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ABSTRACT In this paper, a novel hybrid firefly-bat algorithm with constraints-prior object-fuzzy sorting
strategy (HFBA-COFS) is put forward to solve the strictly-constrained multi-objective optimal power
flow (MOOPF) problems. The hybrid firefly-bat algorithm (HFBA) integrates the dimension-based firefly
algorithm and the modified bat algorithm to improve the population-diversity and global-exploration ability
of original algorithm. To handle the unqualified state variables and overcome the deficiency of traditional
penalty function approach (PFA), the constraints-prior Pareto-dominant rule (CPR) which takes constraints-
violation and objectives-value into consideration is proposed in this paper. Furthermore, an effective
constraints-prior object-fuzzy sorting (COFS) strategy based on CPR rule is presented to seek the well-
distributed Pareto optimal set (POS) in solving the MOOPF problems. To validate the great advantages
of HFBA-COFS algorithm, ten MOOPF cases optimizing active power loss, total emission and fuel cost
are simulated on the IEEE 30-bus, IEEE 57-bus and IEEE 118-bus systems. In addition, the generational
distance and SPREAD evaluation indexes powerfully demonstrate that the proposed HFBA-COFS algorithm
can achieve high-quality POS, which has great significance to realize the safe and economic operation of
large-scale power systems.

INDEX TERMS Hybrid firefly-bat algorithm, constraints-prior object-fuzzy sorting strategy, multi-objective

optimal power flow problem, economic operation.

I. INTRODUCTION

The optimal power flow (OPF), as a predominant tool to real-
ize the economic and stable operation of electrical systems,
is very vital for the enhancement of power quality. In general,
the OPF problem primarily aims to achieve the minimal
fuel cost or active power loss by adjusting the independent
variables of power systems [1]-[4].

Recently, the multi-objective optimal power flow
(MOOPF) problems, which can evaluate the running status of
power systems more comprehensively, have attracted exten-
sive attention. In essence, the MOOPF problem is a minimum
optimization with multiple contradictory objectives and strict
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constraints [5]-[8]. Unlike the OPF problem determining the
only optimal solution, solving the MOOPF problems focuses
on seeking a high-quality Pareto optimal set (POS) on the
premise of satisfying various constraints. The non-convex and
non-differentiable characteristics of MOOPF problems make
it difficult to be solved by traditional methods.

A. METHOD REVIEW AND ALGORITHM SELECTION

The maturity of computer technology makes it possible
to solve the MOOPF problems by intelligent algorithms.
At present, the meta-heuristic algorithm [9], the improved
strength Pareto evolutionary algorithm [10], the modified bio-
inspired algorithm [11], and the multi-objective dimension-
based firefly algorithm [12] are all effective to handle the
MOOPF problems. However, it is a pity that the common
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algorithms cannot deal well with the tri-objective MOOPF
problems or the bi-objective ones of large-scale power sys-
tems such as the IEEE 57-bus or 118-bus systems.

The original and modified bat algorithms with superior
accuracy and fewer parameters have been applied to many
practical fields such as the wireless sensor network deploy-
ment [13] and the low-carbon job shop scheduling prob-
lem [14]. Besides, the extensive applicability of bat algorithm
makes it suitable to solve the economic dispatch and optimal
power flow problems [15]-[17]. Therefore, the bat algorithm
is chosen to handle the MOOPF problems in this paper and
several improvements are adopted to overcome the defect of
standard algorithm.

B. CONTRIBUTIONS

To realize the safe and economical operation of power system,
a hybrid firefly-bat algorithm with constraints-prior object-
fuzzy sorting strategy (HFBA-COFS) is proposed to solve the
MOOPF problems. Simulation results clearly state that the
HFBA-COFS algorithm has incomparable advantages over
other published methods in dealing with the many-objective
optimizations of large-scale power systems. The main contri-
butions of this paper are listed as follows.

1) HFBA ALGORITHM
First, the hybrid firefly-bat algorithm (HFBA) which can
avoid premature-convergence and optimize solution-diversity
is proposed. The HFBA algorithm which is effective to solve
the non-linear MOOPF problems has been modified from the
following two aspects.

a: INITIAL POPULATION OPTIMIZATION

The initial population of HFBA algorithm is determined
by the multi-objective dimension-based firefly algorithm
(MODFA). The great superiority of MODFA algorithm in
handling MOOPF problems can refer to literature [12]. The
preliminary screening of power flow solutions based on
MODFA algorithm will increase the probability and effi-
ciency of HFBA algorithm in finding the more preferable
POS sets.

b: PARAMETER UPDATING OPTIMIZATION

Besides, expanding population-diversity helps to explore the
higher-performance POS set. Based on this, a nonlinear
weight coefficient is incorporated into the velocity term of
basic bat algorithm and a monotone random filling model
(MRFM) is put forward to modify the update mode of two
local parameters.

2) COFS SORTING STRATEGY

Furthermore, a constraints-prior object-fuzzy sorting strategy
(COFS) is proposed in this paper to seek the uniformly-
distributed POS without any constraint-violation. The sug-
gested COFS sorting rule, which has great superiorities in
solving the multi-dimensional MOOPF problems, compre-
hensively takes the Rank index based on objective values
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and the fuzzy dominant fitness (Fudf) index based on control
variables into account.

Finally, combining the HFBA algorithm and COFS sorting
strategy, the novel HFBA-COFS algorithm is put forward in
this paper. In contrast to the typical non-dominated sorting
genetic algorithm-1I (NSGA-II) and DE-PFA algorithms, the
applicability and superiority of presented HFBA-COFS algo-
rithm in solving the strictly-constrained MOOPF problems
are validated. It should be noted that the DE-PFA algorithm
is the integration of multi-objective differential evolution
algorithm (MODE) and penalty function approach (PFA).
Compared with the NSGA-II method, which is often used as a
benchmark for the performance evaluation of many-objective
algorithm, the advantages of the novel HFBA-COFS algo-
rithm can be fully and reasonably proved.

The rest of this paper is constructed as follows. The math-
ematic model of MOOPF problems including four objec-
tive functions, multiple equality and inequality constraints is
presented in Section II. Section III introduces the involved
multi-objective strategies including the constraint handling
strategies and the non-inferior sorting strategy. Section IV
focuses on the proposed HFBA-COFS algorithm and its
application on the MOOPF problems. The numerous results
of ten MOOPEF trials simulated on three different-scale sys-
tems are presented in Section V. To verify the availability
and superiority of HFBA-COFS algorithm, Section VI gives
a comprehensive analysis of experiment results mainly based
on the dominance rate, performance metrics and computa-
tional complexity. In the end, the conclusion is given in
Section VII.

Il. MATHEMATICAL MODEL

For mathematical model of MOOPF problems, the four
objective functions and two types of system restrictions are
introduced as follows.

A. OBJECTIVES

The four objectives, known as total emission Ob,, basic fuel
cost Oby, fuel cost with value-point loadings Oby, and active
power loss Ob,, are studied in this paper.

1) TOTAL EMISSION
Ng
Obe = Y [iPg; + BiPGi + vi + niexp(iPclton/h (1)
i=1
where Ng is the amount of generators and Pg; represents the
active power of the ith generator node. The «;, 8;, yi, n; and
A; are emission coefficients of the ith generator.

2) BASIC FUEL COST
Ng
Oby = " (ai + biPi + ciPg)$/h )
i=1
where a;, b; and ¢; depict the cost coefficients of the ith
generator.
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3) FUEL COST CONSIDERING VALUE-POINT EFFECT
Nc

Oby, = Z (a; + biPg; + CiPZGl-
i=1

+|d; x sin(e; x (PBM — Pgi)|)$/h 3)

where d; and e; are two coefficients of valve-point effect.

4) ACTIVE POWER LOSS

N
Oby =Y congy[V? + V} —2ViVjcos(8; — )IMW  (4)
k=1
where V; and §; represent the voltage magnitude and angle of
the ith bus. The N; is the amount of transmission lines and
con(k) indicates the conductance of the kth branch that links
the ith bus to the jth one.

B. RESTRICTIONS
The system constraints are divided into equality constraints
and the inequality ones.

1) EQUALITY RESTRICTIONS
The equality constraints defined as (5) and (6) virtually reveal
the power balance of electric systems.

Pgi—Ppi—V; Z Vi(Gjjcos §;j+Bjjsind;) =0, ieN

JEN;
)
Q6i—0pi—Vi Y Vi(Gjjsin(8;—8))—Bjj cos(8;—8) = 0,
JEN;
i € Npg (©6)

where N;, N and Npg are the numbers of the nodes linked to
the ith node, the nodes except the slack one and the PQ nodes.
The definitions of other mentioned parameters are clarified in
literatures [7], [12], [18].

2) INEQUALITY RESTRICTIONS

The inequality constraints include the restrictions on state
variables which are defined as (7)~(10) and the restrictions
on control variables which are described as (11)~(14).

» active power at slack bus Pg;
PEY = P1 = PGy’ ©)
» voltage at load bus V,
VI > Vi = VI i € Npg (8)
» reactive power at generator bus Qg
05" = Qai = Q" i € Ng ©)
» apparent power S

S _ 5> 0,i€ N, (10)
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» generator active power Pg
o > Pgi > PA"i=2,3,--+ \Ng (1)
» voltage at generator bus Vg
VIR > Ve, > VAN e Ng (12)
» transformer tap-settings 7'
T > T; > T/ j € Nr (13)
» reactive power injection Q¢
Q8™ = Qci = QF" i € Nc (14)

where N¢ and N7 indicate the numbers of shunt compen-
sators and transformers.

Ill. MULTI-OBJECTIVE STRATEGIES
Then, the constraint handling measures, the non-inferior
dominant and sorting strategies are clarified.

A. CONSTRAINT HANDLING STRATEGIES

The power flow optimal solution adopted by decision makers
should meet all constraints of electric system. As the ending
condition of Newton-Raphson approach, the equality con-
straints (5) and (6) can be satisfied at the end of calculation
process. The handling strategies of inequality restrictions are
mainly discussed in this paper.

1) CONTROL VARIABLES PROCESSING
The D-dimensional control variables C, also the independent
variables of power system, are limited within [C™"", C™*].

The C set which violates inequality constraints can be
adjusted as (15).

min
¢,

max
G,

C; < Ccmin

Ci=
’ Ci > Cmx

15)

2) STATE VARIABLES PROCESSING

The common PFA method deals with the state variables S
which violate inequality constraints by introducing multiple
penalty coefficients, which has obvious limitations.

a: PENALTY FUNCTION APPROACH

Based on PFA method, the objective functions are modified
as follows.

Obpj— mod = Obgpj + Penalty (16)
. NPQ :
Penalty = ¢p(Pg1 — Pil) 4 ¢y Z (Vi — Vim)
i=1

Ng . Ny |
+20 Y (Qai— O +25 Y (5 — SH™)
i=l i=1
(17)
Sireky = &M 4 it (¢ — ¢ ige™ - (18)
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where ¢p, {v, {p and {s are penalty coefficients which are
adjusted as formula (18) during the iterations. The ;) is
the penalty coefficient value at the kth iteration and ife”**
indicates the maximum iteration number. The corresponding
penalty coefficients are limited within [¢"", £%].

The specific application of PFA method can be referred to
literatures [19]-[21]. Proverbially, the performance of PFA
method is closely related to the appropriateness of penalty
coefficients. However, determining a proper penalty coeffi-
cient requires plentiful repeated experiments and it is hard
to guarantee that every solution of obtained POS satisfies all
constraints, especially on large-scale systems. To overcome
the shortcomings of PFA method, a constraints-prior domi-
nant rule (CPR) is proposed.

b: CPR DOMINANT RULE

The CPR rule defines the dominant relationship of two differ-
ent power flow solutions by calculating the values of objec-
tives and the violations of inequality constraints. In detail,
the judgment can be made that the So; (So1 = (u1, ua, ...,

up)) solution dominates the So, (So» = (vi, v2, ..., vp)) one
when condition (19) or (20) is met.
Vio(So1) < Vio(So2) 19)

Vio(So1) = Vio(So02)
0bi(C,S1) < Obi(C, $),Vie {1,2,...,M} (20)
Ob;(C, §1) < 0bi(C, $2),Fj € (1,2,..., M}

where Vio(So,,) represents the total violation value of the mth
solution. The 0Ob;(C,S,,) indicates the ith objective value of
the nth S set and M (M >2) is the number of simultaneous
optimization goals.

The suggested CPR method can effectively avoid the com-
plicated process of selecting appropriate coefficients by PFA
method.

B. COFS SORTING STRATEGY

Based on the presented CPR method, an innovative COFS
strategy to seek the well-distributed Pareto fronts (PFs) is put
forward in this paper. The COFS strategy comprehensively
considers the Rank index achieved by CPR method and the
Fudfindex calculated based on control variables.

1) RANK INDEX

Learning from the typical non-inferior sorting rule proposed
by Kalyanmoy Deb [22]-[24], the Rank indicator of each
solution can be determined as follows.

a) Generate a candidate population (CAP) by integrating
the paternal population (PAP) and the elite population (ELP).
The initial PAP and ELP populations are composed by T
randomly generated individuals.

b) Calculate the Ob and Vio values of each individual in
CAP population.

¢) Based on the suggested CPR method, these power flow
solutions, which are not dominated by other solutions in CAP
population, are assigned as Rank = 1.
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d) Eliminate the individuals with Rank = 1. The current
non-inferior solutions are found and assigned as Rank = 2
according to the same CPR rule.

e) The above operations are repeated until each solution
in CAP population has been assigned a corresponding Rank
index.

2) FUDF INDEX
The Fudf index is used to judge the dominant relation of
two individuals with the same Rank index. In detail, the Fudf
index of each solution can be calculated as follows.

a) Compute the relative performance of the So; solution in
contrast to the So;, one (P,,,(So1)) as formula (21).

Pyy(So1) = Soy — Sop = (uy — vy, up —va, -+ ,up — vp)

2
b) Based on the fuzzy membership function F,, defined

as (22), the dominant degree of So; solution relative to the
So, one (p(So1)) is determined according to formula (23).

1, x < -1
Fop={xix3+x, —l<x<1yx1=-05x2=—x1
0, x>1
(22)
@(S01) = Fu(Puy(S01)) = (¢1, -+, D) (23)

c¢) Calculate the fuzzy eigenvalue of So; solution (¥ (So1))
based on formula (24).

Y(So1) =[]t € [1, D) N (¢} # 0) (24)

d) Clarify the standard performance of So solution relative
to the So, one named as SP,,(So1) according to (25).

SPu(So1) = YU/ (501) + v (S02)) (25)

The Fudf(So;), the mean value of standard performances
in essential, represents the Pareto fuzzy dominant fitness
of the ith solution relative to the other (27-1) solutions of
CAP population. The Fudf(So;) character can be calculated
as formula (26).

J
Fudf (So;) = ZSP/ZT _i=12,--2TNj#i (26)

The core steps to judge the adoption-priority of each power
flow solution based on the proposed COFS strategy can be
summarized as follows. More concretely, the So; solution has
a higher adoption-priority than the So, one when condition
(27) or (28) is satisfied.

Rank(So1) < Rank(So;) 27
{Rank(So 1) = Rank(So3)

(28)
Fudf (So1) > Fudf (So>)

Generally, the T top-ranked solutions in CAP population
are the ultimate POS selected by the COFS sorting strategy.
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IV. OPTIMIZATION ALGORITHMS

The basic bat algorithm is popular for its high-accuracy
and good-versatility. To release the restriction of local
optimums and improve searching efficiency, the improved
HFBA-COFS algorithm is proposed.

A. STANDARD BAT ALGORITHM

The standard bat algorithm, as a classical global optimiza-
tion algorithm, updates the location of bat population by
constantly adjusting searching frequency and determines the
global optimal individual according to the established domi-
nant relationship [25]-[27]. The frequency Fr(i), speed Sp(i)
and location Lo(i) of the ith bat are defined as (29), (30)
and (31).

Fr(i) = Fr™ 4 7; % (Fr™ — fpmin) (29)
Sp(@y = SpD¢—1) + Fr@) * (Lo(D)¢—1) — Lopesr)  (30)
Lo(i)¢) = Lo(D)¢—1) + Sp(Dq) 3D

where the frequency is restricted within [F"", Fr"*]. The
71 (11 €(0,1)) is a random number and Loy, indicates the
location of the current best individual.

Local searching operation, as the unique feature of bat
algorithm, is mainly to explore a preferable individual (Loyey,)
near the Lop,g one. Two principal parameters of local search-
ing, known as the loudness lou and pulse rate pul, are
described as (32) and (33), respectively.

When lou and pul meet the preset conditions, the local
search which is conducive to optimize the diversity of bat
population will be performed based on formula (34).

lOM(i)(H_l) = Tp * lou(i)(,) (32)
pul(@)+1y = pulo(1 — exp(—§11)) (33)
Loneyw = LOpest + T3 * LoOpest (34)

where 70 (1o €(0,1)) and 73 (73 €(-1,1)) are two random
numbers. The &; (£1>0) represents the attenuation coefficient
of lou while puly indicates the initial pulse rate.

B. PROPOSED HFBA-COFS ALGORITHM

In order to handle the MOOPF problems more effectively,
the HFBA algorithm is born by the following improvements
to the standard algorithm.

1) MODIFIED MANNER OF SPEED

The non-linear weight coefficient w,,, defined as (35) is
employed to improve the updating manner of Sp. The modi-
fied manner of Sp is described as (36).

Onon(t) = O — 74(@B — Min
+75(@non(t — 1) — 0.5 % (@M 4 Miny)
(35)
Sp(Dt+1) = @non(®)Sp(Dry + T6F7r @) (Lopesr — Lo(i)(r))
(36)

where wy,,;, is limited within [a);l”(f;’,, wne] and 7; (1; €(0,1),

i = 4,5,6) are three random numbers.
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2) MODIFIED MANNER OF LOCAL SEARCHING

The MRFM model, which is put forward to improve the
updating manners of two local parameters, can meet the
specific requirements of smaller lou and larger pul when the
Loy, individual is accepted. The renewed manners of Jou and
pul are defined as (37) and (38), respectively.

oty (i) = (lou™a% — loumi‘T) * (ite — itemax) + lou™n
(1 — itemax)
(37)
pulnew(i) _ (pulmm _ Pulmai‘) * (ite — itemax) +pulmax
(1 — itemax)
(38)

The MRFM model sets the valid range of loudness to
[low™™, lou™*] and the effective range of pulse rate to
[pul’"i”, pul™]. The ite and ite,,,, indicate the current and
maximum iteration numbers.

The modified manner of local searching is summarized as
Figure 1.

3) MODIFIED MANNER OF POPULATION INITIALIZATION
For the researches on MOOPF problems, the typical method
of generating an initial population is shown as (39).
However, this randomly-generated way will inevitably
increase searching time to determine the optimal solutions.
Therefore, this paper proposes the creative idea of adopting
the MODFA algorithm for preliminary optimization, and
takes the obtained POS (POS_ga) as the initial PAP popu-
lation of HFBA-COFS algorithm. The applications of firefly
algorithm can be found in literatures [12], [28]-[30].

Cliy = C™ + 7 (C™ — ™) i e [1,T] (39)

where C(i) represents the ith initial control variables set and
77 (77 €(0,1)) is a random number.

By integrating the above improvements and suggested
COFS strategy, the HFBA-COFS algorithm which provides
an effective way to solve the MOOPF problems is pro-
posed. Besides, Table 1 summarizes the pseudo-codes of
HFBA-COFS algorithm for handling the MOOPF problems.

V. SIMULATION TRIALS

There are ten cases simulated on three different-scale power
systems. Comparing with the DE-PFA and NSGA-II algo-
rithms, the definite superiorities of HFBA-COFS algorithm in
solving the bi-objective and tri-objective MOOPF problems
can be proved.

A. SYSTEMS AND OBJECTIVE COMBINATIONS
The IEEE 30-bus, IEEE 57-bus and the more complex IEEE
118-bus systems are employed to simulate the mentioned
MOOPF trials shown in Table 2. All trials are carried out on
the MATLAB 2014a software in a PC with Intel(R) Core(TM)
i5-7500 CPU @ 3.40 GHz with 8GB RAM.

The transformer taps of the IEEE 30-bus system, which
includes 6 generators and 24-dimensional control variables,
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e
. start )

— T —

Generate a random constant Ranl (Ranl €(0,1)).

!

pulew<Ranl

I yes

‘ Generate a new Lonew individual near the current Loy, individual based on (34)

|

‘ Generate another random constant Ran2 (Ran2 € (0,1)).

1

T T

——— (lotnen>Ran2) & (Lowa—

invalid local search

-

_ no
— dominates Loy, based on proposed\/“—b{
\ CPRrule)

yes

The Lonew individual will be accepted as the new optimal one as yet.
At the same time, lounew Will decrease and pulew will increase based on (37) and (38) .

FIGURE 1. Local search of HFBA-COFS algorithm.

TABLE 1. Pseudo codes of HFBA-COFS algorithm on MOOPF problems.

input: the initial parameters of HFBA-COFS algorithm
begin
iteg4=l

Based on formula (39), the initial population is generated as the input of MODFA algorithm.

while z'teFA < iteFA,maX

Determine the POS g4 set obtained by the MODFA method shown in literature [12].

itepy = itept1;

end while

ite=1

Take the obtained POS y, set as the initial P4P population.

while ite < ite,q.

fori=1.2,...T

Update the Sp(i) and Lo(i) of ith individual based on (36) and (31).
Clarify the values of Ob; and Vio(i) by calculating power flow.
end

Determine the current POS set based on the presented COFS sorting strategy.

Determine the Lo, solution based on the fuzzy affiliation method shown in literature [12].
Perform the local search around the Loy, solution shown in Figure 1 to generate the Lo, solution.
if the Lo, solution dominates the Lo, one according to the suggested CPR rule

Lopess= LOyew

end

ite=ite+l;

end while
end

output: the ultimate POS set of HFBA-COFS algorithm and the control variables set of the Loy, solution

are limited within [0.9 1.1] p.u.. The voltage limits of gener-
ator nodes are restricted within [0.95 1.1] p.u.. The fuel cost
and emission coefficients of IEEE 30-bus system are given
in Table 3. The structure and more details of IEEE 30-bus
system can be found in literatures [7], [12], [31], [32].

The transformer taps of the IEEE 57-bus system, which
includes 33-dimensional control variables, are limited within
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[0.9 1.1] p.u.. The shunt capacitor is limited within [0 0.3]
p-u. while the voltage magnitude of PQ and PV nodes are
limited in [0.9 1.1] p.u.. The structure and more details such
as emission coefficients of IEEE 57-bus system are obtained
from literatures [7], [33].

As a representative large-scale power system, the IEEE
118-bus system with 128-dimensional control variables can
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TABLE 2. Objective combinations.

objective casel case2 case3 case4 caseS case6 case’7 case8 case9 casel0
Ob, yes yes yes yes yes yes
Ob, yes yes yes yes yes yes yes yes
Oby, yes yes
0Ob, yes yes yes yes yes yes yes yes
system IEEE30 IEEE30 IEEE30 IEEE30 IEEE30 IEEES57 IEEES57 IEEE57 IEEE118 IEEE118
TABLE 3. Fuel cost and emission coefficients of IEEE 30-bus system.
Emission coefficients Fuel cost coefficients
o B y 7 A a b c d e
G 0.06490 -0.05554 0.04091 0.0002 2.857 0 2 0.00375 18 0.037
G, 0.05638 -0.06047 0.02543 0.0005 3.333 0 1.75 0.0175 16 0.038
Generator Gs 0.04586 -0.05094 0.04258 0.000001 8.000 0 1 0.0625 14 0.04
Gs 0.0338 -0.0355 0.05326 0.002 2.000 0 3.25 0.00834 12 0.045
Gn 0.04586 -0.05094 0.04258 0.000001 8.000 0 3 0.025 13 0.042
Gj; 0.05151 -0.05555 0.06131 0.00001 6.667 0 3 0.025 13.5 0.041
measure the performance of HFBA-COFS algorithm more 960y PYTRYT
. . ou-0. -0.
comprehensively. The structure and more details of IEEE 040} lou-0.50-0.95
118-bus system can be found in literatures [7], [12]. lou-0.51-0.95
920 lou-0.49-0.96
~ o0 lou-0.50-0.96
B. ALGORITHM PARAMETERS SETTING & w0100
To determine a relatively optimal parameters set of § 880 10u-0.50-0.97
HFBA-COFS algorithm, a bi-objective case which optimizes 2 seol lou-0.51-0.97
the Ob,. and Oby at the same time is adopted as an example. 8 suol
The two local parameters have great influences on opti-
. . . 8201
mization performance and their proper ranges are studied. " R
Figure 2 gives the PFs with different pul ranges and it shows 8001 R+
the range of [0.09 0.51] obtains the worst PF while the range 780 ‘ ‘

of [0.10 0.50] achieves the best one. Figure 3 gives the PFs
with different lou ranges and it clearly indicates that the range
of [0.50 0.96] achieves the best PF with evenly-distribution.
Therefore, the appropriate ranges of pulse rate and loudness
are set as [0.10 0.50] and [0.50 0.96] in this paper. The other
detail parameter-settings are summarized in Table 4.

960
pul-0.09-0.49
9401 pul-0.09-0.50
pul-0.09-0.51
920t pul-0.10-0.49
R pul-0.10-0.50
£ 900f pul-0.10-0.51
2 pul-0.11-0.49
g 880 pul-0.11-0.50
2 a0l pul-0.11-0.51
o
(7]
o 840+
8201
800k O 5 o
780 :

0.18 0.2 022 024 0.26 0.28 0.3 032 034
Emission (ton/h)

FIGURE 2. PFs with different pul ranges.
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018 02 022 024 026 028 03 032 034 036
Emission (tor/h)

FIGURE 3. PFs with different lou ranges.

C. TRIALS ON IEEE 30-BUS SYSTEM

Three bi-objective and two tri-objective MOOPF trials are
carried out on the IEEE 30-bus system.

1) CASE1:0Bf and Oby

An optimization case which aims at minimizing the emission
and basic fuel cost simultaneously is implemented on the
IEEE 30-bus system. The PFs of casel found by DE-PFA,
NSGA-II and proposed HFBA-COFS algorithms are shown
in Figure 4. The best compromise solution (BCS) of each
algorithm is also noted in Figure 4. It intuitively shows the
PF obtained by HFBA-COFS algorithm is better than these of
DE-PFA and NSGA-II methods. At the same time, the num-
bers of feasible solutions obtained by three algorithms are
shown in Figure 5. It is worth noting that the feasible
solution in this paper represents the non-inferior solution
which does not violate any equality or inequality constraints.
Figure 5 clearly indicates the all Pareto solutions determined
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TABLE 4. Parameter-settings of three involved algorithms.

casel~case5

case6~casel0

parameters
DE-PFA NSGA-II HFBA-COFS DE-PFA NSGA-II HFBA-COFS
T 100 100 100 100 100 100
l‘lem_max - - 50 - - 100
it€nax 300 300 150 500 500 300
e 10/100 - - 10/100 - -
mutant coefficient 0.6 - - 0.6 - -
crossover coefficient 0.8 - - 0.8 - -
mutation index/percentage - 20/1 - - 20/1 -
crossover index/percentage - 20/0.1 - - 20/0.1 -
light absorption coefficient - - 1 - - 1
randomization parameter - - 0.1 - - 0.1
attractiveness at distance=0 - - 1 - - 1
Oren /O - - 0.4/0.9 - - 0.4/0.9
Fr™[Fy™ - - 0/2 - - 0/2
pul™/pul™ - - 0.10/0.50 - - 0.10/0.50
lou™"/lou™™ - - 0.50/0.96 - - 0.50/0.96
9601 SEPEA based on the control variables can make the power system
940} b NSGAI achieve the predetermined economic operating state, which is
- * HFBA-COFS the practical significance of studying the MOOPF problems.
o . According to the objective values, the BCS of HFBA-COFS

2% 8 algorithm with 0.2329 ton/h of Ob, and 833.0155 $/h of

< 880f é Oby dominates the BCS solutions of DE-PFA and NSGA-II

g asol S 8® A methods.

_?3840 @ Moreover, Table 6 gives the comparison results of BCS

€N N . . . .

8 %4, "0z o2 02 o023 02 solutions from other published literatures and provides
8201 tﬂ%@a% cresen et more convincing proofs for the superiority of HFBA-COFS
800k e Hrm s, algorithm.

18 02 o022 o024 02 028 03 032 034
Exmisslon (tonh) 2) CASE2:0Bp and Oby

FIGURE 4. PFs of casel.
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FIGURE 5. The numbers of feasible solutions for casel.

by NSGA-II and HFBA-COFS algorithms achieve zero
constraints-violation. It powerfully demonstrates that the
presented COFS sorting strategy effectively overcomes the
shortcomings of PFA method.

In addition, Table 5 gives the control variables of BCS
solutions for casel. Adjusting the input of electronic devices
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In case2, the power loss and the basic fuel cost are optimized
at the same time. The PFs of case2 obtained by three involved
algorithms are given in Figure 6. It indicates that the sug-
gested HFBA-COFS algorithm can achieve the best PF with
uniformly-distribution while the NSGA-II method obtains the
worst one. Figure 7 gives the numbers of feasible solutions
for case2 which clearly demonstrates the obvious advantages
of HFBA-COFS algorithm in seeking more zero-violation

980
DE-PFA
960+ % +  NSGA-Il
atol + HFBA-COFS
836
920t s *
= $ & 835
S 900f g
5 3 8
3 880 g <
< % S 833
= ©
o 860F &y o2
% % . 5.05 5.1 5.15 5.2
m 8401 Power loss (MW)
Sl
820} %%
800+ A
7 L L L L L L !
80, 3 4 7 8 9

5 6
Power loss (MW)

FIGURE 6. PFs of case2.
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TABLE 5. The control variables of BCS for casel and case2.

. casel case2
variables DE-PFA NSGA-II HFBA-COFS DE-PFA NSGA-II HFBA-COFS
P (MW) 57.2272 56.9089 57.9934 49.9374 52.2694 53.1358
Pss(MW) 26.9386 25.1412 28.4303 32.8074 33.5875 32.4210
Pas(MW) 35.0000 34.8792 32.9613 32.9055 35.0000 35.0000
Peii(MW) 28.2976 28.2573 26.5033 23.9558 27.5029 26.5747
Pgis(MW) 25.0556 26.3754 26.5783 27.9007 21.8246 22.2063
Vai(p-u.) 1.0977 1.0133 1.1000 1.0995 1.0862 1.1000
Vaa(p-u.) 1.0722 0.9980 1.0927 1.0906 1.0724 1.0881
Vas(p.u.) 1.0438 0.9582 1.0742 1.0686 1.0484 1.0718
Vas(p.u.) 1.0506 0.9844 1.0824 1.0747 1.0552 1.0767
Vaon(p.u.) 1.0041 1.0942 1.1000 1.0919 1.0839 1.0938
Vais(p-u.) 1.1000 1.0020 1.0638 1.0891 1.0726 1.0951
Tu(p.u.) 1.0833 1.0256 0.9639 1.0470 1.0433 1.0304
Tia(p.u.) 0.9276 0.9492 1.0343 0.9146 0.9439 0.9469
Tis(p-u.) 0.9719 0.9244 0.9781 1.0020 1.0061 1.0078
Tse(p-u.) 0.9673 0.9459 1.0150 0.9697 0.9810 0.9818
Qcio(p-u.) 0.0480 0.0411 0.0386 0.0241 0.0293 0.0489
Qcrz(p-u.) 0.0000 0.0469 0.0192 0.0248 0.0467 0.0314
Qcis(p-u.) 0.0500 0.0177 0.0178 0.0355 0.0460 0.0324
Qci7(p-u.) 0.0500 0.0241 0.0321 0.0286 0.0411 0.0460
Qc20(p-u.) 0.0314 0.0299 0.0324 0.0500 0.0490 0.0265
Qcai(p-u.) 0.0500 0.0452 0.0338 0.0455 0.0352 0.0249
Qcas(p-u.) 0.0414 0.0133 0.0311 0.0500 0.0121 0.0421
Qca4(p-u.) 0.0500 0.0452 0.0323 0.0289 0.0266 0.0424
Qc2o(p-u.) 0.0057 0.0148 0.0437 0.0218 0.0011 0.0457
0b,(MW) - - - 5.1354 5.1599 5.0796
Ob,(ton/h) 0.2332 0.2350 0.2329 - - -
Ob($/h) 833.5200 834.5679 833.0155 833.4465 835.4439 832.3203
TABLE 6. Comparison results of Casel.
algorithms Obs$/h) Ob,(ton/h)
NSGA-II 0.2350 834.5679
DE-PFA 0.2332 833.5200
HFBA-COFS 0.2329 833.0155
AGSO [34] 0.2539 843.5473
MOEA/D [35] 0.2438 833.72
BSA[36] 0.2425 835.0199
ESDE [37] 0.2540 833.4743
ESDE-EC [37] 0.2510 831.0943
ESDE-MC [37] 0.2483 830.7185
MOPSO [12] 0.2492 833.7139
MODFA [12] 0.2432 831.6652
cAsE2 IDE PFA Oby dominates the BCS solutions of DE-PFA and NSGA-II
IINSGA- [ /HFBA-COFS h .
100 approaches. Furthermore, the comparison results of case2 are
90/~ . summarized in Table 7.
80~ . Above all, the proposed HFBA-COFS algorithm is supe-
5 70k i rior to DE-PFA in obtaining more feasible solutions and has
§ sl i better performance than NSGA-II in seeking high-quality PFs
g | and BCS solutions.
£
é 401 —
§ 30- —
" 3) CASE3:0Bp and Obyy,
The performance of HFBA-COFS algorithm in optimizing
1 the power loss and the fuel cost with value-points is studied
% 5 10 25 30 in case3.

15 20
Independent trials

FIGURE 7. The numbers of feasible solutions for case2.

solutions. Besides, Table 5 provides the control variables
of BCS solutions and it illustrates that the BCS of HFBA-
COFS algorithm with 5.0796 MW of Ob,, and 832.3203 $/h of
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Figure 8 shows the PFs of case3 and it can be clearly seen
that HFBA-COFS algorithm achieves the preferable PF while
NSGA-II algorithm obtains the worse one. The numbers of
feasible solutions for 30 independent trials obtained by three
different algorithms are given in Figure 9.
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TABLE 7. Comparison results of Case2.

algorithms Ob,(MW) Obs($/h)
NSGA-II 5.1599 835.4439
DE-PFA 5.1354 833.4465
HFBA-COFS 5.0796 832.3203
MOEA/D [35] 4.9099 835.36
NSGA-II [35] 833.57
NSGA-II [12] 5.1775 836.8076
MODFA [12] 4.9561 833.9365
el DE-PFA DE-PFA
% + NSGAI * NSGAI
1000 % + HFBA-COFS 0.35 * HFBA-COFS
= % = 868 *
& & =3 * /{
E & E se7 — 03 %
2 : : E
&:f 950 ‘% 2 866 1
s " - c 025
é % g oo %
2 900 S, Bem £
7] * 5 w
3 2 863
) - 57 5.75 5.8
I 850 #ﬁ# - Power loss (MW)
r ﬁmﬂﬁ%ﬂﬁt
ety 1000
T ‘ : : 5 10 11

6 7 8
Power loss (MW)

FIGURE 8. PFs of case3.
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FIGURE 9. The numbers of feasible solutions for case3.

Meanwhile, Table 8 shows the control variables of three
BCS solutions and two boundary solutions (BS). In detail,
the BCS of HFBA-COFS algorithm with 5.6791 MW of Ob,,
and 863.7107 $/h of Obs, dominates the BCS solutions of
two comparison algorithms. For two BS solutions obtained
by HFBA-COFS algorithm, the BS¢yse3-p solution includes
1026.6437 $/h of Oby;, and 2.8461 MW of minimal Ob, while
the BScase3—fv solution includes 10.2682 MW of Ob, and
831.3694 $/h of minimal Oby,. In a word, the HFBA-COFS
algorithm can not only ensure that each solution of POS
satisfies all equality and inequality constraints, but also be
able to obtain the satisfactory PF.
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FIGURE 11. The numbers of feasible solutions for case4.

4) CASE4: OBg, Ob, AND Oby
The tri-objective optimization with greater difficulty can fur-
ther measure the effectiveness of HFBA-COFS algorithm.
A synchronous optimization trial including Ob,., Ob, and
Oby is carried out on the IEEE 30-bus system in case4.
Figure 10 gives the obtained PFs and it intuitively illus-
trates that the DE-PFA method obtains a relatively densely-
distributed PF. In contrast to the NSGA-II algorithm,
the HFBA-COFS algorithm is capable to achieve a higher-
quality PF.

The numbers of feasible solutions for case4 is shown
in Figure 11. Figure 11 indicates that the HFBA-COFS
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TABLE 8. The control variables of BCS and BS solutions for case3.

variables DE-PFA NSGA-II HFBA-COFS BScase3p BS.ases-fv
Ps:(MW) 49.8503 43.8480 47.6172 80.0000 46.1045
Pgs(MW) 30.7227 31.7346 31.6380 50.0000 18.0487
Pes(MW) 35.0000 34.6339 33.1641 35.0000 10.0000
Peii(MW) 249182 24.5906 23.2110 30.0000 10.0000
Psi3(MW) 16.3338 20.0813 18.9426 40.0000 12.0000
Vai(p.u.) 1.1000 1.0786 1.1000 1.1000 1.1000
Vea(p-u.) 1.0895 1.0628 1.0898 1.0983 1.0850
Vas(p-u.) 1.0506 1.0473 1.0693 1.0799 1.0683
Vas(p.u.) 1.0683 1.0481 1.0767 1.0877 1.0637
Ven(p-u.) 1.0918 1.0962 1.0980 1.0964 1.0990
Vans(p.u.) 1.0710 1.0994 1.0999 1.1000 1.1000
Tu(p-u.) 1.0813 1.0010 1.0008 1.0674 1.0265
Tia(p.u.) 0.9000 0.9087 0.9672 0.9000 0.9113
Tis(p.u.) 1.0030 0.9705 0.9782 0.9963 0.9909
Tse(p-u.) 0.9507 0.9550 0.9643 0.9759 0.9423
Qcio(p-u.) 0.0366 0.0079 0.0367 0.0500 0.0424
Qciz(p-u.) 0.0359 0.0357 0.0232 0.0500 0.0000
Qcis(p-u.) 0.0369 0.0424 0.0180 0.0456 0.0028
Qci7(p-u.) 0.0256 0.0399 0.0467 0.0500 0.0482
Qc20(p-u.) 0.0248 0.0405 0.0492 0.0500 0.0408
Qcai(p-u.) 0.0500 0.0400 0.0494 0.0500 0.0493
Qcx(p-u.) 0.0500 0.0329 0.0463 0.0500 0.0020
Qc24(p-u.) 0.0136 0.0413 0.0386 0.0411 0.0449
Qc(p-u.) 0.0126 0.0353 0.0216 0.0118 0.0047
Ob,(MW) 5.7655 5.8063 5.6791 2.8461 10.2682
Ob($/h) 865.9950 867.4109 863.7107 1026.6437 831.3694
TABLE 9. The Control variables of BCS solutions for Case4 and Case5.
variables case4 case5
DE-PFA NSGA-II HFBA-COFS DE-PFA NSGA-II HFBA-COFS
Pc(MW) 63.6998 67.4691 64.2797 64.4637 64.4640 66.2056
Pss(MW) 33.4222 28.8768 34.9168 26.8692 31.4121 31.2893
Pgs(MW) 35.0000 34.7962 35.0000 35.0000 34.7902 35.0000
Poii(MW) 30.0000 29.8874 30.0000 30.0000 27.2242 24.8720
Pgi3(MW) 35.1635 35.6755 31.7022 29.8510 28.4055 29.5606
Vai(p.u.) 1.1000 1.0285 1.1000 1.0985 1.0820 1.1000
Vaa(p-u.) 1.0980 1.0155 1.0955 1.0917 1.0640 1.0900
Vas(p.u.) 1.0810 0.9999 1.0765 1.0658 1.0206 1.0573
Vas(p.u.) 1.0771 0.9989 1.0798 1.0459 1.0432 1.0753
Van(p-u.) 1.0619 1.0765 1.0900 1.1000 1.0081 1.1000
Vais(p-u.) 1.0951 1.0718 1.0926 1.0794 1.0491 1.1000
Tu(p.u.) 1.0568 0.9712 0.9756 1.0463 1.0042 0.9942
Tia(p.u.) 0.9000 0.9374 1.0089 0.9871 0.9474 0.9374
Tis(p.u.) 0.9650 0.9736 0.9787 0.9322 0.9925 0.9767
Tse(p.u.) 0.9738 0.9213 0.9961 0.9616 0.9738 0.9838
Qcio(p-u.) 0.0276 0.0173 0.0500 0.0500 0.0163 0.0478
Qciz2(p-u.) 0.0368 0.0136 0.0382 0.0200 0.0363 0.0362
Qcis(p-u.) 0.0258 0.0243 0.0338 0.0209 0.0238 0.0320
Qci7(p-u.) 0.0500 0.0340 0.0392 0.0500 0.0324 0.0289
Qca0(p-u.) 0.0343 0.0224 0.0331 0.0000 0.0004 0.0469
Qcai(p-u.) 0.0208 0.0339 0.0327 0.0000 0.0241 0.0500
Qcas(p-u.) 0.0318 0.0158 0.0122 0.0500 0.0205 0.0000
Qca4(p-u.) 0.0473 0.0216 0.0500 0.0172 0.0060 0.0500
Qc2o(p-u.) 0.0376 0.0388 0.0336 0.0001 0.0493 0.0109
0b,(MW) 4.2429 5.0865 4.1544 5.3973 5.2441 4.6793
Ob.(ton/h) 0.2087 0.2111 0.2100 0.2201 0.2198 0.2195
Obg($/h) - - - 919.0940 920.3811 918.9154
Ob/($/h) 869.9216 867.9027 867.4262 - - -

algorithm can achieve zero constraint-contravention even in
the tri-objective optimization. Besides, the control variables
of obtained BCS are listed in Table 9. It can be clearly
known that the BCS obtained by HFBA-COFS algorithm
which includes 4.1544 MW of Ob,, 0.2100 ton/h of Ob,
and 867.4262 $/h of Oby can dominate the BCS obtained by
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NSGA-II algorithm with 5.0865 MW of Ob,, 0.2111 ton/h of
Ob, and 867.9027 $/h of Oby.

5) CASE5:0Bg, Ob, AND Oby,

In case5, three objectives including Ob,, Ob, and Oby, are
optimized simultaneously. Figure 12 and Figure 13 show the
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FIGURE 13. The numbers of feasible solutions for case5.

PFs of three mentioned algorithms and the numbers of fea-
sible solutions, respectively. It is not difficult to find that the
HFBA-COFS and NSGA-II algorithms can obtain relatively
well-distributed PFs and achieve zero violation of system
restrictions. Furthermore, Table 9 gives the detail information
of BCS solutions. It illustrates that the BCS of HFBA-COFS
algorithm with 4.6793 MW of Ob,,, 0.2195 ton/h of Ob, and
918.9154 $/h of Oby, is more preferable than the two BCS
solutions of DE-PFA and NSGA-II approaches.

D. TRIALS ON IEEE 57-BUS SYSTEM

Two bi-objective and a tri-objective MOOPF trials are imple-
mented on the IEEE 57-bus system. The complex structure of
IEEE 57-bus system undoubtedly increases the optimization
difficulty.

1) CASE6:0Bg and Oby

The optimization quality of proposed HFBA-COFS algo-
rithm in minimizing emission and fuel cost on the
IEEE 57-bus system is studied in case6. Figure 14 shows the
PFs of three involved algorithms and the distribution of BCS
solutions. It is easy to find that three intelligent algorithms
can obtain evenly-distributed PFs while the HFBA-COFS
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FIGURE 15. The numbers of feasible solutions for case6.

algorithm achieves the best one. Figure 15 shows the numbers
of feasible solutions and it directly illustrates that com-
pared with IEEE 30-bus system, the complex structure of
IEEE 57-bus greatly limits the effectiveness of PFA method.

Table 10 gives the control variables of three BCS and
two BS solutions for case6. The comparison result is
listed in Table 10 as well. In detail, the BCS obtained
by HFBA-COFS algorithm with 1.2129 ton/h of Ob,
and 43259.3013 $/h of Obs dominates the BCS solu-
tions obtained by two comparison algorithms. For the BS
solutions determined by presented HFBA-COFS algorithm,
the BScaise6—e solution includes 1.0266 ton/h of minimal
Ob, and 48300.8388 $/h of Oby while the BScase6—f solu-
tion includes 1.5910 ton/h of Ob, and 41691.9581 $/h of
minimal Oby.

In a word, although the HFBA-COFS and NSGA-II meth-
ods enable each solution of obtained POS to satisfy all sys-
tem constraints, the HFBA-COFS algorithm can obtain more
advantageous PFs and higher-quality BCS solutions.

2) CASE7: OBg, OBp AND OBg

A tri-objective optimization which takes Ob,, Ob,, and Oby
into consideration concurrently is simulated on the IEEE
57-bus system. Figure 16 and Figure 17 show the obtained
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TABLE 10. The control variables of BCS and BS solutions for Case6.

variables DE-PFA NSGA-II HFBA-COFS BS.ase6-e BS.ases MODFA [12]
P (MW) 100.0000 98.8632 100.0000 100.0000 99.9995 99.9703
Pg:(MW) 100.3757 96.9815 95.9347 140.0000 44.0060 88.2975
Pos(MW) 99.3326 99.0915 100.0000 100.0000 99.9995 99.9135
Pos(MW) 362.5321 362.2229 353.8717 270.3802 438.0784 343.6324
Pgo(MW) 100.0000 99.9999 100.0000 100.0000 99.9995 99.9138
Psia(MW) 292.8837 294.6767 297.8883 235.9915 346.8237 310.8878
Vai(p.u.) 1.0561 1.0437 1.1000 1.1000 1.1000 1.0600
Ve (p.u.) 1.0450 1.0368 1.0999 1.1000 1.0994 1.0544
Va(p.u.) 1.0599 1.0321 1.0966 1.0966 1.0949 1.0467
Vas(p-u.) 1.0841 1.0436 1.1000 1.1000 1.1000 1.0500
Vas(p.u.) 1.0943 1.0554 1.1000 1.1000 1.1000 1.0558
Vao(p-u.) 1.0551 1.0437 1.1000 1.1000 1.1000 1.0433
Van(pu.) 1.0345 1.0361 1.1000 1.1000 1.1000 1.0332
Tis(p.u.) 1.0240 0.9726 1.1000 1.1000 1.1000 0.9916
Tao(p-u.) 1.1000 1.0205 1.0886 1.0845 1.0959 0.9805
Tsi(p.u.) 1.1000 0.9361 1.0980 1.0971 1.0872 0.9972
Tss(p.u.) 0.9778 0.9377 0.9571 0.9391 1.0107 0.9693
Tse(p-u.) 1.0685 0.9467 1.0728 1.0788 1.0800 0.9646
Ts7(p.u.) 1.0565 1.0129 1.1000 1.1000 1.1000 0.9788
Ta(pu.) 0.9872 1.0016 1.1000 1.0864 1.0732 0.9570
Tas(p-u.) 1.0428 0.9999 0.9286 0.9490 0.9716 0.9741
Tsa(p.u.) 0.9319 1.0627 0.9431 0.9473 0.9284 1.0310
Tss(p.u.) 0.9501 0.9217 0.9889 0.9872 0.9942 0.9523
Tso(p-u.) 0.9232 0.9644 0.9855 0.9707 0.9765 0.9452
Tes(p.u.) 0.9639 0.9212 1.0015 0.9981 0.9970 1.0045
Tes(p-u.) 0.9215 1.0433 0.9568 0.9631 0.9541 0.9344
Tn(p.u.) 0.9814 0.9290 0.9932 1.0181 0.9910 0.9481
Tx;(p.u.) 1.0374 0.9774 0.9712 1.0234 0.9982 0.9621
Tr6(p.u.) 1.1000 0.9885 0.9175 0.9571 0.9926 0.9587
Tyo(p-u.) 0.9666 1.0367 1.0978 1.0924 1.0806 0.9703
Qcis(p-u.) 0.2524 0.0687 0.2637 0.2850 0.2835 0.1896
Qcas(p.u.) 0.1504 0.1376 0.1316 0.1251 0.1448 0.1191
Qcss(p.u.) 0.0242 0.0980 0.3000 0.3000 0.3000 0.0331
Ob,(ton/h) 1.2180 1.2272 1.2129 1.0266 1.5910 1.2679
0b($/h) 43331.7568 43353.5661 43259.3013 48300.8388 41691.9581 43174.5740
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FIGURE 16. PFs of case7.

PFs and the numbers of feasible solutions, respectively.
Figure 16 indicates the PFs obtained by DE-PFA and
NSGA-II methods are distributed unevenly. It is clearly
can be seen that only half of Pareto solutions obtained by
DE-PFA algorithm can realize zero constraints-violation,
which exposes the deficiency of PFA method. Moreover,
Table 11 gives the details of BCS solutions achieved by three
different algorithms. The BCS of HFBA-COFS algorithm
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15
Independent trials

FIGURE 17. The numbers of feasible solutions for case7.

which is composed by 42856.4896 $/h of Oby, 1.3436 ton/h
of Ob, and 11.5782 MW of Ob,, is more superior to the BCS
of NSGA-II methods.

3) CASE8: OBp AND OBf
In case8, a simulation trial which aims to optimize the
Ob), and Oby is carried out on the IEEE 57-bus system.
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TABLE 11. The control variables of BCS solutions for Case7 and Case8.

. case7 case8
variables DE-PFA NSGA-II HFBA-COFS NSGA-II HFBA-COFS
PG (MW) 98.0996 95.6900 88.7933 56.3658 44.4742
Ps;(MW) 82.6023 89.8245 93.9957 62.8870 61.4752
Pss(MW) 80.9479 89.5849 96.3316 94.8466 96.4101
Pos(MW) 356.1245 317.5415 333.4141 369.9889 373.5684
Pgo(MW) 99.4656 99.8826 99.9650 99.3952 99.7557
Psi2(MW) 400.1520 407.8712 363.6433 408.5653 409.6130
Vai(p-u.) 1.1000 1.0749 1.1000 1.0679 1.1000
Voa(p-u.) 1.0909 1.0655 1.0997 1.0627 1.0973
Vas(p.u.) 1.0940 1.0491 1.0995 1.0564 1.0983
Vas(p-u.) 1.1000 1.0385 1.0998 1.0594 1.1000
Vos(p-u.) 1.0898 1.0270 1.0999 1.0555 1.1000
Vas(p.u.) 1.0893 1.0263 1.0775 1.0497 1.1000
Vaia(p-u.) 1.0867 1.0483 1.0702 1.0453 1.1000
Tio(p-u.) 1.0721 1.0039 1.0953 0.9127 1.0616
Tao(p.u.) 1.0974 1.0652 0.9759 1.0949 1.0626
Tsi(p.u.) 1.0513 0.9914 0.9914 1.0449 1.0528
Tss(p-u.) 1.0181 1.0945 1.0893 0.9567 1.0987
Tss(p-u.) 1.1000 0.9125 0.9734 1.0305 1.0765
Ts7(p.u.) 1.0248 1.0021 1.0250 1.0632 1.0174
Ta(p-u.) 1.0285 0.9747 1.0358 1.0053 1.0075
Tas(p-u.) 0.9550 0.9473 0.9170 0.9870 0.9925
Tsa(p.u) 0.9579 0.9005 0.9247 1.0529 0.9280
Tss(p-u.) 1.0286 0.9941 0.9796 0.9622 0.9790
Tso(p-u.) 1.0041 0.9716 0.9788 0.9504 1.0022
Tes(p.u.) 0.9874 1.0012 0.9771 0.9417 0.9878
Tes(p-u.) 0.9469 0.9739 0.9573 0.9214 0.9919
Tn(pu.) 1.0340 0.9603 0.9874 0.9350 1.0547
Tr(p.u.) 0.9477 1.0147 1.0397 1.0506 1.1000
Trs(p-u.) 0.9516 0.9240 0.9147 0.9876 0.9824
Tso(p-u.) 1.0447 0.9929 1.0140 0.9894 1.0340
Qcis(p-u.) 0.2160 0.2110 0.1112 0.0499 0.2338
Qca2s(p.u.) 0.1622 0.1805 0.1452 0.1309 0.1930
Qcs3(p-u.) 0.1966 0.1928 0.1573 0.1685 0.1491
Ob;($/h) 42387.1559 42887.0244 42856.4896 42125.6042 42122.0140
Ob,(ton/h) 1.5175 1.4572 1.3436 - -
0b,(MW) 11.3076 11.6865 11.5782 11.1296 10.6995
145510 BCS solutions for case8. In great detail, the BCS obtained
+ NSGA-I by HFBA-COFS algorithm including 42122.0140 $/h of Oby
sal * HFBA-COFS and 10.6995 MW of Ob, dominates the one obtained by
i H NSGA-II method which is composed by 42125.6042 $/h of
g4 % \ Oby and 11.1296 MW of Ob,,.
§ 43t N
% %i E. TRIALS ON IEEE 118-BUS SYSTEM
Sa25) N\ , BCS(11.1296,42125.6042) The complex structure of large-scale IEEE 118-bus system
ﬁ\&/ greatly limits the effectiveness of DE-PFA method. Both
42t A oy, bi-objective and tri-objective cases are studied by NSGA-II
it :
BCS(10.6995,42122.0140) L Bebobar e ah and HFBA-COFS algorithm on the IEEE 118-bus system. So
415 10 1 12 13 12 15 16 far, few algorithms have achieved satisfactory performance in

Power loss (MW)

FIGURE 18. PFs of case8.

Figure 18 shows the PFs and two BCS solutions obtained by
NSGA-II and HFBA-COFS algorithms. It clearly indicates
that the PF of HFBA-COFS is significantly superior to that
of NSGA-II method. It is worthy of note that since most
of the solutions found by DE-PFA algorithm cannot satisfy
all system constraints, the corresponding PF is not given
in Figure 18. Table 11 also shows the control variables of
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solving MOOPF problems of IEEE 118-bus systems, which
highlights the superiority of proposed HFBA-COFS method.

1) CASE9: OBp and Ob¢

The Ob), and Oby are taken into consideration at the same
time in case9. The PFs and BCS solutions obtained by
HFBA-COFS and NSGA-II algorithms are shown in
Figure 19. It can be intuitively seen that the PF of NSGA-II
algorithm is much more densely-distributed than that of
HFBA-COFS algorithm. Although the BCS found by
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TABLE 12. The BCS and BS solutions of Case9 and Case10.

case9 casel0
BCS of NSGA-II BCS of HFBA-COFS BSeases- BSeaseop BCS of NSGA-Il  BCS of HFBA-COFS
Ob,(ton/h) - - - - 3.2475 3.2085
Ob,(MW) 58.8192 61.0362 73.9282 54.8413 89.7597 63.7672
Ob($/h) 59900.3741 59624.0613 59103.0835 61002.6445 62002.9504 61072.2077
x10 +  NSGA-II
6.151 .
+ NSGAI x10 |+ HFBA-COFS
+ HFBA-COFS 6.5
6.1 i
%*g 3
<z % £
605 T g
L :
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FIGURE 19. PFs of case 9.

HFBA-COFS algorithm which includes 61.0362 MW of
Ob, and 59624.0613 $/h of Oby cannot dominate the BCS
found by NSGA-II method, the PF of HFBA-COFS algorithm
undoubtedly overmatches the PF of NSGA-II approach. Fur-
thermore, the BCS solution of two involved algorithms
and the BS solutions obtained by HFBA-COFS method
are listed in Table 12. The BScase9—r represents the bound-
ary solution with minimal Oby of 59103.0835 $/h and the
BScaseo—p represents the boundary solution with minimal Ob,,
of 54.8413MW.

2) CASE10: OBp, Obg and Oby

A tri-objective case which aims to minimize Ob,, Ob, and
Oby simultaneously is studied on the IEEE 118-bus system.
Figure 20 shows the obtained PFs and the details of two BCS
solutions. It is not difficult to find that the suggested HFBA-
COFS algorithm achieves the satisfactory PF with relatively
well-distribution. Table 12 also gives the two BCS solutions
of casel0 and it indicates the BCS found by HFBA-COFS
algorithm with 3.2085 ton/h of Ob,, 63.7672 MW of Ob,
and 61072.2077 $/h of Oby is more advantageous than the
BCS found by NSGA-II approach with 3.2475 ton/h of Ob,,
89.7597 MW of Ob, and 62002.9504 $/h of Oby.

Vi. PERFORMANCE ANALYSIS

The performance of HFBA-COFS algorithm in solving
MOOPF problems is evaluated exhaustively from the follow-
ing six aspects.

A. FEASIBLE SOLUTIONS

It is no doubt that the appropriateness of penalty coefficients
is critical to the effectiveness of PFA approach. The enormous
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FIGURE 20. PFs of case 10.

difficulty in determining an appropriate penalty coefficient
makes it almost impossible to realize the zero constraint-
violation of each solution from obtained POS. Based on the
numbers of feasible solutions for casel~ case7, the huge
advantages of NSGA-II and HFBA-COFS algorithms which
adopts the proposed CPR dominant strategy can be demon-
strated. The CPR strategy effectively overcomes the defects
of PFA method. More importantly, the obvious advantages of
HFBA-COFS algorithm are more fully reflected on the large-
scale power systems such as IEEE 57-bus and IEEE 118-bus
systems.

B. DOMINANCE RATE OF BCS SOLUTIONS

From the perspective of dominance rate, the superiorities
of HFBA-COFS algorithm in exploring higher-performance
BCS solutions are verified. Table 13 gives the dominant
relationships of HFBA-COFS algorithm in contrast to the
DE-PFA and NSGA-II algorithms. It intuitively points out
that the HFBA-COFS algorithm dominates the DE-PFA
algorithm with a probability of 71.43% and dominates the
NSGA-II algorithm with a probability of 90.00%.

C. PERFORMANCE METRICS

Two evaluation indictors, known as generational dis-
tance (GD) and SPREAD, are used to measure the con-
sistency with the real PF, the distribution and diversity of
obtained POS. Taking the three bi-objective optimization
trials (casel~case3) carried out on the IEEE 30-bus sys-
tem as examples, the optimization performance of three
related algorithms based on the following two indexes is
studied.
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TABLE 13. The dominant relationships of HFBA-COFS algorithm.

algorithm casel case2 case3 case4 case5 case6 case’ case8 case9 casel0 ratio%
DE-PFA v v 4 X v 4 x - - - 71.43%
NSGA-II v v v v v v v v X v 90.00%
CASE1-GD CASE2-GD CASE3-GD
0.1 0.09 >
i 0.1
008 F—— — %
0.08- %' 10.07 %I E= qo0s
0.06 To.05 40.06
0.04} joo4 lo.0a
0.03 q
0.02} 4002 0.02
0.01
of + + + 41 0 + + + {1 o + + + -
DE-PFA NSGA-| HFBA-COFS DE-PFA NSGA- HFBA-COFS —  DE-PFA NSGA-T  HFBA-COFS
FIGURE 21. Boxplots of GD index for casel~case3.
TABLE 14. The mean and standard deviation values of two evaluation criteria.
. SPREAD GD
metrics .. .
mean deviation mean deviation
DE-PFA 0.8657 0.0114 0.0722 0.0140
casel NSGA-II 0.8804 0.0125 0.0848 0.0172
HFBA-COFS 0.8636 0.0124 0.0675 0.0130
DE-PFA 0.8539 0.0118 0.0774 0.0148
case? NSGA-II 0.8663 0.0143 0.0730 0.0143
HFBA-COFS 0.8529 0.0122 0.0678 0.0130
DE-PFA 0.8512 0.0142 0.0772 0.0148
case3 NSGA-II 0.8740 0.0141 0.0854 0.0235
HFBA-COFS 0.8465 0.0117 0.0735 0.0142

1) GD INDEX

The GD index defined as (40) is able to measure the distance
between the obtained PF and the real one [12], [38]-[40]. The
detail significance of relevant parameters is shown in litera-
tures [7], [12]. In general, a smaller value of GD criterion
indicates a better convergence to the real PF.

T
GD =/ = de; / T (40)

In order to make a detail analysis about the GD and SPREAD
indicators based on the average, standard deviation and out-
liers, the boxplot technique is adopted in this paper.

The boxplots of GD criterion for casel~case3 are shown
in Figure 21. The mean and deviation values of DE-PFA,
NSGA-II and HFBA-COFS algorithms are listed in Table 14.
It is not difficult to find that the suggested HFBA-COFS
algorithm achieves the smallest average and deviation values
of GD indexes in all bi-objective trials on IEEE 30-bus
system. It powerfully states that the PF obtained by
HFBA-COFS algorithm has more favorable convergence and
is more consistent with the true PF.
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2) SPREAD INDEX

The SPREAD index defined as (41) is able to measure the
extent of spread archived among the non-inferior solutions
[41], [42]. The SPREAD=O0 states that all obtained solutions
are spaced equidistantly.

Dy +Di+ 3" |Di — Dayg|
Df +Dl + (T - I)Davg

SPREAD =

(41)

where D; is the Euclidean distance between the neighboring
solutions and Dy, is the average of all D;. The Dy and D; are
the Euclidean distances between the extreme solutions and
the boundary ones.

For MOOPF problems, a smaller value of SPREAD
criterion represents the preferable distribution and diver-
sity of POS. The boxplots of SPREAD indicator for
casel~case3 are shown in Figure 22 while the mean and devi-
ation values are summarized in Table 14 as well. Although the
HFBA-COFS algorithm has a relatively poor performance on
the deviation values of SPREAD index, it still achieves the
minimum mean values in casel~case3. It clearly states that
the HFBA-COFS algorithm obtains the satisfactory POS with
well-distribution and better-diversity.
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FIGURE 24. Iterative process of NSGA-11 and HFBA-COFS algorithms for case6.

D. CONVERGENCE ANALYSIS

Two bi-objective MOOPF cases (casel and case6), which
are carried out on the IEEE 30-bus and IEEE 57-bus sys-
tems respectively, are used to prove the superiority of
HFBA-COFS algorithm in fast-convergence. The conver-
gence analysis for these MOOPF cases of IEEE 118-bus
system is not carried out because the DE-PFA and NSGA-II
methods cannot obtain the uniformly-distributed PFs with
zero constraints-violation.

Figure 23 gives the PFs in iteration process of three
mentioned methods for casel. The NSGA-II, DE-PFA and
HFBA-COFS algorithms achieve zero constraints-violation
at the 83th, 182th and 17th (with itegs_;,qx = 50) iterations,
respectively. In addition, Figure 23 clearly indicates that the
presented HFBA-COFS algorithm can converge to the most
ideal PF around the 60th iteration while two comparison algo-
rithms converge to the best PFs after at least 250th iterations.

Besides, Figure 24 gives the PFs in iteration process
of case6. The DE-PFA method cannot guarantee that each
solution of final POS set satisfies all system constraints,
S0 its iterative convergence process is not given in Figure 24.
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In complex IEEE 57-bus system, the NSGA-II and HFBA-
COFS methods obtain qualified PFs at the 161th and 49th
(with iteps—max = 100) iterations, respectively. It also shows
that the proposed HFBA-COFS algorithm can converge to the
most ideal PF around the 200th iteration while the NSGA-II
method converges to the best one around the 400th iteration.

Consequently, the suggested HFBA-COFS algorithm is
provided with fast-convergence characteristics and great
strength in seeking better-performance PFs with evenly-
distribution and extensive-diversity.

E. COMPUTATIONAL COMPLEXITY

The mean CPU time of program running, as a common crite-
rion to measure the computational complexity of intelligent
algorithms, is summarized in Table 15. Table 15 intuitively
shows that the HFBA-COFS algorithm requires more CPU
time due to the unique local searching operation in contrast
to the DE-PFA and NSGA-II methods. Therefore, improving
the search efficiency is the key to the further optimization of
bat algorithm.
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TABLE 15. The mean CPU time (sec) of Ten simulation cases.

algorithm casel case2 case3 case4 case5 case6 case7 case8 case9 casel0
DE-PFA 196.87 197.33 208.76 314.36 324.61 514.19 525.87 - - -
NSGA-II 196.10 205.45 207.32 313.81 318.43 504.04 519.10 510.17 1744 1765
HFBA-COFS 200.64 210.18 216.52 326.45 337.07 528.25 537.68 546.46 1759 1798
1000 CASE2-NSGA-II 1000 CASE2-DE-PFA 1000 CASE2-HFBA-COFS
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FIGURE 27. Superposition PFs of case9.

F. SUPERPOSITION PFS

Three bi-objective optimization cases, which are carried out
different scale systems, are used as typical examples to
analyze the superposition results of 30 independent trials.
Figure 25 gives the superposition PFs of case2 which is
simulated on the IEEE 30-bus system while Figure 26 gives
the ones of case6 which is implemented on the IEEE 57-bus
system. It clearly states that DE-PFA algorithm obtains
more advantageous PFs in contrast to NSGA-II method
while HFBA-COFS algorithm achieves the best PFs with
better consistency. Figure 27 shows the superposition PFs
of case9 which is carried out on the complex IEEE 118-bus
system. It intuitively indicates that the HFBA-COFS
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algorithm still achieves the well-distributed PFs of each
separate trial while the superposition results of NSGA-II
algorithm are much more unevenly.

The superposition PFs, which give the comprehensive
results of thirty independent experiments, forcefully demon-
strates the operation stability and superior quality of pro-
posed HFBA-COFS algorithm especially on the large-scale
IEEE 57-bus and 118-bus systems.

VIl. CONCLUSION
In general, three main contributions are put forward in this

paper to deal with the multi-dimensional and non-convex
MOOPF problems.
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1) The basic bat algorithm is modified by nonlinear weight
coefficient and novel MRFM model. Combined with the
MODFA algorithm for preliminary optimization, the pro-
posed HFBA algorithm has more superior accuracy and
excellent global-exploration ability.

2) The suggested CPR rule overcomes the difficulty of
determining appropriate penalty coefficients.

3) Different from the typical sorting method, the presented
COFS strategy provides an innovative and effective way to
find the uniformly-distributed POS without any constraint-
violation.

Compared with DE-PFA and NSGA-II methods, the
HFBA-COFS algorithm has extensive applicability and
great advantages in solving the complex MOOPF problems.
In detail, a) HFBA-COFS algorithm realizes zero constraint-
violation of all determined non-inferior solutions, which
clearly overmatches the DE-PFA algorithm. b) HFBA-COFS
algorithm is superior to NSGA-II method in seeking
uniformly-distributed PFs and more ideal BCS solutions.
c¢) HFBA-COFS algorithm is capable to handle both bi-
objective and tri-objective MOOPF trials, even on the IEEE
118-bus system. The competitive edges of proposed
HFBA-COFS method in obtaining the desirable POS with
satisfactory-diversity and well-distribution are validated
based on the evaluation metrics and superposition PFs.

Consequently, the HFBA-COFS algorithm provides a valid
way to handle the non-liner MOOPF problems, which is
highly significant to the safe and economical operation of
power systems.
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