butions of this paper are listed as follows.

1) HFBA ALGORITHM
First, the hybrid firefly-bat algorithm (HFBA) which can
avoid premature-convergence and optimize solution-diversity
is proposed. The HFBA algorithm which is effective to solve
the non-linear MOOPF problems has been modified from the
following two aspects.

a: INITIAL POPULATION OPTIMIZATION
The initial population of HFBA algorithm is determined
by the multi-objective dimension-based firefly algorithm
(MODFA). The great superiority of MODFA algorithm in
handling MOOPF problems can refer to literature [12]. The
preliminary screening of power flow solutions based on
MODFA algorithm will increase the probability and effi-
ciency of HFBA algorithm in finding the more preferable
POS sets.

b: PARAMETER UPDATING OPTIMIZATION
Besides, expanding population-diversity helps to explore the
higher-performance POS set. Based on this, a nonlinear
weight coefficient is incorporated into the velocity term of
basic bat algorithm and a monotone random filling model
(MRFM) is put forward to modify the update mode of two
local parameters.

2) COFS SORTING STRATEGY
Furthermore, a constraints-prior object-fuzzy sorting strategy
(COFS) is proposed in this paper to seek the uniformly-
distributed POS without any constraint-violation. The sug-
gested COFS sorting rule, which has great superiorities in
solving the multi-dimensional MOOPF problems, compre-
hensively takes the Rank index based on objective values

and the fuzzy dominant fitness (Fudf) index based on control
variables into account.

Finally, combining the HFBA algorithm and COFS sorting
strategy, the novel HFBA-COFS algorithm is put forward in
this paper. In contrast to the typical non-dominated sorting
genetic algorithm-II (NSGA-II) and DE-PFA algorithms, the
applicability and superiority of presented HFBA-COFS algo-
rithm in solving the strictly-constrained MOOPF problems
are validated. It should be noted that the DE-PFA algorithm
is the integration of multi-objective differential evolution
algorithm (MODE) and penalty function approach (PFA).
Compared with the NSGA-II method, which is often used as a
benchmark for the performance evaluation of many-objective
algorithm, the advantages of the novel HFBA-COFS algo-
rithm can be fully and reasonably proved.

The rest of this paper is constructed as follows. The math-
ematic model of MOOPF problems including four objec-
tive functions, multiple equality and inequality constraints is
presented in Section II. Section III introduces the involved
multi-objective strategies including the constraint handling
strategies and the non-inferior sorting strategy. Section IV
focuses on the proposed HFBA-COFS algorithm and its
application on the MOOPF problems. The numerous results
of ten MOOPF trials simulated on three different-scale sys-
tems are presented in Section V. To verify the availability
and superiority of HFBA-COFS algorithm, Section VI gives
a comprehensive analysis of experiment results mainly based
on the dominance rate, performance metrics and computa-
tional complexity. In the end, the conclusion is given in
Section VII.

II. MATHEMATICAL MODEL
For mathematical model of MOOPF problems, the four
objective functions and two types of system restrictions are
introduced as follows.

A. OBJECTIVES
The four objectives, known as total emission Obe, basic fuel
cost Obf , fuel cost with value-point loadings Obfv and active
power loss Obp, are studied in this paper.

1) TOTAL EMISSION

Obe =
NG∑
i=1

[αiP2Gi + βiPGi + γi + ηi exp(λiPGi)]ton/h (1)

where NG is the amount of generators and PGi represents the
active power of the ith generator node. The αi, βi, γi, ηi and
λi are emission coefficients of the ith generator.

2) BASIC FUEL COST

Obf =
NG∑
i=1

(ai + biPGi + ciP2Gi)$/h (2)

where ai, bi and ci depict the cost coefficients of the ith
generator.
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3) FUEL COST CONSIDERING VALUE-POINT EFFECT

Obfv =
NG∑
i=1

(ai + biPGi + ciP2Gi

+

∣∣∣di × sin(ei × (Pmin
Gi − PGi))

∣∣∣)$/h (3)

where di and ei are two coefficients of valve-point effect.

4) ACTIVE POWER LOSS

Obp =
NL∑
k=1

con(k)[V 2
i + V

2
j − 2ViVj cos(δi − δj)]MW (4)

where Vi and δi represent the voltage magnitude and angle of
the ith bus. The NL is the amount of transmission lines and
con(k) indicates the conductance of the kth branch that links
the ith bus to the jth one.

B. RESTRICTIONS
The system constraints are divided into equality constraints
and the inequality ones.

1) EQUALITY RESTRICTIONS
The equality constraints defined as (5) and (6) virtually reveal
the power balance of electric systems.

PGi−PDi−Vi
∑
j∈Ni

Vj(Gij cos δij+Bij sin δij) = 0, i ∈ N

(5)

QGi−QDi−Vi
∑
j∈Ni

Vj(Gij sin(δi−δj)−Bij cos(δi−δj) = 0,

i ∈ NPQ (6)

where Ni, N and NPQ are the numbers of the nodes linked to
the ith node, the nodes except the slack one and the PQ nodes.
The definitions of other mentioned parameters are clarified in
literatures [7], [12], [18].

2) INEQUALITY RESTRICTIONS
The inequality constraints include the restrictions on state
variables which are defined as (7)∼(10) and the restrictions
on control variables which are described as (11)∼(14).

I active power at slack bus PG1

Pmax
G1 ≥ PG1 ≥ P

min
G1 (7)

I voltage at load bus VL

Vmax
Li ≥ VLi ≥ V

min
Li , i ∈ NPQ (8)

I reactive power at generator bus QG

Qmax
Gi ≥ QGi ≥ Q

min
Gi , i ∈ NG (9)

I apparent power S

Smax
i − Si ≥ 0, i ∈ NL (10)

I generator active power PG

Pmax
Gi ≥ PGi ≥ P

min
Gi , i = 2, 3, · · · ,NG (11)

I voltage at generator bus VG

Vmax
Gi ≥ VGi ≥ V

min
Gi , i ∈ NG (12)

I transformer tap-settings T

Tmax
i ≥ Ti ≥ Tmin

i , i ∈ NT (13)

I reactive power injection QC

Qmax
Ci ≥ QCi ≥ Q

min
Ci , i ∈ NC (14)

where NC and NT indicate the numbers of shunt compen-
sators and transformers.

III. MULTI-OBJECTIVE STRATEGIES
Then, the constraint handling measures, the non-inferior
dominant and sorting strategies are clarified.

A. CONSTRAINT HANDLING STRATEGIES
The power flow optimal solution adopted by decision makers
should meet all constraints of electric system. As the ending
condition of Newton-Raphson approach, the equality con-
straints (5) and (6) can be satisfied at the end of calculation
process. The handling strategies of inequality restrictions are
mainly discussed in this paper.

1) CONTROL VARIABLES PROCESSING
The D-dimensional control variables C , also the independent
variables of power system, are limited within [Cmin, Cmax].
The C set which violates inequality constraints can be
adjusted as (15).

Ci =

{
Cmin
i , Ci < Cmin

i

Cmax
i , Ci > Cmax

i
(15)

2) STATE VARIABLES PROCESSING
The common PFA method deals with the state variables S
which violate inequality constraints by introducing multiple
penalty coefficients, which has obvious limitations.

a: PENALTY FUNCTION APPROACH
Based on PFA method, the objective functions are modified
as follows.

Obobj− mod = Obobj + Penalty (16)

Penalty = ζP(PG1 − PlimG1 )+ ζV

NPQ∑
i=1

(VLi − V lim
Li )

+ζQ

NG∑
i=1

(QGi − Qlim
Gi )+ ζS

NL∑
i=1

(Si − S limi )

(17)

ζ(itek ) = ζ
min
+ itek (ζmax

− ζmin)/itemax (18)
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where ζP, ζV , ζQ and ζS are penalty coefficients which are
adjusted as formula (18) during the iterations. The ζ(itek ) is
the penalty coefficient value at the kth iteration and itemax

indicates the maximum iteration number. The corresponding
penalty coefficients are limited within [ζmin, ζmax].
The specific application of PFA method can be referred to

literatures [19]–[21]. Proverbially, the performance of PFA
method is closely related to the appropriateness of penalty
coefficients. However, determining a proper penalty coeffi-
cient requires plentiful repeated experiments and it is hard
to guarantee that every solution of obtained POS satisfies all
constraints, especially on large-scale systems. To overcome
the shortcomings of PFA method, a constraints-prior domi-
nant rule (CPR) is proposed.

b: CPR DOMINANT RULE
The CPR rule defines the dominant relationship of two differ-
ent power flow solutions by calculating the values of objec-
tives and the violations of inequality constraints. In detail,
the judgment can be made that the So1 (So1 = (u1, u2, . . . ,
uD)) solution dominates the So2 (So2 = (v1, v2, . . . , vD)) one
when condition (19) or (20) is met.

Vio(So1) < Vio(So2) (19)
Vio(So1) = Vio(So2)
Obi(C, S1) ≤ Obi(C, S2),∀i ∈ {1, 2, . . . ,M}
Obj(C, S1) < Obj(C, S2), ∃j ∈ {1, 2, . . . ,M}

(20)

where Vio(Som) represents the total violation value of themth
solution. The Obi(C ,Sn) indicates the ith objective value of
the nth S set and M (M ≥2) is the number of simultaneous
optimization goals.

The suggested CPR method can effectively avoid the com-
plicated process of selecting appropriate coefficients by PFA
method.

B. COFS SORTING STRATEGY
Based on the presented CPR method, an innovative COFS
strategy to seek the well-distributed Pareto fronts (PFs) is put
forward in this paper. The COFS strategy comprehensively
considers the Rank index achieved by CPR method and the
Fudf index calculated based on control variables.

1) RANK INDEX
Learning from the typical non-inferior sorting rule proposed
by Kalyanmoy Deb [22]–[24], the Rank indicator of each
solution can be determined as follows.

a) Generate a candidate population (CAP) by integrating
the paternal population (PAP) and the elite population (ELP).
The initial PAP and ELP populations are composed by T
randomly generated individuals.

b) Calculate the Ob and Vio values of each individual in
CAP population.
c) Based on the suggested CPR method, these power flow

solutions, which are not dominated by other solutions in CAP
population, are assigned as Rank = 1.

d) Eliminate the individuals with Rank = 1. The current
non-inferior solutions are found and assigned as Rank = 2
according to the same CPR rule.

e) The above operations are repeated until each solution
in CAP population has been assigned a corresponding Rank
index.

2) FUDF INDEX
The Fudf index is used to judge the dominant relation of
two individuals with the same Rank index. In detail, the Fudf
index of each solution can be calculated as follows.

a) Compute the relative performance of the So1 solution in
contrast to the So2 one (Puv(So1)) as formula (21).

Puv(So1) = So1 − So2 = (u1 − v1, u2 − v2, · · · , uD − vD)

(21)

b) Based on the fuzzy membership function Fm defined
as (22), the dominant degree of So1 solution relative to the
So2 one (ϕ(So1)) is determined according to formula (23).

Fm =


1, x ≤ −1
χ1x3+χ2, −1<x<1
0, x ≥ 1

χ1 = −0.5, χ2 = −χ1

(22)

ϕ(So1) = Fm(Puv(So1)) = (ϕu1, · · · , ϕ
u
D) (23)

c) Calculate the fuzzy eigenvalue of So1 solution (ψ(So1))
based on formula (24).

ψ(So1) =
∏
i

ϕui (i ∈ [1,D]) ∩ (ϕui 6= 0) (24)

d) Clarify the standard performance of So1 solution relative
to the So2 one named as SPuv(So1) according to (25).

SPuv(So1) = ψ(So1)
/
(ψ(So1)+ ψ(So2)) (25)

The Fudf(Soi), the mean value of standard performances
in essential, represents the Pareto fuzzy dominant fitness
of the ith solution relative to the other (2T -1) solutions of
CAP population. The Fudf(Soi) character can be calculated
as formula (26).

Fudf (Soi) =
j∑
SP
/

2T − 1, j = 1, 2, · · · 2T ∩ j 6= i (26)

The core steps to judge the adoption-priority of each power
flow solution based on the proposed COFS strategy can be
summarized as follows. More concretely, the So1 solution has
a higher adoption-priority than the So2 one when condition
(27) or (28) is satisfied.

Rank(So1) < Rank(So2) (27){
Rank(So1) = Rank(So2)
Fudf (So1) > Fudf (So2)

(28)

Generally, the T top-ranked solutions in CAP population
are the ultimate POS selected by the COFS sorting strategy.
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IV. OPTIMIZATION ALGORITHMS
The basic bat algorithm is popular for its high-accuracy
and good-versatility. To release the restriction of local
optimums and improve searching efficiency, the improved
HFBA-COFS algorithm is proposed.

A. STANDARD BAT ALGORITHM
The standard bat algorithm, as a classical global optimiza-
tion algorithm, updates the location of bat population by
constantly adjusting searching frequency and determines the
global optimal individual according to the established domi-
nant relationship [25]–[27]. The frequency Fr(i), speed Sp(i)
and location Lo(i) of the ith bat are defined as (29), (30)
and (31).

Fr(i) = Frmin
+ τ1 ∗ (Frmax

− Frmin) (29)

Sp(i)(t) = Sp(i)(t−1) + Fr(i) ∗ (Lo(i)(t−1) − Lobest ) (30)

Lo(i)(t) = Lo(i)(t−1) + Sp(i)(t) (31)

where the frequency is restricted within [Frmin, Frmax]. The
τ1 (τ1 ∈(0,1)) is a random number and Lobest indicates the
location of the current best individual.

Local searching operation, as the unique feature of bat
algorithm, ismainly to explore a preferable individual (Lonew)
near the Lobest one. Two principal parameters of local search-
ing, known as the loudness lou and pulse rate pul, are
described as (32) and (33), respectively.

When lou and pul meet the preset conditions, the local
search which is conducive to optimize the diversity of bat
population will be performed based on formula (34).

lou(i)(t+1) = τ2 ∗ lou(i)(t) (32)

pul(i)(t+1) = pul0(1− exp(−ξ1t)) (33)

Lonew = Lobest + τ3 ∗ Lobest (34)

where τ2 (τ2 ∈(0,1)) and τ3 (τ3 ∈(-1,1)) are two random
numbers. The ξ1 (ξ1>0) represents the attenuation coefficient
of lou while pul0 indicates the initial pulse rate.

B. PROPOSED HFBA-COFS ALGORITHM
In order to handle the MOOPF problems more effectively,
the HFBA algorithm is born by the following improvements
to the standard algorithm.

1) MODIFIED MANNER OF SPEED
The non-linear weight coefficient ωnon defined as (35) is
employed to improve the updating manner of Sp. The modi-
fied manner of Sp is described as (36).

ωnon(t) = ωmax
non − τ4(ω

max
non − ω

min
non )

+τ5(ωnon(t − 1)− 0.5 ∗ (ωmax
non + ω

min
non ))

(35)

Sp(i)(t+1) = ωnon(t)Sp(i)(t) + τ6Fr(i)(Lobest − Lo(i)(t))

(36)

where ωnon is limited within [ωminnon, ω
max
non ] and τi (τi ∈(0,1),

i = 4,5,6) are three random numbers.

2) MODIFIED MANNER OF LOCAL SEARCHING
The MRFM model, which is put forward to improve the
updating manners of two local parameters, can meet the
specific requirements of smaller lou and larger pul when the
Lonew individual is accepted. The renewedmanners of lou and
pul are defined as (37) and (38), respectively.

lounew(i) =
(loumax

− loumin) ∗ (ite− itemax)
(1− itemax)

+ loumin

(37)

pulnew(i) =
(pulmin

− pulmax) ∗ (ite− itemax)
(1− itemax)

+ pulmax

(38)

The MRFM model sets the valid range of loudness to
[loumin, loumax] and the effective range of pulse rate to
[pulmin, pulmax]. The ite and itemax indicate the current and
maximum iteration numbers.

The modified manner of local searching is summarized as
Figure 1.

3) MODIFIED MANNER OF POPULATION INITIALIZATION
For the researches on MOOPF problems, the typical method
of generating an initial population is shown as (39).
However, this randomly-generated way will inevitably
increase searching time to determine the optimal solutions.
Therefore, this paper proposes the creative idea of adopting
the MODFA algorithm for preliminary optimization, and
takes the obtained POS (POS−FA) as the initial PAP popu-
lation of HFBA-COFS algorithm. The applications of firefly
algorithm can be found in literatures [12], [28]–[30].

C(i) = Cmin
i + τ7

(
Cmax
i − Cmin

i

)
i ∈ [1,T ] (39)

where C(i) represents the ith initial control variables set and
τ7 (τ7 ∈(0,1)) is a random number.
By integrating the above improvements and suggested

COFS strategy, the HFBA-COFS algorithm which provides
an effective way to solve the MOOPF problems is pro-
posed. Besides, Table 1 summarizes the pseudo-codes of
HFBA-COFS algorithm for handling the MOOPF problems.

V. SIMULATION TRIALS
There are ten cases simulated on three different-scale power
systems. Comparing with the DE-PFA and NSGA-II algo-
rithms, the definite superiorities of HFBA-COFS algorithm in
solving the bi-objective and tri-objective MOOPF problems
can be proved.

A. SYSTEMS AND OBJECTIVE COMBINATIONS
The IEEE 30-bus, IEEE 57-bus and the more complex IEEE
118-bus systems are employed to simulate the mentioned
MOOPF trials shown in Table 2. All trials are carried out on
theMATLAB2014a software in a PCwith Intel(R) Core(TM)
i5–7500 CPU @ 3.40 GHz with 8GB RAM.

The transformer taps of the IEEE 30-bus system, which
includes 6 generators and 24-dimensional control variables,
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FIGURE 1. Local search of HFBA-COFS algorithm.

TABLE 1. Pseudo codes of HFBA-COFS algorithm on MOOPF problems.

are limited within [0.9 1.1] p.u.. The voltage limits of gener-
ator nodes are restricted within [0.95 1.1] p.u.. The fuel cost
and emission coefficients of IEEE 30-bus system are given
in Table 3. The structure and more details of IEEE 30-bus
system can be found in literatures [7], [12], [31], [32].

The transformer taps of the IEEE 57-bus system, which
includes 33-dimensional control variables, are limited within

[0.9 1.1] p.u.. The shunt capacitor is limited within [0 0.3]
p.u. while the voltage magnitude of PQ and PV nodes are
limited in [0.9 1.1] p.u.. The structure and more details such
as emission coefficients of IEEE 57-bus system are obtained
from literatures [7], [33].

As a representative large-scale power system, the IEEE
118-bus system with 128-dimensional control variables can
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TABLE 2. Objective combinations.

TABLE 3. Fuel cost and emission coefficients of IEEE 30-bus system.

measure the performance of HFBA-COFS algorithm more
comprehensively. The structure and more details of IEEE
118-bus system can be found in literatures [7], [12].

B. ALGORITHM PARAMETERS SETTING
To determine a relatively optimal parameters set of
HFBA-COFS algorithm, a bi-objective case which optimizes
the Obe and Obf at the same time is adopted as an example.
The two local parameters have great influences on opti-
mization performance and their proper ranges are studied.
Figure 2 gives the PFs with different pul ranges and it shows
the range of [0.09 0.51] obtains the worst PF while the range
of [0.10 0.50] achieves the best one. Figure 3 gives the PFs
with different lou ranges and it clearly indicates that the range
of [0.50 0.96] achieves the best PF with evenly-distribution.
Therefore, the appropriate ranges of pulse rate and loudness
are set as [0.10 0.50] and [0.50 0.96] in this paper. The other
detail parameter-settings are summarized in Table 4.

FIGURE 2. PFs with different pul ranges.

FIGURE 3. PFs with different lou ranges.

C. TRIALS ON IEEE 30-BUS SYSTEM
Three bi-objective and two tri-objective MOOPF trials are
carried out on the IEEE 30-bus system.

1) CASE1:OBE and Obf
An optimization case which aims at minimizing the emission
and basic fuel cost simultaneously is implemented on the
IEEE 30-bus system. The PFs of case1 found by DE-PFA,
NSGA-II and proposed HFBA-COFS algorithms are shown
in Figure 4. The best compromise solution (BCS) of each
algorithm is also noted in Figure 4. It intuitively shows the
PF obtained by HFBA-COFS algorithm is better than these of
DE-PFA and NSGA-II methods. At the same time, the num-
bers of feasible solutions obtained by three algorithms are
shown in Figure 5. It is worth noting that the feasible
solution in this paper represents the non-inferior solution
which does not violate any equality or inequality constraints.
Figure 5 clearly indicates the all Pareto solutions determined
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TABLE 4. Parameter-settings of three involved algorithms.

FIGURE 4. PFs of case1.

FIGURE 5. The numbers of feasible solutions for case1.

by NSGA-II and HFBA-COFS algorithms achieve zero
constraints-violation. It powerfully demonstrates that the
presented COFS sorting strategy effectively overcomes the
shortcomings of PFA method.

In addition, Table 5 gives the control variables of BCS
solutions for case1. Adjusting the input of electronic devices

based on the control variables can make the power system
achieve the predetermined economic operating state, which is
the practical significance of studying the MOOPF problems.
According to the objective values, the BCS of HFBA-COFS
algorithm with 0.2329 ton/h of Obe and 833.0155 $/h of
Obf dominates the BCS solutions of DE-PFA and NSGA-II
methods.

Moreover, Table 6 gives the comparison results of BCS
solutions from other published literatures and provides
more convincing proofs for the superiority of HFBA-COFS
algorithm.

2) CASE2:OBP and Obf
In case2, the power loss and the basic fuel cost are optimized
at the same time. The PFs of case2 obtained by three involved
algorithms are given in Figure 6. It indicates that the sug-
gested HFBA-COFS algorithm can achieve the best PF with
uniformly-distributionwhile theNSGA-IImethod obtains the
worst one. Figure 7 gives the numbers of feasible solutions
for case2 which clearly demonstrates the obvious advantages
of HFBA-COFS algorithm in seeking more zero-violation

FIGURE 6. PFs of case2.
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TABLE 5. The control variables of BCS for case1 and case2.

TABLE 6. Comparison results of Case1.

FIGURE 7. The numbers of feasible solutions for case2.

solutions. Besides, Table 5 provides the control variables
of BCS solutions and it illustrates that the BCS of HFBA-
COFS algorithmwith 5.0796MWofObp and 832.3203 $/h of

Obf dominates the BCS solutions of DE-PFA and NSGA-II
approaches. Furthermore, the comparison results of case2 are
summarized in Table 7.

Above all, the proposed HFBA-COFS algorithm is supe-
rior to DE-PFA in obtaining more feasible solutions and has
better performance thanNSGA-II in seeking high-quality PFs
and BCS solutions.

3) CASE3:OBP and ObfV
The performance of HFBA-COFS algorithm in optimizing
the power loss and the fuel cost with value-points is studied
in case3.

Figure 8 shows the PFs of case3 and it can be clearly seen
that HFBA-COFS algorithm achieves the preferable PF while
NSGA-II algorithm obtains the worse one. The numbers of
feasible solutions for 30 independent trials obtained by three
different algorithms are given in Figure 9.
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TABLE 7. Comparison results of Case2.

FIGURE 8. PFs of case3.

FIGURE 9. The numbers of feasible solutions for case3.

Meanwhile, Table 8 shows the control variables of three
BCS solutions and two boundary solutions (BS). In detail,
the BCS of HFBA-COFS algorithm with 5.6791 MW of Obp
and 863.7107 $/h of Obfv dominates the BCS solutions of
two comparison algorithms. For two BS solutions obtained
by HFBA-COFS algorithm, the BScase3−p solution includes
1026.6437 $/h ofObfv and 2.8461MWof minimalObp while
the BScase3−fv solution includes 10.2682 MW of Obp and
831.3694 $/h of minimal Obfv. In a word, the HFBA-COFS
algorithm can not only ensure that each solution of POS
satisfies all equality and inequality constraints, but also be
able to obtain the satisfactory PF.

FIGURE 10. PFs of case4.

FIGURE 11. The numbers of feasible solutions for case4.

4) CASE4: OBE , Obp AND Obf
The tri-objective optimization with greater difficulty can fur-
ther measure the effectiveness of HFBA-COFS algorithm.
A synchronous optimization trial including Obe, Obp and
Obf is carried out on the IEEE 30-bus system in case4.
Figure 10 gives the obtained PFs and it intuitively illus-
trates that the DE-PFA method obtains a relatively densely-
distributed PF. In contrast to the NSGA-II algorithm,
the HFBA-COFS algorithm is capable to achieve a higher-
quality PF.

The numbers of feasible solutions for case4 is shown
in Figure 11. Figure 11 indicates that the HFBA-COFS
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TABLE 8. The control variables of BCS and BS solutions for case3.

TABLE 9. The Control variables of BCS solutions for Case4 and Case5.

algorithm can achieve zero constraint-contravention even in
the tri-objective optimization. Besides, the control variables
of obtained BCS are listed in Table 9. It can be clearly
known that the BCS obtained by HFBA-COFS algorithm
which includes 4.1544 MW of Obp, 0.2100 ton/h of Obe
and 867.4262 $/h of Obf can dominate the BCS obtained by

NSGA-II algorithm with 5.0865MW ofObp, 0.2111 ton/h of
Obe and 867.9027 $/h of Obf .

5) CASE5:OBE , Obp AND Obfv
In case5, three objectives including Obe, Obp and Obfv are
optimized simultaneously. Figure 12 and Figure 13 show the
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FIGURE 12. PFs of case5.

FIGURE 13. The numbers of feasible solutions for case5.

PFs of three mentioned algorithms and the numbers of fea-
sible solutions, respectively. It is not difficult to find that the
HFBA-COFS and NSGA-II algorithms can obtain relatively
well-distributed PFs and achieve zero violation of system
restrictions. Furthermore, Table 9 gives the detail information
of BCS solutions. It illustrates that the BCS of HFBA-COFS
algorithm with 4.6793 MW of Obp, 0.2195 ton/h of Obe and
918.9154 $/h of Obfv is more preferable than the two BCS
solutions of DE-PFA and NSGA-II approaches.

D. TRIALS ON IEEE 57-BUS SYSTEM
Two bi-objective and a tri-objective MOOPF trials are imple-
mented on the IEEE 57-bus system. The complex structure of
IEEE 57-bus system undoubtedly increases the optimization
difficulty.

1) CASE6:OBE and Obf
The optimization quality of proposed HFBA-COFS algo-
rithm in minimizing emission and fuel cost on the
IEEE 57-bus system is studied in case6. Figure 14 shows the
PFs of three involved algorithms and the distribution of BCS
solutions. It is easy to find that three intelligent algorithms
can obtain evenly-distributed PFs while the HFBA-COFS

FIGURE 14. PFs of case6.

FIGURE 15. The numbers of feasible solutions for case6.

algorithm achieves the best one. Figure 15 shows the numbers
of feasible solutions and it directly illustrates that com-
pared with IEEE 30-bus system, the complex structure of
IEEE 57-bus greatly limits the effectiveness of PFA method.

Table 10 gives the control variables of three BCS and
two BS solutions for case6. The comparison result is
listed in Table 10 as well. In detail, the BCS obtained
by HFBA-COFS algorithm with 1.2129 ton/h of Obe
and 43259.3013 $/h of Obf dominates the BCS solu-
tions obtained by two comparison algorithms. For the BS
solutions determined by presented HFBA-COFS algorithm,
the BScase6−e solution includes 1.0266 ton/h of minimal
Obe and 48300.8388 $/h of Obf while the BScase6−f solu-
tion includes 1.5910 ton/h of Obe and 41691.9581 $/h of
minimal Obf .

In a word, although the HFBA-COFS and NSGA-II meth-
ods enable each solution of obtained POS to satisfy all sys-
tem constraints, the HFBA-COFS algorithm can obtain more
advantageous PFs and higher-quality BCS solutions.

2) CASE7: OBE , OBP AND OBF
A tri-objective optimization which takes Obe, Obp and Obf
into consideration concurrently is simulated on the IEEE
57-bus system. Figure 16 and Figure 17 show the obtained
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TABLE 10. The control variables of BCS and BS solutions for Case6.

FIGURE 16. PFs of case7.

PFs and the numbers of feasible solutions, respectively.
Figure 16 indicates the PFs obtained by DE-PFA and
NSGA-II methods are distributed unevenly. It is clearly
can be seen that only half of Pareto solutions obtained by
DE-PFA algorithm can realize zero constraints-violation,
which exposes the deficiency of PFA method. Moreover,
Table 11 gives the details of BCS solutions achieved by three
different algorithms. The BCS of HFBA-COFS algorithm

FIGURE 17. The numbers of feasible solutions for case7.

which is composed by 42856.4896 $/h of Obf , 1.3436 ton/h
of Obe and 11.5782 MW of Obp is more superior to the BCS
of NSGA-II methods.

3) CASE8: OBP AND OBF
In case8, a simulation trial which aims to optimize the
Obp and Obf is carried out on the IEEE 57-bus system.

139738 VOLUME 7, 2019



G. Chen et al.: MOOPF Based on HFBA and COFS Strategy

TABLE 11. The control variables of BCS solutions for Case7 and Case8.

FIGURE 18. PFs of case8.

Figure 18 shows the PFs and two BCS solutions obtained by
NSGA-II and HFBA-COFS algorithms. It clearly indicates
that the PF of HFBA-COFS is significantly superior to that
of NSGA-II method. It is worthy of note that since most
of the solutions found by DE-PFA algorithm cannot satisfy
all system constraints, the corresponding PF is not given
in Figure 18. Table 11 also shows the control variables of

BCS solutions for case8. In great detail, the BCS obtained
by HFBA-COFS algorithm including 42122.0140 $/h of Obf
and 10.6995 MW of Obp dominates the one obtained by
NSGA-II method which is composed by 42125.6042 $/h of
Obf and 11.1296 MW of Obp.

E. TRIALS ON IEEE 118-BUS SYSTEM
The complex structure of large-scale IEEE 118-bus system
greatly limits the effectiveness of DE-PFA method. Both
bi-objective and tri-objective cases are studied by NSGA-II
and HFBA-COFS algorithm on the IEEE 118-bus system. So
far, few algorithms have achieved satisfactory performance in
solving MOOPF problems of IEEE 118-bus systems, which
highlights the superiority of proposed HFBA-COFS method.

1) CASE9: OBP and Obf
The Obp and Obf are taken into consideration at the same
time in case9. The PFs and BCS solutions obtained by
HFBA-COFS and NSGA-II algorithms are shown in
Figure 19. It can be intuitively seen that the PF of NSGA-II
algorithm is much more densely-distributed than that of
HFBA-COFS algorithm. Although the BCS found by
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TABLE 12. The BCS and BS solutions of Case9 and Case10.

FIGURE 19. PFs of case 9.

HFBA-COFS algorithm which includes 61.0362 MW of
Obp and 59624.0613 $/h of Obf cannot dominate the BCS
found byNSGA-II method, the PF of HFBA-COFS algorithm
undoubtedly overmatches the PF of NSGA-II approach. Fur-
thermore, the BCS solution of two involved algorithms
and the BS solutions obtained by HFBA-COFS method
are listed in Table 12. The BScase9−f represents the bound-
ary solution with minimal Obf of 59103.0835 $/h and the
BScase9−p represents the boundary solution withminimalObp
of 54.8413MW.

2) CASE10: OBP , ObE and Obf
A tri-objective case which aims to minimize Obp, Obe and
Obf simultaneously is studied on the IEEE 118-bus system.
Figure 20 shows the obtained PFs and the details of two BCS
solutions. It is not difficult to find that the suggested HFBA-
COFS algorithm achieves the satisfactory PF with relatively
well-distribution. Table 12 also gives the two BCS solutions
of case10 and it indicates the BCS found by HFBA-COFS
algorithm with 3.2085 ton/h of Obe, 63.7672 MW of Obp
and 61072.2077 $/h of Obf is more advantageous than the
BCS found by NSGA-II approach with 3.2475 ton/h of Obe,
89.7597 MW of Obp and 62002.9504 $/h of Obf .

VI. PERFORMANCE ANALYSIS
The performance of HFBA-COFS algorithm in solving
MOOPF problems is evaluated exhaustively from the follow-
ing six aspects.

A. FEASIBLE SOLUTIONS
It is no doubt that the appropriateness of penalty coefficients
is critical to the effectiveness of PFA approach. The enormous

FIGURE 20. PFs of case 10.

difficulty in determining an appropriate penalty coefficient
makes it almost impossible to realize the zero constraint-
violation of each solution from obtained POS. Based on the
numbers of feasible solutions for case1∼ case7, the huge
advantages of NSGA-II and HFBA-COFS algorithms which
adopts the proposed CPR dominant strategy can be demon-
strated. The CPR strategy effectively overcomes the defects
of PFA method. More importantly, the obvious advantages of
HFBA-COFS algorithm are more fully reflected on the large-
scale power systems such as IEEE 57-bus and IEEE 118-bus
systems.

B. DOMINANCE RATE OF BCS SOLUTIONS
From the perspective of dominance rate, the superiorities
of HFBA-COFS algorithm in exploring higher-performance
BCS solutions are verified. Table 13 gives the dominant
relationships of HFBA-COFS algorithm in contrast to the
DE-PFA and NSGA-II algorithms. It intuitively points out
that the HFBA-COFS algorithm dominates the DE-PFA
algorithm with a probability of 71.43% and dominates the
NSGA-II algorithm with a probability of 90.00%.

C. PERFORMANCE METRICS
Two evaluation indictors, known as generational dis-
tance (GD) and SPREAD, are used to measure the con-
sistency with the real PF, the distribution and diversity of
obtained POS. Taking the three bi-objective optimization
trials (case1∼case3) carried out on the IEEE 30-bus sys-
tem as examples, the optimization performance of three
related algorithms based on the following two indexes is
studied.
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TABLE 13. The dominant relationships of HFBA-COFS algorithm.

FIGURE 21. Boxplots of GD index for case1∼case3.

TABLE 14. The mean and standard deviation values of two evaluation criteria.

1) GD INDEX
The GD index defined as (40) is able to measure the distance
between the obtained PF and the real one [12], [38]–[40]. The
detail significance of relevant parameters is shown in litera-
tures [7], [12]. In general, a smaller value of GD criterion
indicates a better convergence to the real PF.

GD =

√
T∑
i=1

de2i

/
T (40)

In order to make a detail analysis about the GD and SPREAD
indicators based on the average, standard deviation and out-
liers, the boxplot technique is adopted in this paper.

The boxplots of GD criterion for case1∼case3 are shown
in Figure 21. The mean and deviation values of DE-PFA,
NSGA-II and HFBA-COFS algorithms are listed in Table 14.
It is not difficult to find that the suggested HFBA-COFS
algorithm achieves the smallest average and deviation values
of GD indexes in all bi-objective trials on IEEE 30-bus
system. It powerfully states that the PF obtained by
HFBA-COFS algorithm has more favorable convergence and
is more consistent with the true PF.

2) SPREAD INDEX
The SPREAD index defined as (41) is able to measure the
extent of spread archived among the non-inferior solutions
[41], [42]. The SPREAD=0 states that all obtained solutions
are spaced equidistantly.

SPREAD =
Df + Dl +

∑T−1
i=1

∣∣Di − Davg
∣∣

Df + Dl + (T − 1)Davg
(41)

where Di is the Euclidean distance between the neighboring
solutions and Davg is the average of all Di. The Df and Dl are
the Euclidean distances between the extreme solutions and
the boundary ones.

For MOOPF problems, a smaller value of SPREAD
criterion represents the preferable distribution and diver-
sity of POS. The boxplots of SPREAD indicator for
case1∼case3 are shown in Figure 22while themean and devi-
ation values are summarized in Table 14 as well. Although the
HFBA-COFS algorithm has a relatively poor performance on
the deviation values of SPREAD index, it still achieves the
minimum mean values in case1∼case3. It clearly states that
the HFBA-COFS algorithm obtains the satisfactory POSwith
well-distribution and better-diversity.
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FIGURE 22. Boxplots of SPREAD index for case1∼case3.

FIGURE 23. Iterative process of three algorithms for case1.

FIGURE 24. Iterative process of NSGA-II and HFBA-COFS algorithms for case6.

D. CONVERGENCE ANALYSIS
Two bi-objective MOOPF cases (case1 and case6), which
are carried out on the IEEE 30-bus and IEEE 57-bus sys-
tems respectively, are used to prove the superiority of
HFBA-COFS algorithm in fast-convergence. The conver-
gence analysis for these MOOPF cases of IEEE 118-bus
system is not carried out because the DE-PFA and NSGA-II
methods cannot obtain the uniformly-distributed PFs with
zero constraints-violation.

Figure 23 gives the PFs in iteration process of three
mentioned methods for case1. The NSGA-II, DE-PFA and
HFBA-COFS algorithms achieve zero constraints-violation
at the 83th, 182th and 17th (with iteFA−max = 50) iterations,
respectively. In addition, Figure 23 clearly indicates that the
presented HFBA-COFS algorithm can converge to the most
ideal PF around the 60th iteration while two comparison algo-
rithms converge to the best PFs after at least 250th iterations.

Besides, Figure 24 gives the PFs in iteration process
of case6. The DE-PFA method cannot guarantee that each
solution of final POS set satisfies all system constraints,
so its iterative convergence process is not given in Figure 24.

In complex IEEE 57-bus system, the NSGA-II and HFBA-
COFS methods obtain qualified PFs at the 161th and 49th
(with iteFA−max = 100) iterations, respectively. It also shows
that the proposed HFBA-COFS algorithm can converge to the
most ideal PF around the 200th iteration while the NSGA-II
method converges to the best one around the 400th iteration.

Consequently, the suggested HFBA-COFS algorithm is
provided with fast-convergence characteristics and great
strength in seeking better-performance PFs with evenly-
distribution and extensive-diversity.

E. COMPUTATIONAL COMPLEXITY
The mean CPU time of program running, as a common crite-
rion to measure the computational complexity of intelligent
algorithms, is summarized in Table 15. Table 15 intuitively
shows that the HFBA-COFS algorithm requires more CPU
time due to the unique local searching operation in contrast
to the DE-PFA and NSGA-II methods. Therefore, improving
the search efficiency is the key to the further optimization of
bat algorithm.
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TABLE 15. The mean CPU time (sec) of Ten simulation cases.

FIGURE 25. Superposition PFs of case2.

FIGURE 26. Superposition PFs of case6.

FIGURE 27. Superposition PFs of case9.

F. SUPERPOSITION PFS
Three bi-objective optimization cases, which are carried out
different scale systems, are used as typical examples to
analyze the superposition results of 30 independent trials.
Figure 25 gives the superposition PFs of case2 which is
simulated on the IEEE 30-bus system while Figure 26 gives
the ones of case6 which is implemented on the IEEE 57-bus
system. It clearly states that DE-PFA algorithm obtains
more advantageous PFs in contrast to NSGA-II method
while HFBA-COFS algorithm achieves the best PFs with
better consistency. Figure 27 shows the superposition PFs
of case9 which is carried out on the complex IEEE 118-bus
system. It intuitively indicates that the HFBA-COFS

algorithm still achieves the well-distributed PFs of each
separate trial while the superposition results of NSGA-II
algorithm are much more unevenly.

The superposition PFs, which give the comprehensive
results of thirty independent experiments, forcefully demon-
strates the operation stability and superior quality of pro-
posed HFBA-COFS algorithm especially on the large-scale
IEEE 57-bus and 118-bus systems.

VII. CONCLUSION
In general, three main contributions are put forward in this
paper to deal with the multi-dimensional and non-convex
MOOPF problems.
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1) The basic bat algorithm is modified by nonlinear weight
coefficient and novel MRFM model. Combined with the
MODFA algorithm for preliminary optimization, the pro-
posed HFBA algorithm has more superior accuracy and
excellent global-exploration ability.

2) The suggested CPR rule overcomes the difficulty of
determining appropriate penalty coefficients.

3) Different from the typical sorting method, the presented
COFS strategy provides an innovative and effective way to
find the uniformly-distributed POS without any constraint-
violation.

Compared with DE-PFA and NSGA-II methods, the
HFBA-COFS algorithm has extensive applicability and
great advantages in solving the complex MOOPF problems.
In detail, a) HFBA-COFS algorithm realizes zero constraint-
violation of all determined non-inferior solutions, which
clearly overmatches the DE-PFA algorithm. b) HFBA-COFS
algorithm is superior to NSGA-II method in seeking
uniformly-distributed PFs and more ideal BCS solutions.
c) HFBA-COFS algorithm is capable to handle both bi-
objective and tri-objective MOOPF trials, even on the IEEE
118-bus system. The competitive edges of proposed
HFBA-COFS method in obtaining the desirable POS with
satisfactory-diversity and well-distribution are validated
based on the evaluation metrics and superposition PFs.

Consequently, the HFBA-COFS algorithm provides a valid
way to handle the non-liner MOOPF problems, which is
highly significant to the safe and economical operation of
power systems.
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