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ABSTRACT The improvement in recognition accuracy of a multi-sensor system is inseparable from the
sensors’ dynamic reliability, especially in the case of highly conflicting information. Recent research on
multi-sensor system has shown that a difficult problem for the system designer is to figure out what factors are
crucial in determining the reliability of the sensor. However, the acquisition of sensor reliability is affected by
multi-factors in practical applications. In this paper, a novel method for sensor dynamic reliability evaluation
based on evidence theory and belief entropy has been developed, aimed at obtaining a reasonable reliability
parameter. Through experimental analysis and practical applications, the results indicate that sensor weight
distribution and information entropy value could be used as efficient elements for higher recognition rate to
improve the robustness and recognition rate of the multi-sensor system.

INDEX TERMS Sensor reliability, belief entropy, evidence theory, target recognition, evidence credibility
weight, Deng entropy.

I. INTRODUCTION
Multi-sensor information fusion [1]–[3] technology began
to develop since the last century, and it has attracted much
attention for its usability in the real world. By using computer
technology for helping analyze multi-sensor or multi-source
information automatically, information processing can com-
plete the required decisions and make estimations based on
some specific criteria [4]. With the continuous development
of multi-sensor information fusion technology, a variety of
application algorithms have been established. For instance,
cluster analysis [5], evidence theory [6], D-S algorithm [7],
Z number [8], [9], R number theory [10], [11], D number
theory [12]–[14] and fuzzy set [15] are considered as rela-
tively comprehensive methods. Also, in recent years, a newly
proposed information fusion method, known as computer
intelligence method, contains the concept of gray predica-
tion [16], entropy [17], [18], pattern classification [19], and
fuzzy set theory [20], [21]. Among these methods, traditional
evidence theory has been applied widely to the fusion pro-
cess. However, it is not fully adapted to the multi-sensor
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system evaluation. As far as the traditional processingmethod
is concerned, it is customary to assume that the reliability
of multiple sensors is consistent and most of the attention
is drawn on to the step of data fusion. However, in reality,
sensor systems may have uncertainty [22] due to sensor
accuracy, engine fault [23], [24], or external environment,
and so on [25], [26], which might reduce the accuracy of
identifying targets. This situation is more serious when only
using a single sensor for the coupling and deficiencies of
information. Therefore, collective multi-sensor systems tend
to be more reliable. For instance, a multi-sensor system
which is composed of acoustic sensor, pressure sensor and
temperature sensor is superior in identifying the sea target,
because each sensor in the system can independently analyze
its own obtained data and give the probability of identify-
ing the target. In this way, the recognition result containing
sound, pressure and temperature (three indicators) will be
better than the single sensor that only identify one indicator.
Regardless of the type of sensor, ensuring its reliability is
the first consideration. Therefore, in the process of infor-
mation identification, maximizing the valid identification of
sensor reliability is a very critical point. Methods like evi-
dential reasoning [6], [27], [28], classifier fusion [29], [30],
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belief-rule-base [31], [32], etc. are helpful for making the
decision of a multi-sensor systemmore convincing [33], even
in the case of some highly conflicting situation.

Effective modification to information is critical for multi-
sensor systems. So, considering the inconsistency of reliabil-
ity between different sensors, the judgment of the information
given by them should be modified correspondingly. Notably,
highly reliable sensors should be given higher weight in
decision making, while the data given by the sensors with
low reliability tend to be modified to a greater extent. Thus,
a practical sensor reliability assessment [34] needs to be
performed before data fusion. Typically, the assessment is
divided into two types based on whether there is accessible
prior information [35] in a system. If the prior information is
available in the system, which refers to the experience and
historical data are derived in advance through the trial of
obtaining the sample. In this way, the reliability of the sensor
is evaluated based on previous training. For instance, using
transferable beliefmodel (TBM) [36], [37], Elouedi et al. [38]
have developed a method by using a factor to minimize the
distance [39] between pignistic probabilities, which are com-
puted form the discounted belief functions [40] and the actual
values of the data in a learning set. Then, sensor reliability is
assessed by this factor. In order to gain a deeper insight into
the process of sensor reliability evaluation, Guo et al. [41]
improved Elouedi’s work by combining two types of evalu-
ation methods. One is known as a static evaluation method,
whose static discount factor assigned to the sensor is based
on a comparison between its original reading and the actual
value of the data. So, the impact on the assessment is deter-
mined by extracting the information contained in the actual
value of each target. The other is called dynamic evaluation
method, the evidence is assessed through adaptive learning
in real-time scenarios, but this kind of dynamic reliability is
usually highly related to the dynamic performance of sen-
sors. Yang et al. [42] used a RIMER method which existing
knowledge-base structures are first examined, and knowledge
representation schemes under uncertainty are then briefly
analyzed.

However, in a real application [43], it is not necessarily
achievable to require a multi-sensor system to have a suffi-
cient amount of prior information to determine the accuracy
of the sensor. So, the crucial part locates at obtaining the
dynamic reliability of each sensor when there is no prior
information provided in the system. Just as explained by
Guo et al., the dynamic reliability of a sensor is often evalu-
ated based on evidence distance measurements [44], conflict
measurements [45], [46], and some other induced dissimi-
larity measures [47]. Among these methods, the principle of
subordinating to the majority [48] is widely used. Mainly,
the reliability of sensors depends on their relationship with
each other. That is to say; the more compatible a sensor is
with other sensors in the system, the more reliable it is. There
are several reliability assessment methods [49] based on this
principle now. For instance, Schubert [50] introduced the con-
cept of falsity degree as one of the considerations to evaluate

the reliability of data source. Feng et al. [51] built a new
BRB model with attribute reliability (BRB-r) based on the
statistical method which introduces a new calculation method
of matching degree. Klein and Colot [52] proposed the cal-
culation of dissent degree between each sensor in the system
based on the Jousselme’s [53] distance measure, which uses
the distance between a BPA (basic probability assignment)
and the average BPA to depict the sensor reliability. By com-
bining the first two methods above, Yang et al. [40] used
the falsity degree given by Schubert to define the diver-
gence metric [54] when estimating the reliability of evidence
sources. As we all know, distance as a parameter measures
the difference between BPAs effectively, while the conflict
coefficient is used to reveal the divergence degree between
two belief functions in the process of supporting the target.
Namely, the distance and conflict coefficient decrease as
the similarity of the two BPAs increases. According to this,
Liu et al. [55] introduced these two types of dissimilarity into
a new measurement method based on Hamacher T-conorm
fusion rule. Therefore, its progressive performance is that
when measuring the reliability of the information given by
the sensor, it considers both the external situation of the
difference with other information sources and its inherent
reliability factors [56] at the same time.

It is not difficult to find that the existing methods
mainly measure the reliability of the sensor by the similar-
ity [57] or dissimilarity between BPAs. Besides, the sup-
porting degree and similarity between two BPAs tend to
be explained as the same concept. However, there is still
a significant difference between the two. The definition of
similarity is symmetric, while the idea of supporting degree
is asymmetric. For such a reason, Song et al. [58] proposed
a method of asymmetric supporting degree measurement for
BPAs, and re-improved the technique of evaluating sensor
reliability by combining evidence theory and the framework
of intuitionistic fuzzy sets (IFSs) [59].

Although Song et al.’s method is able to measure the
reliability of each sensor to a certain extent in the system, and
effectively identify the target, some defects still need to be
improved. In this method, when there is an interference [60]
in the multi-sensor system, for example, when the data of a
sensor appears to be significantly different, the recognition
result is often greatly affected by the influence of the sensor.
Therefore, only considering the similarity between BPAs to
determine the reliability of the sensor is not comprehensive,
due to the lack of judgment on the validity of data [61]
itself. For a system, the overall consideration is necessary.
Feng et al. [51] integrate the attribute reliability into a whole
BRB-r model. In this essay, from the perspective of the
information itself, its uncertainty [62], [63] and credibility
weight [64] are two significant factors which influence the
reliability of the sensor. To further improve the accuracy of
sensor reliability measurement and the recognition effect,
a new method is proposed by combining the concept of belief
entropy [65] and evidence credibility weight (CW) based on
Song et al.’s method to measure the reliability of the sensor.
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The remaining parts of this paper are arranged as follows.
In Section II, we briefly introduce the basic definition of
evidence theory, dynamic sensor reliability, Deng entropy and
evidence credibility weight. In Section III, a newly proposed
method is given based on the previous concept mentioned.
In Section IV, two numerical examples are shown to apply
this method. An application about dynamic target recognition
is presented in Section V. The conclusion of this paper is put
forward in Section VI.

II. PRELIMINARIES
This section introduces some basic information about D-S
evidence theory, sensor dynamic reliability evaluation and
belief entropy.

A. D-S EVIDENCE THEORY
Dempster-Shafer evidence theory is an expansion of tradi-
tional probability theory. It establishes an one-to-one cor-
respondence between propositions and sets. The discourse
domain of D-S theory is referred to the frame of discernment
(FOD) [66], [67], marked as2, including a limited number of
propositions. Assume 2 = {A1,A2,A3, . . . ,An}, which A1,
A2, A3, . . . , An represent the basic events in probability theory
and be regarded as basic elements.

1) FRAME OF DISCERNMENT
Let 2 = {A1,A2,A3, . . . ,An} be the frame of discernment.
If set function m: 22 → [0, 1]

(
22 is the power set of 2),

which meets:

m(φ) = 0 (1)
n∑
i=1

m (Ai) = 1 A ∈ 2 (2)

m is the basic probability assignment (BPA) [68], [69] on the
frame, whichφ is an empty set, forA ∈ 2,m(A) is the value of
basic probability assignment. When m(A) 6= 0, A is the focal
element assigned to the belief function.

2) BELIEF AND PLAUSIBILITY FUNCTION

Bel : 22 → [0, 1] (3)

Bel(A) =
∑
B⊂A

m(B) (∀A ⊂ 2) (4)

Bel is the belief function [70] on 2, representing the sum of
the basic assignment functions corresponding to all subsets
of A. Assume Pls(A) is the plausibility function on frame 2,
which represents the reliability of A is not denied.

Pls(A) =1− Bel(Ā) =
∑
B⊆2

m(B)−
∑
B⊆Ā

m(B)=
∑

B∩A6=φ

m(B) (5)

In fact, [Bel(A), Pl(A)] indicates the unconfirmed inter-
val [71] of proposition A, and [0, Bel(A)] shows the interval
of supporting evidence.

3) DEMPSTER’S COMBINATION RULE
Assume Bel1 and Bel2 are the two belief functions on a
same discernment frame 2, which m1 and m2 are the basic
probability assignments (BPA) correspondingly during the
evidence combination [72], [73]. Let the focal elements be :
A1, . . . ,Ak and B1, . . . ,Br , and according Dempster’s com-
bination rule, the belief structurem(C) is given by as follows:

m1

⊕
m2(C) =

1
K

∑
A∩B=C

m1(A) · m2(B)

where K=
∑

A∩B6=φ

m1(A) · m2(B)=1−
∑

A∩B=φ

m1(A)·m2(B)

(6)

B. SENSOR DYNAMIC RELIABILITY
1) DISCOUNTED BPAs GENERATION PRINCIPLE
In real application, the reliable level of evidence source
is different when it is affected by varying environments.
So, a known reliability degree λ, regarded as discounted
coefficient [74], is assigned to the definition of associated
BPA to get discounted evidence. The common method for
discounting operation is introduced by Shafer, and given by{

mλ(A) = λm(A),A ⊂ 2
mλ(�) = 1− λ+ λmm(2)

(7)

where λ ∈[0,1], and indicates the reliability degree of the
evidence source. To be specific, λ= 0 represents the evidence
source is totally unreliable. On the contrary, λ = 1 remains
the percentages originally, showing that the evidence source
is fully trusted in this circumstance.

However, this kind of discounted coefficient is applied
on the condition of fixed and singular disturbance. For a
multi-sensor system, the disturbance or outside influence is
unstable and dynamical, which requires the sensors to make
corresponding decision. So, it might cause conflictive results
when only taking discounted evidence as a method to deal
with the multi-sensor system [39], [75]. Thus, Song et al. [58]
put forward a newmethod for data fusion in dynamic situation
based on fuzzy set.

2) INTUITIONISTIC FUZZY SET
In data fusion field, information from identification frame-
work is not rigorous sometimes. Based on this feature, fuzzy
collections [76]–[78] provide a form for handling less rigor-
ous information among the process of data fusion. Fuzzy set
was firstly introduced by Zadeh in 1965 [79], and followed
by Atanassov’s intuitionistic fuzzy set [80] as an expansion
based on fuzzy set theory [81]. It simply gives an explaination
in an intuitive way. Traditionally, the concept of an exact set is
that an object either belongs to this set or not. But for a fuzzy
set, the object is not defined simply by ‘‘belong’’ or ‘‘not
belong’’ to this set. According to this idea, a few definitions
about this are as follow.

Assume a domain U is defined by a group of elements,
U = {x1, x2, . . . , xn}. If there is a mapping form U to the
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closed interval [0,1], then a fuzzy set A of U is determined,
andUA is referred as the membership function of fuzzy set A.

A = {〈x, µA(x)〉 |x ∈ U} (8)

where µA(x) is the degree to which the element x belongs
to the fuzzy set A in the domainU , and is simply referred to as
the membership degree of x to A. For µA(x)→ 1 represents
the membership degree is high, and µA(x) → 0 means the
membership degree is low.

Specifically, an Atanassov’s intuitionistic fuzzy set (IFS)
is an expansion based on fuzzy set, and given by:

A = {〈x, µA(x), νA(x)〉 |x ∈ U} (9)

0 ≤ µA(x)+ νA(x) ≤ 1 (10)

Besides, πA(x) is introduced to define the vagueness of
element x to set A:

πA(x) = 1− µA(x)− νA(x) (11)

3) BASIC FUZZY SET OPERATION
Assume there are two intuitionistic fuzzy sets A and B, A =
{〈x, µA(x), νA(x)〉 |x ∈ U}, B = {〈x, µB(x), νB(x)〉 |x ∈ U},
basic fuzzy sets operation definitions are given as follow:

A ∩ B = {< x,min(µA(x), µB(x)),max(νA(x), νB(x)) >}

A ∪ B = {< x,max(µA(x), µB(x)),min(νA(x), νB(x)) >}

4) CONVERSION BETWEEN BPAs AND FUZZY SETS
In evidence theory, confidence interval [Bel(θ ),Pl(θ )] depict
the uncertainty about θ . In this way, BPA is transformed to an
IFS form on a known discernment2 = {θ1, θ2, . . . , θn}. The
related IFS is given by:

A = {〈θ, µA(θ ), νA(θ )〉 |θ ∈ 2}

= {〈θ1,Bel(θ1), 1−Pl(θ1)〉, . . . , 〈θn,Bel(θn), 1−Pl(θn)〉}

(12)

5) SUPPORTING DEGREE BETWEEN BPAs
To define the relationship between two BPAs, the concept of
supporting degree is introduced as a symmetric measurement
for implying the similarity and distance [55] between two
BPAs. Using Sup, Sim and Dis to represent the supporting
degree, similarity and distance between two BPAs, following
relations have been defined:

Sup(m1,m2) ∝ Sim(m1,m2)

Sup(m1,m2) ∝ 1− Dis(m1,m2)

Specifically, the higher the similarity between m1 and the
intersection of them, the more m1 supports m2.

Sup(m1,m2) ∝ Sim(m1,m1 ∩ m2)

As mentioned above, BPA is transformed under the frame-
work of IFS. In this way, the relation between sets and mass
functions is changed easily. So, the corresponding supporting
degree is expressed as follow :

Sup(m1,m2) = Sup(A1,A2) = Sim(A1,A1 ∩ A2) (13)

The method of calculating the similarity between two
IFSs is based on Euclidian distance [82]. In the frame-
work of discernment U = {θ1, θ2, . . . , θn}, let two intu-
itionistic fuzzy sets A = {〈θ, µA(θ ), νA(θ )〉 |θ ∈ U}, B =
{〈θ, µB(θ ), νB(θ )〉 |θ ∈ U}, the similarity between A and B is:

SE (A,B)=1−
1
n

n∑
i=1

√
(µA(θi)−µB(θi))2+(νA(θi)−νB(θi))2

2

(14)

6) DYNAMIC RELIABILITY OF MULTI-SENSORS
For amulti-sensor system, its dynamic reliability is calculated
by constructing a supporting degree matrix (SDM). The SDM
is defined as:

SDM=


Sup(m1,m1) Sup(m1,m2) . . . Sup(m1,mN )
Sup(m2,m1) Sup(m1,m2) . . . Sup(m2,mN )

...
...

...

Sup(mN ,m1) Sup(mN ,m2) . . . Sup(mN ,mN )


(15)

From each column, the elements represents the supporting
degree which mj obtained from other sensors. So, calculate
the total supporting degree of mj by adding up all the other
elements column by column.

Total_Sup(mj) =
N∑

i=1,i 6=j

Sup(mi,mj) (16)

Considering the reliability of one sensor with the whole
multi-sensors system [83], the reliability of each sensor is
defined as follow:

R′(Sj) =
Total_Sup(mj)∑N
j=1 Total_Sup(mj)

(17)

For a multi-sensors system, the sensor with the highest
reliability is given priority as a primary sensor. So the abso-
lute dynamic reliability of sensor Si(i = 1, 2, . . . ,N ) is
expressed by:

R(Si) =
R′(Sj)

maxj=1,2,...,NR′(Sj)
(18)

C. BELIEF ENTROPY
Entropy, a physics concept, is a description of the system
status. In 1948, information entropy was firstly introduced by
Shannon [84] to measure the amount of information which
a system contains. In some extent, it implys the uncertainty
level of a system.

1) INFORMATION ENTROPY
The classic Shannon entropy equation is given as follow:

H = −
N∑
i=1

pilogb pi (19)

where N is the amount of basic states in an information
system, pi represents the probability of state i happens,
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∑N
1 pi = 1, b indicates the base of algorithm, and the unit

of information entropy is bit when b equals to 2.

2) BELIEF ENTROPY
In order to measure the uncertainty degree [85], [86] of mass
functions, a new uncertainty measure method called belief
entropy [87], [88], known as Deng entropy, was introduced
particularly.

Assume there is a mass function m defining on the frame
of discernment X , and A is the focal element of function m,
the cardinality of A is |A|. The following definition is used to
measure the uncertainty of a mass function.

Ed (m) = −
∑
A⊆X

m(A)log2
m(A)

2|A| − 1
(20)

Both Shannon entropy and Deng entropy are capable to use
in evidence theory formeasuring the uncertainty level ofmass
functions, but Deng entropy has higher precision. An example
is given as follow [89].
Example 1: There exists a frame of discernment

X={a, b, c}, for a mass function m(a) = m(b, c) = 1/2,
the Shannon entropy H and Deng entropy Ed are

H (m) = −
1
2
× log2

1
2
−

1
2
× log2

1
2
= 1

Ed (m) = −
1
2
× log2

1
2
−

1
2
× log2

1
2

22 − 1
= 1.79

III. THE PROPOSED METHOD
A. EVIDENCE CREDIBILITY WEIGHT
In real application, not all the sensors can detect the target
successfully. When one sensor among the system contains
obvious disturbance information, it is essential to reduce the
weight [90]–[92] of the error sensor and define the sensor
credibility [83] correctly. A new concept called evidence
credibility weight for assigning weight to a multi-sensor sys-
tem is introduced as follow.

Convert the objects we need to identify in real application
into corresponding elements in the evidence theory frame-
work. Let 2 =

{
θ1, θ2, . . . , θj

}
be a discernment framework,

which corresponds to 2j types of possibilities about recog-
nition result. For a multi-sensor system, mi(Op) represents
the probability which sensor i (i = 1, 2, . . . , n) assigns to
an object set (each object set represents a possibility of
identification result), and Op is the corresponding object set
(Op ⊂ 2, 1 6 p 6 2j − 1). Let ti be the target identified by
sensor i and mti is the probability which sensor i assign to the
target (maximum value of BPAs in each sensor).

(
Si,
〈
Op
〉)
is

the recognition result of sensor i towards object setOp, which(
Si,
〈
Op
〉)
= 1 shows that Op is the target identified by sensor

i, otherwise
(
Si,
〈
Op
〉)
= 0.{

if Op = ti,
(
Si,
〈
Op
〉)
= 1

if Op 6= ti,
(
Si,
〈
Op
〉)
= 0

(21)

In short, the object set with the highest probability is
considered as the target we need to find, and we denoted it
as
(
Si,
〈
Op
〉)
= 1 to express the support from one sensor.

Since the identification framework of each sensor in the
system is the same, in order to show the analysis of the global
information of all the sensors, put every possible situation in
a matrix. For a n-sensor system (n represents the number of
sensors), the target identification matrix (TIM) is defined as:

TIM=



(S1, 〈O1〉) (S2, 〈O1〉) . . . (Sn, 〈O1〉)

(S1, 〈O2〉) (S2, 〈O2〉) . . . (Sn, 〈O2〉)
...

...
...(

S1,
〈
Op
〉) (

S2,
〈
Op
〉)

. . .
(
Sn,

〈
Op
〉)

...
...

...(
S1,

〈
O2j−1

〉) (
S2,

〈
O2j−1

〉)
. . .

(
Sn,

〈
O2j−1

〉)


(22)

where the object set Op(16p62j−1) ⊂ 2, p represents the
serial row number in the target identification matrix (TIM).

From each row, the elements represent the target recogni-
tion detected by sensor i (i = 1, 2, . . . , n). So, obtain the total
recognition result of object setOp (1 6 p 6 2j−1) by adding
up all the elements row by row and the sum represents the
number of sensors which support the object set.

Total_Tar(
〈
Op
〉
) =

n∑
i=1

(
(
Si,
〈
Op
〉)
) (23)

According to the Total_Tar(
〈
Op
〉
) obtained by row p

(1 6 p 6 2j − 1), the row which has the maximum
of Total_Tar(

〈
Op
〉
) should be extracted as the sensor target

vector (STV). STVk is defined by:

STVk = [(S1, 〈Ok 〉) , (S2, 〈Ok 〉) , . . . , (Sn, 〈Ok 〉)]

(k = arg max
1≤p≤2j−1

{
Total_Tar(

〈
Op
〉
)
}
) (24)

where arg represents extracting the subscript of the row in
which the object set belongs to.
Based on the sensor target vector (STVk ), the weight dis-

tribution of the n-sensor system is as follows:

total_weight

⇒


majority_weight =

∑
(Si, 〈Ok 〉)
n

(when (Si, 〈Ok 〉) = 1)
minority_weight = 1− majority_weight
(when (Si, 〈Ok 〉) = 0)

(25)

total_unit_weight

⇒


majority_weight∑

mti
(for (Si, 〈Ok 〉) = 1)

minority_weight∑
mti

(for (Si, 〈Ok 〉) = 0)
(26)

The overall weight is valued as a ‘‘1’’ , and distinguish the
sensors that are inconsistent with most sensor identification
results by assigning the ratio. The system now is divided into
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two parts, assigned to majority_weight and minority_weight ,
sensors among one part are subject to the majority (group of
(Si, 〈Ok 〉) = 1)), while the rest sensors among the other part
are not same with the major decision (group of (Si, 〈Ok 〉) =
0)), which is often regarded as disturbance information.

Considering the fact that the sensor might give the
same highest probability to a collection of different objects
(i.e., (S1, 〈θ1〉) = 1 and (S1, 〈θ2〉) = 1 when m1(θ1) =
m1(θ2) = 0.45), there may be multiple STVs in the system.
For each piece of STVk(k=1,2,...,2j−1) in a multi-sensor sys-
tem, the evidence credibility weight (CWi) of each sensor i
(i = 1, 2, . . . , n) in the corresponding STVk is now
defined by:

CWi = total_unit_weight × mti (27)

where mti is the probability that sensor i (i = 1, 2, . . . , n)
assigns to the target.

Finally, if there are z pieces of STV in the system and the
weight of each sensor should be averaged according to STVk :

CWi =

∑z
1 CWi

z
(28)

B. IMPROVED EVIDENCE CREDIBILITY WEIGHT
Evidence credibility weight determines each object in the sys-
tem and derives evidence credibility for each sensor based on
this. However, it is inaccurate to only use it as a measurement
factor, because the overall situation of each BPA is not taken
into account. Therefore, for each sensor, the corresponding
entropy value combine with the evidence credibility weight
to generate an improved coefficient. The improved evidence
credibility weight not only considers the complete informa-
tion read by the sensor vertically, but also comprehensively
synthesizes the judgment result of each sensor for a spe-
cific object. The definition of improved evidence credibility
weight for sensor i is:

CW ′i = Edi × CWi (29)

C. THE PROPOSED SENSOR DYNAMIC
RELIABILITY METHOD
In multi-sensors system, it is very important to know the reli-
ability of each sensor. Otherwise, when the reliability value of
each sensor is not effectivelymeasured, the sensor that detects
interference data might take the dominant position in the
process of data fusion, which results in lower test accuracy.
The previous method by Song et al. used dynamic sensor
reliability factor as the discount coefficient in data fusion
to imitate the changing decision-making process. However,
in real application situation, the reliability of sensor is gener-
ated by a combination of several factors. So, a newly proposed
method which uses Deng Entropy and evidence credibility
weight of sensor based on dynamic sensor reliability is given
in this essay.
Step 1.Model uncertain data from sensors to BPA.
In practical applications, the data detected by the sen-

sor may be in various forms. Therefore, it is necessary to
convert the outputs of the sensors S1, S2, . . . , Sn into the

corresponding BPAs form m1,m2, . . . ,mn in the framework
of Dempster-Shafer theory.
Step 2. Calculate the supporting degree.
(i) According each BPA mi, (i = 1, 2, . . . ,N ), based

on Eq.(4) and Eq.(5), try to get the belief and plausibility
function of corresponding BPA.

(ii) By Eq.(9), transform them into IFSs form respectively.
(iii) Based on the principle of IFSs operation, get the

intersection of two IFSs Ak and Ai, marked by Ak ∩ Ai.
(iv) Use Eq.(14), calculate the similarity degree between

two IFSs, SE (Ai,Ak ∩ Ai).
(v) Then, the supporting degree of mi agrees mk is

Sup(mi,mk ) = SE (Ai,Ak ∩ Ai).
Step 3. Calculate the dynamic reliability of each sensor.
In the multi-sensors system, Since the similarity degrees

between each BPA with all the rest BPAs are obtained,
the support degree matrix (SDM) is constructed naturally
as Eq.(15). Then, use Eq.(17) and Eq.(18) to calculate the
absolute dynamic reliability of each sensor RSi in the system.
Step 4. Calculate the Deng entropy of each sensor.
Use Deng Entropy to indicate the information uncer-

tainty of each sensor. Based on Eq.(20), Ed1,Ed2, . . . ,Edn
is obtained respectively.
Step 5. Calculate the evidence credibility weight (CW) of

each sensor.
According to Eq.(28), get the evidence credibility weight

(CW) of each sensor CW1,CW2, . . . ,CWn, then multiply
them with the results in Step 4, Ed1,Ed2, . . . ,Edn. We can
get the improved evidence credibility results CW ′1 = Ed1 ×
CW1,CW ′2 = Ed2 × CW2, . . . ,CW ′n = Edn × CWn.

Step 6. Get discounted BPAs from modified coefficient.
Generating a new modified dynamic reliability factor Wi

by multiplying the results from Step 3 and Step 5 (W ′i =
CW ′i ∗RSi.) and getting the absolute value of eachW

′
i . Based

on the evidence discounting operation, the corresponding
discounted BPAs are known as mWi

1 ,m
Wi
2 , . . . ,m

Wi
n .

Step 7. Data fusion based on D-S theory.
According to D-S theory, get the data fusion results by

combining the discounted BPAs mWi
1 ,m

Wi
2 , . . . ,m

Wi
n .

FIGURE 1. The flow chart of sensor data fusion process.

For brevity, the whole process of sensor data fusion is
concluded through a flow chart shown in Fig.1.
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TABLE 1. Sensor reading.

IV. NUMERICAL EXAMPLE
In this section, the proposed method will be applied to the
application of multi-sensors identification fusion process to
show its effectiveness of detecting target compared with only
using dynamic reliability evaluation. To begin with, a simple
example is given to show the implementation of combining
dynamic reliability evaluation with Deng entropy and Evi-
dence credibility weight methods together and its application
in data fusion.

A. EXAMPLE AND PROCEDURES
Example 2: In a multi-sensors recognition system, there are
three sensors known as S1 (acoustic sensor), S2 (pressure
sensor) and S3 (infrared sensor) to detect the identification
of targets. In the framework of discernment2 = {θ1, θ2, θ3},
which stands for three types of different targets θ1, θ2 and θ3.
Now, the detecting situation is given by these three sensors
based on the form of BPAs, where the data are from [58]:

Then try to transform the expressions form BPA form to
intuitionistic fuzzy sets in 2 = {θ1, θ2, θ3}.

A1 = {〈θ1, 0.6, 0.3〉 , 〈θ2, 0.1, 0.8〉 , 〈θ3, 0.2, 0.7〉}
A2 = {〈θ1, 0.2, 0.6〉 , 〈θ2, 0.5, 0.3〉 , 〈θ3, 0.1, 0.7〉}
A3 = {〈θ1, 0.4, 0.3〉 , 〈θ2, 0.1, 0.6〉 , 〈θ3, 0.2, 0.5〉}

According the IFS operation, the following intersection
results are easily obtained.

A1 ∩ A2 = {〈θ1, 0.2, 0.6〉 , 〈θ2, 0.1, 0.8〉 , 〈θ3, 0.1, 0.7〉}
A1 ∩ A3 = {〈θ1, 0.4, 0.3〉 , 〈θ2, 0.1, 0.8〉 , 〈θ3, 0.2, 0.7〉}
A2 ∩ A3 = {〈θ1, 0.2, 0.6〉 , 〈θ2, 0.1, 0.6〉 , 〈θ3, 0.1, 0.7〉}

Now, based on the definition given in Eq.(14), a supporting
degree matrix (SDM) is shown as follows:

SDM

=

 1 SE (A1,A1 ∩ A2) SE (A1,A1 ∩ A3)
SE (A2,A2 ∩ A1) 1 SE (A2,A2 ∩ A3)
SE (A3,A3 ∩ A1) SE (A3,A3 ∩ A2) 1


By using the definition of calculating the similarity

between two IFSs, the SDM result is :

SDM =

 1 0.8586 0.9529
0.8491 1 0.8821
0.9057 0.8623 1


Based on Eq.(16), the total supporting degree of each

sensor is calculated column by column:

Total_Sup(m1) = 0.8491+ 0.9057 = 1.7548

Total_Sup(m2) = 0.8586+ 0.8623 = 1.7209

Total_Sup(m3) = 0.9529+ 0.8821 = 1.8350

So, the relative dynamic reliability of each sensor is derived
through Eq.(17):

R′S1 =
1.7548

1.7548+ 1.7209+ 1.8350
= 0.3304

R′S2 =
1.7209

1.7548+ 1.7209+ 1.8350
= 0.3240

R′S3 =
1.8350

1.7548+ 1.7209+ 1.8350
= 0.3455

And the corresponding absolute dynamic reliability of each
sensor is:

RS1 =
0.3304
0.3455

= 0.9563

RS2 =
0.9378
0.3455

= 0.9378

RS3 =
0.3455
0.3455

= 1

Use the definition of Deng entropy, calculate the uncer-
tainty level of each sensor:

Ed1 = −0.6 ∗ log2 0.6− 0.1 ∗ log2 0.1− 0.2 ∗ log2 0.2

−0.1 ∗ log2
0.1

23 − 1
= 1.8517

Ed2 = −0.2 ∗ log2 0.2− 0.5 ∗ log2 0.5− 0.1 ∗ log2 0.1

−0.2 ∗ log2
0.2

23 − 1
= 2.3224

Ed3 = −0.4 ∗ log2 0.4− 0.1 ∗ log2 0.1− 0.2 ∗ log2 0.2

−0.3 ∗ log2
0.3

23 − 1
= 2.6886

Based on Eq.(21) to Eq.(23), the object sets are assigned
respectively (O1 = 〈θ1〉 ,O2 = 〈θ2〉 ,O3 = 〈θ3〉 ,O7 =

〈2〉, the remaining O4,O5,O6 are not detected by the sensor
system in this example). Then, the target identification matrix
(TIM) of this three-sensor system is generated as:

TIM =


(S1, 〈O1〉) (S2, 〈O1〉) (S3, 〈O1〉)

(S1, 〈O2〉) (S2, 〈O2〉) (S3, 〈O2〉)

(S1, 〈O3〉) (S2, 〈O3〉) (S3, 〈O3〉)

(S1, 〈O7〉) (S2, 〈O7〉) (S3, 〈O7〉)

=

1 0 1
0 1 0
0 0 0
0 0 0



⇒


Total_Tar(〈θ1〉)
Total_Tar(〈θ2〉)
Total_Tar(〈θ3〉)
Total_Tar(〈2〉)

⇒

2
1
0
0


Obviously, the maximum value of Total_Tar(〈θ1〉) is

unique in this multi-sensor system, which generates one piece
of STV ( z = 1 in Eq.(28)) and k = 1. Therefore, the sensor
target vector of this system is STV1 = [1 0 1], which the
corresponding weight distribution is that S1 and S3 share
a weight of 2

3 while S2 gets 1
3 . Then, follow the Eq.(28),

the evidence credibility weight (CW) is assigned to each
sensor like this:

CW1 =

2
3

0.6+ 0.4
× 0.6 = 0.4
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TABLE 2. Result comparsion.

CW2 =

1
3

0.2
× 0.2 = 0.33

CW3 =

2
3

0.6+ 0.4
× 0.4 = 0.27

Get the coefficients of improved evidence credibility
weight as a measurement of this information detecting
system.

CW ′1 = Ed1 × CW1 = 1.8517× 0.4 = 0.7407

CW ′2 = Ed2 × CW2 = 2.3224× 0.33 = 0.7664

CW ′3 = Ed3 × CW3 = 2.6886× 0.27 = 0.7170

Combine the coefficients with the absolute dynamic reliabil-
ity above, modified dynamic sensor factors are obtained.

W ′1 = RS1 × CW ′1 = 0.9563× 0.7407 = 0.7083

W ′2 = RS2 × CW ′2 = 0.9378× 0.7664 = 0.7187

W ′3 = RS3 × CW ′3 = 1 × 0.7170 = 0.7170

Finally, normalize the above modified dynamic reliability
factors and get the absolute value of each sensor.

W1 =
W ′1
W ′2
=

0.7083
0.7187

= 0.9855 W2 =
W ′2
W ′2
=

0.7187
0.7187

= 1

W3 =
W ′3
W ′2
=

0.7170
0.7187

= 0.9975

Based on the modified dynamic reliability factor, changing
original BPAs by using discounted operation are:

mW1
1 ({θ1}) = 0.5913 mW1

1 ({θ2}) = 0.0986

mW1
1 ({θ3}) = 0.1971 mW1

1 ({2}) = 0.1130

mW2
2 ({θ1}) = 0.2 mW2

2 ({θ2}) = 0.5

mW2
2 ({θ3}) = 0.1 mW2

2 ({2}) = 0.2

mW3
3 ({θ1}) = 0.3990 mW3

3 ({θ2}) = 0.0998

mW3
3 ({θ3}) = 0.1995 mW3

3 ({2}) = 0.3017

Finish the data fusion process by Dempster-Shafer rule,
the final result is:

m({θ1}) = 0.6575 m({θ2}) = 0.1816

m({θ3}) = 0.1373 m({2}) = 0.0235

The following table shows the difference by comparing this
modified method and the original dynamic reliability sensor
method given by Song et al. [58] when the disturbance is not
strong in a system.

TABLE 3. Five BPAs detected by sensors.

It can be seen from Table 2 that when the number of
sensors in the system is not enough, the conflict data cannot
be completely judged, so the reliability of the three sensors is
relatively close, and the accuracy of the recognition target is
slightly improved.
Example 3:A group of sensors (S1, S2, S3, S4, S5) are used

to detect sea target in a multi-sensor information system,
which are considered as acoustic sensor, photosensitive sen-
sor, thermal sensor and speed sensor, position sensor respec-
tively. Five normalized BPAs [58] are the details provided
by these five sensors over the frame of discernment 2 =
{θ1, θ2, θ3} as shown in Table 3, where the data are from [58].

It is obvious from the table that the data monitored by
sensor S3 is significantly different from other sensors, Sensor
S3 gives most of the decision results to θ2, while the remain-
ing sensors believe that the target should be θ1. Therefore,
the dynamic reliability parameter of sensor S3 should be small
to reduce the adverse effect on the data fusion process. The
main process of calculating the modified dynamic sensor
factors is shown below.

Step1: Five intuitionistic fuzzy sets in 2 = {θ1, θ2, θ3}
generated by above five BPAs are expressed as follow:

A1 = { < θ1, 0.8, 0.1 >,< θ2, 0.1, 0.8 >,< θ3, 0, 0.9 >,
< {θ1, θ2} , 0, 0.9 >,< {θ2, θ3} , 0, 0.9 > }

A2 = { < θ1, 0.4, 0.6 >,< θ2, 0.2, 0.8 >,< θ3, 0.1, 0.9 >,
< {θ1, θ2} , 0.3, 0.7 >,< {θ2, θ3} , 0, 1 > }

A3 = {< θ1, 0, 1 >,< θ2, 0.95, 0.05 >,<θ3, 0.05, 0.95 >,
< {θ1, θ2} , 0, 1 >,< {θ2, θ3} , 0, 1 > }

A4= {<θ1, 0.3, 0.65>,<θ2, 0.2, 0.75 >,<θ3, 0.25, 0.7>,
< {θ1, θ2} , 0.2, 0.75 >,< {θ2, θ3} , 0, 1 > }

A5 = { < θ1, 0.45, 0.25 >,< θ2, 0.1, 0.6 >,< θ3, 0, 1 >,
< {θ1, θ2} , 0, 1 >,< {θ2, θ3} , 0.15, 0.55 > }

Step 2: Construct the similarity degreematrix (SDM) based
on Eq.(14), SDM, as shown at the top of the next page.

Step 3: Calculate the corresponding dynamic reliability of
each sensor, and the factors are given as follow:

RS1 = 0.8125 RS2 = 1 RS3 = 0.7535

RS4 = 0.7854 RS50.8631

Step 4: Get the Deng entropy value of each sensor.

Ed1 = 1.2027 Ed2 = 2.3219 Ed3 = 0.2864

Ed4 = 2.6233 Ed5 = 2.8622
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SDM =


1 SE (A1,A1 ∩ A2) SE (A1,A1 ∩ A3) SE (A1,A1 ∩ A4) SE (A1,A1 ∩ A5)

SE (A2,A2 ∩ A1) 1 SE (A2,A2 ∩ A3) SE (A2,A2 ∩ A4) SE (A2,A2 ∩ A5)
SE (A3,A3 ∩ A1) SE (A3,A3 ∩ A2) 1 SE (A3,A3 ∩ A4) SE (A3,A3 ∩ A5)
SE (A4,A4 ∩ A1) SE (A4,A4 ∩ A2) SE (A4,A4 ∩ A3) 1 SE (A4,A4 ∩ A5)
SE (A5,A5 ∩ A1) SE (A5,A5 ∩ A2) SE (A5,A5 ∩ A3) SE (A5,A5 ∩ A4) 1



Step 5: Since all four sensors determine the target as θ1
while the S3 sensor gives a different result, the sensor target
vector is STV1 = [1 1 0 1 1], and the evidence credibility
weight (CW) of each sensor is assigned like this: (the S3
sensor is assigned to 0.2, while the remaining four sensors
share a weight of 0.8.)

CW1 =
0.8

0.8+ 0.4+ 0.3+ 0.45
× 0.8 = 0.3280

CW2 =
0.8

0.8+ 0.4+ 0.3+ 0.45
× 0.4 = 0.1641

CW3 =
0.2
0.95
× 0.95 = 0.2

CW4 =
0.8

0.8+ 0.4+ 0.3+ 0.45
× 0.3 = 0.1230

CW5 =
0.8

0.8+ 0.4+ 0.3+ 0.45
× 0.45 = 0.1846

Step 6: Get the improved evidence credibility weight result
based on Eq.(29).

CW ′1 = 0.3947 CW ′2 = 0.3810 CW ′3 = 0.0572

CW ′4 = 0.3228 CW ′5 = 0.5284

Step 7: According to the previous definition, the final
modified dynamic reliability factors are obtained as:

W1 = 0.3955 W2 = 0.9399 W3 = 0.0873

W4 = 0.8340 W5 = 1

Step 8: Calculate the discounted BPAs and get the result
through data fusion.

m ({θ1}) = 0.7538 m ({θ2}) = 0.1568

m ({θ3}) = 0.0255

m ({θ1, θ2}) = 0.0374 m ({θ2, θ3}) = 0.0088

m ({2}) = 0.0176

From the result, it is clear that the recognition result of the
multi-sensor system is θ1, and since the information entropy
value and importance degree of the sensor S3 are both low,
the influence generated in the whole decision result is very
small after fusion.

B. EXPERIMENT ANALYSIS
Table 4 shows the fusion results by using different methods.
From Table 4, the problem with the classical Demspter’s is
obvious. After the system adding the data of the sensor S3,
the recognition rate of θ1 becomes 0, while θ2 is near to
1. This situation is unreasonable for most sensors to assign

their recognition result to θ1 and S3 should be considered
as interference. Therefore, a counter-intuitive result occurs
in a highly conflicting situation when applying the classical
Dempster’s rule [45]. To deal with the problem, Murphy [93]
proposed an average synthesis rule. By averaging the evi-
dence before data fusion, the impact of conflict evidence is
reduced to some extent. However, this method does not reflect
the changing trend in the fusion process, and there is still
room for improvement in recognition accuracy.

As can be seen from the previous calculation steps,
the dynamic reliability obtained by S3 is the lowest in the
system. In Song et al.’s method [58], data fusion is performed
by generating the discounted BPAs based on directly using
the dynamic reliability of each sensor as the discounted coef-
ficient of BPAs. Although the final recognition result of the
system is θ1, the recognition accuracy of the system is not
ideal (only slightly higher than 50%). Apparently, the system
has been dramatically affected after the fusion of S3, result-
ing in the considerable reduction of supporting θ1 and the
supporting degree grows slowly even though the remaining
sensors agree with the correct target θ1.

The proposed method further introduces the concept of
entropy value and evidence credibility weight as two factors
based on the original sensor dynamic reliability coefficient.
In principle, when a set of highly conflicting data appears in
a multi-sensor system, the sensor which reads this set of data
tends to allocate most of its support to a wrong recognition
target, resulting in a low information entropy value (also
considered as the confirmation of the wrong target is strong).
However, when other sensors highly support the correct
target, the corresponding information entropy value is also
reduced. Therefore, it is not enough to rely on the information
entropy value for helping authenticate the sensor reliability.
Thus, the importance of each sensor should be predicted
before data fusion by using the evidence credibility weight.
Through dividing the multi-sensor identification system into
two parts, most of the sensors with the same recognition
target will dominate the decision-making process (given the
most of the evidence credibility weight), and among them,
the sensor which supports target the most will be assigned the
highest weight ratio. Clearly, the actual fusion results that
the integration of multiple factors enhances the robustness
of the system and improves the accuracy of the recognition
target.

V. CASE STUDY IN DYNAMIC TARGET RECOGNITION
In some military or industrial applications, objects that
need to be identified may change dynamically over time.
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TABLE 4. Combination results based on different methods.

TABLE 5. Sensor identification information represented by BPAs.

TABLE 6. Values of the main parameters.

In such a scenario, sensors are required to make some cor-
responding precautions accurately. However, the recognition
result of a single sensor is often not comprehensive enough

and is susceptible to external interference. Therefore, in order
to improve the reliability of recognition, the system is often
composed of multiple sensors. In the case of continuous time
series, it is very important to ensure that multi-sensor effec-
tively identify the target even under some certain interference.

A. PROBLEM DESCRIPTION
Suppose there are radar, infrared and visible light sensors
at a military base detecting an unknown aerial target over
a period of time. The target has three possible types which
are Airplane, Helicopter and Fighter (denoted as A, H and
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TABLE 7. Modified BPAs based on proposed method.

TABLE 8. Fusion results based on different methods.

F respectively). By applying the framework of evidence the-
ory to this practical problem, the discernment framework is
expressed as 2 = {A,H ,F}. In order to correctly identify
the type of target, three sensors in the system are applied
to track and identify the target. The three sensors output
corresponding identification information for a period of time.
Table 5 shows the identification information read by these
sensors for three consecutive time nodes, where the data are
from [58] .

B. FUSION RESULT BASED ON PROPOSED METHOD
According to the previous proposed method, the main results
of calculating the dynamic reliability of the sensors are shown
as follow. The Supporting Degree Matrix (SDM) at each time
nodes is obtained as:

SDMt1 =

 1 0.9654 0.9697
0.9697 1 0.9909
0.9764 0.9933 1


SDMt2 =

 1 0.9407 0.8639
0.8603 1 0.9232
0.6946 0.8342 1


SDMt3 =

 1 0.9325 0.8883
0.9663 1 0.9558
0.9442 0.9779 1


Then, the values of the main parameters in the calculation

process is shown from the following Table 6 (R, Ed and CW

are denoted as absolute dynamic reliability, Deng entropy and
evidence credibility weight respectively).

As a result, the corresponding dynamic reliability of sen-
sors at three time nodes during this period is derived as:

W t1
S1
= 0.9646 W t1

S2
= 1 W t1

S3
= 0.9978

W t2
S1
= 0.3819 W t2

S2
= 0.6461 W t2

S3
= 1

W t3
S1
= 1 W t3

S2
= 0.8741 W t3

S3
= 0.6462

By applying the obtained dynamic reliability parameters
to the evidence discounting process, the discounted BPAs are
shown in Table 7. Finally, we can get the fusion results of
three sensors during this period and a comparison has been
made in Table 8 by using different methods. Hence, for the
subsequent time nodes, the sensor will make comprehensive
decisions by combining the information given by the pre-
order time point and its own time point.

C. DISCUSSIONS
As is shown from the raw data of Table 5, although there is
a large difference in the recognition of S3 at time t2 when
it assigns most of the probability to 2, the probability that
the moving target Helicopter is recognized increases with
time. (regarded as the process in which the moving target
Helicopter gradually approaches during this time period.)

According to Table 8, the result of the proposed method
is consistent with other methods’. Besides, it reasonably
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shows the influence from sensor S3 at time t2, and the target
is determined at the highest recognition rate at the final
moment t3. Therefore, in dynamic multi-sensor identification
applications, multi-factor-affected sensor reliability can be
reasonably calculated to deal with emergencies.

The key word ‘‘dynamic’’ in the identification process is
mainly reflected in two aspects. First, for a single point in
time, it instantaneously integrates the multifactorial influ-
enced parameters through asymmetric support, information
entropy, and sensor weight between BPAs to measure reli-
ability. Secondly, for the continuous time period, each time
point contains the information of the pre-order time point.
Therefore, the proposed method for calculating the dynamic
reliability of the multi-sensor is reasonable.

VI. CONCLUSION
Previous studies have attempted to link sensor reliability to
a certain impact factor, but to some extent ignore the fact
that the fusion process is a multi-factor decision-making situ-
ation. This paper has given an account of and the reasons for
the importance of multi-factor-determined sensor reliability,
aimed at determining what key factors have impact on the
multi-sensor identification process. Since the information
that the sensors need to process in practical applications is
often unpredictable non-prior information, the advantage of
using evidence theory to deal with uncertain information is
obvious. Therefore, we leveraged the relationship between
belief functions and intuitionistic fuzzy sets as the basis to
calculate the supporting degree between BPAs under the
framework of evidence theory. Satisfaction with recognition
accuracy increased after the implementation of internal sys-
tem factor (entropy value) and the external factor (sensor
evidence credibility weight) in the evaluation process and
there was an effective improvement when it comes to highly
conflict data. In short, the findings lead us to believe that it
is necessary to measure the sensor reliability based on multi-
factor evaluation in practical applications.
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