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ABSTRACT The multivariate time series (MTS) classification is an important classification problem in
which data has the temporal attribute. Because relationships between many variables of the MTS are
complex and time-varying, existing methods perform not well in MTS classification with many attribute
variables. Thus, in this paper, we propose a novelmodel-based classificationmethod, calledKullback-Leibler
Divergence-based Gaussian Model Classification (KLD-GMC), which converts the original MTS data into
two important parameters of the multivariate Gaussian model: the mean vector and the inverse covariance
matrix. The inverse covariance is the most important parameter, which can obtain the information between
the variables. So that the more variables, the more information could be obtained by the inverse covariance,
KLD-GMC can deal with the relationship between variables well in the MTS. Then the sparse inverse
covariance of each subsequence is solved by Graphical Lasso. Furthermore, the Kullback-Leibler divergence
is used as the similarity measurement to implement the classification of unlabeled subsequences, because it
can effectively measure the similarity between different distributions. Experimental results on classical MTS
datasets demonstrate that our method can improve the performance of multivariate time series classification
and outperform the state-of-the-art methods.

INDEX TERMS Kullback-Leibler divergence, Gaussian model, graphical lasso, multivariate time series,
classification.

I. INTRODUCTION
With the development of the internet of things (IoT), big
data and artificial intelligence technology, the number of time
series data has increased explosively, whichmakes time series
classification (TSC) become one of the most challenging
problems in machine learning and data mining. Essentially,
any classification problem can be converted to a TSC problem
when the data has the temporal attribute. TSC is widely
used in areas such as disease diagnosis [1], human activity
recognition [2], acoustic scene classification [3], and network
security [4]. Researchers focused on univariate time series
(UTS) classification in the early stage, and there are at least
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hundreds of papers worked on this issue at present [5]–[8].
Since a UTS is data about a variable that describes only one
aspect of the objects and may not satisfy most of the appli-
cation domain, recently, researchers have paid more attention
to the multivariate time series (MTS) classification. An MTS
contains a set of ordered observations at discrete time for
multiple variables, and it can be viewed as a collection of
multiple UTS. However, if an MTS instance is broken into
several UTSs, the correlations among the variables will be
lost. This is why the MTS classification is more challenging:
the relationships between the variables of the MTS instances
are complex and time-varying.

MTS classification methods can be divided into four cat-
egories: the distance-based method [9], the feature-based
method [10], the deep learning-based method [11], and the
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model-basedmethod. The distance-basedmethod predicts the
test instances’ categories based on the similarity between the
test instances and the training instances. The feature-based
method relies on extracting features from original MTS
data, and then builds models based on those features. The
deep learning-based method automatically learns the char-
acteristics of the instances by constructing a neural network
structure to achieve the aim of classification. The model-
basedmethod converts the originalMTS instances into model
parameters to build the corresponding model for classifica-
tion. It is worth noting that the model-based method, which
makes use of the statistical characteristics of data, is more
informative and interpretable than the former three ones, and
has been paid more and more attention by researchers. This
paper mainly studies the model-based MTS classification
method, aiming to propose an accurate MTS classification
approach, which can handle multivariate sequences with vari-
able length and phase.

In this paper, we propose a novel model-based MTS clas-
sification method, called Kullback-Leibler Divergence-based
Gaussian Model Classification (KLD-GMC). KLD-GMC
assumes that the MTS data obeys the Gaussian distribution,
which is clearly defined as the model used for classification,
and then solves the model parameters for MTS classifica-
tion. Essentially, these model parameters are the features
used to discriminate time series. The model parameters used
by KLD-GMC to discriminate MTS features are mean and
sparse inverse covariance, and they constitute a multivariate
Gaussianmodel. In comparison, the sparse inverse covariance
parameter is more important than the mean parameter. On the
one hand, the inverse covariance parameter maps the MTS
to a fixed-size vector space independent of the sequence
length; and sparse graphical representation is a useful method
to prevent overfitting [12]; In addition, the sparse inverse
covariance represents the conditional independent structure
between variables [13], which provides an interpretable
insight of the classification results. On the other hand, a sig-
nificant advantage of KLD-GMC is that it is very suit-
able for processing high-dimensional MTS data compared
to other classification methods. Since the inverse covari-
ance can measure the relationship between variables in the
MTS well. The more variables in the MTS, the stronger the
ability of the sparse inverse covariance to characterize the
MTS, so that our method can achieve a better performance.
Furthermore, the comparative experiments were conducted
on several MTS datasets to show the performance of our
proposed method by comparing with the state-of-the-art
methods.

The contributions of this paper can be summarized as
follows:
• As compared to existing MTS classification methods,
ourmethod canmake full use of the information between
variables by the covariance.

• We derive the calculation method of the Kullback-
Leibler divergence between multivariate Gaussian mod-
els (as shown in Equation 7, Section III.C), and use the

Kullback-Leibler divergence as a measure of similarity
between two subsequences.

• In the experiments, we show that our method does
improve the performance of MTS classification with
many variables.

The rest of this paper is organized as follows. Section II
introduces some related work. Section III describes the
KLD-GMC algorithm in detail, including the introduction of
Kullback-Leibler divergence, the solution of sparse inverse
covariance and the Gaussian model classification process
based on Kullback-Leibler divergence. Section IV gives
experimental results on several MTS datasets to demonstrate
the effectiveness of the proposed algorithm. Finally, the con-
clusion is given in Section V.

II. RELATED WORK
As mentioned above, the existing MTS classification meth-
ods can be roughly divided into four categories: the
distance-based method, the feature-based method, the deep
learning-based method, and the model-based method.

The distance-based method primarily studies the similar-
ity measures between sequences, and then predicts a class
label based on similarities between the instance to be pre-
dicted and training instances. There are various distance
measurements can be used for MTS comparison, includ-
ing the Euclidean distance [14], the short-term sequence
distance [15], the probability-based distance function [16],
the dynamic time warping (DTW) distance [17], and various
variants [18]. In these works, the Euclidean distance and
the short time series sequence distance are suitable for more
uniformly sampledMTSs, since both requireMTS to have the
same phase. The probability-based distance function treats
an MTS as a probability distribution, but after nonlinear
transformation, there has a greater difference between the
probability distributions of the two MTSs. The dynamic time
warping (DTW) distance is the most famous method of dis-
tance similarity measures. It is good at finding the optimal
alignment between two nonuniform time series. DTW and
its variants have become standard benchmarks for distance-
based methods. It is worth noting that the existing distance-
based MTS classification methods often have low com-
putational efficiency, because the similarity measurement
between sequences and the classification process of KNN or
SVM classifiers will cause expensive computational costs.

The feature-based method transforms time series into fea-
ture vectors, relying on extracting features from originalMTS
data, then constructing models on time features and classi-
fying them by traditional classifiers. Typical feature-based
methods are two-dimensional singular value decomposition
(2dSVD) [19], unsupervised locality preserving projections
(LPP) [20], symbolic representation for MTS (SMTS) [21],
Shapelets [22] and its various variants [23]. 2dSVD captures
eigenvectors of covariance matrices of MTS data as features,
and calculates the distance between two MTSs by measuring
the distance of these features. LPP projects the feature vectors
extracted by 2dSVD into a lower-dimensional feature space,
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FIGURE 1. The framework of the KLD-GMC method.

in which the related MTS samples of the same class are
close to each other. 2dSVD and LPP are not robust enough
because they are sensitive to noise and outliers. In order to
utilize the information of the sample class label, researchers
have proposed amethodwith supervised learning characteris-
tics. For example, symbolic representation for MTS (SMTS),
SMTS considers all the attributes of theMTS simultaneously,
rather than separately, to extract the information contained
in the relationship; Ye and Keogh propose the time series
original representation method called Shapelets [22], and
other researchers propose the latest improved algorithm of
Shapelets, but the discovery process of Shapelets and its
variants is computationally expensive.

In recent years, with successful applying of deep neural
networks (DNN) in various fields, more andmore researchers
applied deep learning-based methods to classify MTS. The
three main DNN architectures for TSC tasks are: Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN),
and Echo State Network (ESN).MLP is the simplest andmost
traditional architecture of the deep learning model, includ-
ing Multi-Layer Perceptron (MLP) [24]; CNN architectures
include Fully Convolutional Neural Network (FCNN) [24],
Residual Network (RN) [24], Encoder [11], Multi-scale
Convolutional Neural Network (MCNN) [11], Time Le-Net
(t-LeNet) [25], Multi-Channel Deep Convolutional Neural
Network (MCDCNN) [26], Time Convolutional Neural Net-
work (Time-CNN) [27]; ESN architectures include Time
Warping Invariant Echo State Network (TWIESN) [28].
These deep learning-based methods have their own advan-
tages and disadvantages for the MTS classification. For more
details on time series classification based on deep learning
methods, we guide interested readers to a recent empirical
study [11].

The model-based method assumes that time series in a
class are generated by the same model, and the same category

of data can be characterized by the same model parameters.
Typical model-based methods are the ARMA model [29],
the Gaussian mixture model [30], and the hidden Markov
model [31]. The model-based method makes use of statistical
characteristics of data, which is more informative and inter-
pretable than methods based on distance and deep learning,
and the computational efficiency is significantly higher than
the three previous ones.

III. CLASSIFICATION OF GAUSSIAN MODEL BASED ON
KULLBACK-LEIBLER DIVERGENCE
Figure 1 shows the framework of ourKLD-GMCmethod, and
Table 1 illustrates the definitions of some symbols in Figure 1.
The classification of the Gaussian model based on Kullback-
Leibler divergence first converts MTS training samples into
the parameters of the multivariate Gaussian model: the mean
vector and the inverse covariance matrix. Secondly, applying
Graphical Lasso to obtain the sparse inverse covariance of
each subsequence. Then, the unlabeled samples of MTS are
also converted into the parameters of the multivariate Gaus-
sian model: the mean vector and the sparse inverse covariance
matrix. The means and sparse inverse covariances can be
used to calculate the Kullback-Leibler divergence between
each unlabeled subsequence and each training subsequence.
Finally, the Kullback-Leibler divergence is used as the sim-
ilarity measurement, each unlabeled subsequence could be
classfied by applying a KNN classifier.

A. INTRODUCTION OF KULLBACK-LEIBLER DIVERGENCE
The Kullback-Leibler (KL) divergence, also known as the
relative entropy, is used to quantify the difference between
two probability distributions and can effectively describe the
similarity between different distributions. Using this similar-
ity measurement, we can cluster or classify data.
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TABLE 1. Symbol definitions of the KLD-GMC method.

Assuming that the statistical models P1 and P2 represent
twoN -dimensional probability distribution functions, respec-
tively, the Kullback-Leibler divergence between those two
models is defined as Equations 1 and 2 in the case of discrete
and continuous random variables, respectively:

KL (P1||P2) =
∑
x∈X

P1 (x) log
P1 (x)
P2 (x)

(1)

KL (P1||P2) =
∫
x∈X

P1 (x) log
P1 (x)
P2 (x)

dx (2)

The physical meaning of the above equations is to calculate
the degree of difference between the statistical model and the
given statistical model.

The Kullback-Leibler divergence is non-negative and
asymmetrical. Taking Equation 2 as an example, since the
logarithm function is a convex function, according to the
relative entropy and the Gibbs inequality [32], we can get
Equation 3.

KL (P1||P2)

=

∫
x∈X

P1 (x) log
P1 (x)
P2 (x)

dx =
∫
x∈X

− log
P2 (x)
P1 (x)

P1 (x)dx

≥ − log

 ∫
x∈X

P2 (x)
P1 (x)

P1 (x)dx

 = − log

 ∫
x∈X

P2 (x)dx


= − log (1) = 0 (3)

Therefore, the Kullback-Leibler divergence is non-
negative; at the same time, the Kullback-Leibler divergence
has the asymmetry property, that is, the KL divergence is

asymmetrical measure of the two probability distributions:

KL (P||Q) 6= KL (Q||P) (4)

The Kullback-Leibler divergence is a method of describ-
ing the difference between the two probability distri-
butions P and Q, if P represents the true distribution
of random variables, Q represents the theoretical or fit-
ting distribution, then KL(P||Q) is called the forward
Kullback-Leibler divergence, and KL(Q||P) is called the
backward Kullback-Leibler divergence. The fitting distri-
bution in the forward Kullback-Leibler divergence is the
denominator of the Kullback-Leibler divergence equation.
If the value of the fitting distribution tends to 0 in a cer-
tain value range of the random variable, then the value of
Kullback-Leibler divergence tends to be infinity. Therefore,
when the forward Kullback-Leibler divergence is used to
minimize the distance between fitting distribution and true
distribution, the fitting distribution tends to cover all ranges
of the theoretical distribution. The above properties of the
forward Kullback-Leibler divergence are referred to as‘‘zero
avoiding’’. Conversely, when using the backward Kullback-
Leibler divergence to solve the fitting distribution, since
the fitting distribution is a numerator, its zero value does
not affect the integral of the Kullback-Leibler divergence,
so the backward Kullback-Leibler divergence is ‘‘ero forc-
ing’’. In this paper, the backward Kullback-Leibler diver-
gence is used.

B. SOLVING SPARSE INVERSE COVARIANCE BY
GRAPHICAL LASSO
Suppose 6−1 is an inverse covariance matrix, the zeroes
in 6−1 correspond to the pairs of features that are
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conditionally independent. Furthermore, the sparse inverse
covariance can map original MTS instances to a fixed-size
vector space independent of sequence length, and the sparse
graphical representation is an effective method to prevent
overfitting [12]. Therefore, the sparse inverse covariance not
only provides an interpretable perspective for classification
results, but also avoids overfitting.

Given anMTS training set, the inverse covariance is solved
for each subsequence in the training set, assuming that a D-
dimensional subsequence Ti (Ti = (t1, t2, · · · , tk , · · · , tNi )),
k ∈ [1,Ni] obeys a Gaussian distribution N (U , 6) which
has two parameters: the mean U and the covariance 6. 2i
is the inverse covariance of Ti. Then the log likelihood can be
calculated by the formula as shown in Equation 5.

`` (Ti,2i)

=

∑Ni

k=1
−
1
2
(tk − U)2 (tk − U)T +

1
2
log det2i

−
D
2
log (2π)

= −
D
2
log (2π)+

D
2
log det2i −

1
2
tr (Si2i)

∝ − |Ni| (log det2i − tr (Si2i))+ C (5)

where, |Ni| is the sample size of Ti, Si =
(∑Ni

k=1
(tk − U)T (tk − U)

)
/D is the empirical covariance of Ti, and

C is a constant that does not depend on 2i. tr represents
the trace of matrix, and det is a function to calculate the
determinant of matrix.

The classical maximum likelihood estimationmethod can’t
solve the sparse inverse covariance. In this paper, the idea
of Lasso is used to solve the sparse inverse covariance. The
least absolute shrinkage and selection operator (Lasso) [33]
is a compression estimation method proposed by Tibshirani
in 1996. Lasso gets a more refined model by constructing a
penalty function. We uses the pattern of the Lasso algorithm
and adds a penalty function, then Equation 5 can be written
as:
_

2 = argmin
2i>0

(− log det2i + tr(Si2i)+
1
|Ni|
‖λ ◦2i‖1) (6)

Equation 6 describes a convex optimization problem called
Graphical Lasso [34]. ‖λ ◦2i‖1 is a `1 norm penalty for
the Hadamard product, used to excite the sparse inverse
covariance. λ controls the weight of the penalty function, the
larger the value of λ, the more sparse the parameter (inverse
covariance) is solved, and vice versa.

C. CALCULATION OF MULTIVARIATE GAUSSIAN MODEL
BASED ON KULLBACK-LEIBLER DIVERGENCE
Assume that the time series data for this paper is discrete,
so we calculate the Kullback-Leibler divergence between the
multivariate Gaussian models in the discrete case, as shown
in Equation 1.

Given two subsequences T1 and T2, it is assumed that
the probability distributions of T1 and T2 are P1 and P2,
the corresponding Gaussian model parameters are {µ1, 61}

and {µ2, 62} respectively, and the corresponding sparse
inverse covariances are 21 and 22 respectively. Then the
Kullback-Leibler divergence equation between multivariate
Gaussian distributions is shown in Equation 7, the detailed
proof is shown in Appendix.

DKL (P1||P2) =
1
2

log
∣∣∣2−12

∣∣∣∣∣∣2−11

∣∣∣ − n+ tr
(
212

−1
2

)

+ (µ2 − µ1)
T 22 (µ2 − µ1)

 (7)

Using Equation 7, the Kullback-Leibler divergence can be
calculated between each subsequence to predict the class
label and each training subsequence, indicating the degree of
difference between the two subsequences. According to the
divergence, each subsequence to be predicted is classified.

D. DESCRIPTION OF KULLBACK-LEIBLER
DIVERGENCE-BASED GAUSSIAN MODEL FOR
MULTIVARIATE TIME SERIES CLASSIFICATION
Table 2 illustrates the definition of some symbols to facilitate
the description of the KLD-GMC algorithm. Algorithm 1 is
used to solve the mean vector and the sparse inverse covari-
ance matrix of the multivariate time series. An inverse covari-
ance is solved for a sample subsequence in the dataset, and
the subsequence is represented by the multivariate Gaussian
model corresponding to the mean and the inverse covariance.

The mean variable in Step 1 and Step 2 is a 1∗D matrix,
and mean() is a function to calculate the mean matrix. S in
Step 3 is the empirical covariance matrix, and cov() is a
function to calculate the covariance matrix. In Step 4, λ′ is a
hyperparameter that controls the weight of penalty function,
Num(T ) is the number of subsequence’ attributes. Because
the inverse covariance is related with the number of the vari-
ables, the datasets with the different numbers of the variables
require different λ′ to control the weight of penalty function,
we propose a fine tuning Equation 8 to adjust the weight of λ′

to get λ as a new parameter to control the weight of penalty
function.

λ(λ′,Num(T )) = λ′ ∗
Num(T )

log2 Num(T )
(8)

Because more variables a sequence has, more complex
relationships of variables in the sequence are. We need to
make a large adjustment to make sure the parameters repre-
senting features with small influence are zeroes, so that the
covariance can characterize the sample well. Therefore we
useNum(T)/log2Num(T) to adjust λ′ smoothly, make λ bigger
enough, but not too big as illustrated in Equation 8.

Furthermore, the sparse solution is obtained to better char-
acterize the sample, and the Graphical Lasso (S, λ) function
in Step 5 is used to solve the sparse inverse covariance.

The solution algorithm for theMTS classification is shown
inAlgorithm 2. In Step 2 and Step 4 ofAlgorithm 2, the sparse
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TABLE 2. Symbol definitions used in the KLD-GMC algorithm.

Algorithm 1 Solving_Sparse_Inverse_Covariance_Matrix
Input: The multivariate time series T and sparseness parameter λ′

Output:2 and mean
1. Initializing mean be a 1 ∗ D zero matrix
2. mean← mean(T )
3. S← cov(T )
4. λ = λ(λ′,Num(T ))
5. 2← Graphical Lasso (S, λ)

Algorithm 2 KNN Classification
Input:
Train_T = {Train_T1, · · ·,Train_Ti, · · ·,Train_Tn}, Train_Y = {Train_Y1, · · ·,Train_Yi, · · ·,Train_Yn},Unlabeled_T, and k.
Output: result
1. for i = 1 to n do
2. (Train_2i,Train_meani)← Solving_sparse_inverse_covariance_matrix (Train_Ti) by using Algorithm 1
3. end
4. (Unlabeled_2,Unlabeled_mean)← Solving_sparse_inverse_covariance_matrix(Unlabeled_T ) by using Algorithm 1
5. init KL as a 1∗n vector
6. for i = 1 to n do
7. KLi← KLD(Unlabeled_2,Unlabeled_mean,Train_2i,Train_meani) by using Equation 7
8. end
9. result ← KNN (KL, k) by using the KNN classifier

inverse covariance matrix and the mean vector of each sample
in the training set and the unlabeled sample are solved to con-
struct a multivariate Gaussian model. The Kullback-Leibler
divergence is used as the similarity measurement in Step 7,
and the KNN classifier is used to classify an unlabeled sample
in Step 9.

The idea of the KNN classifier is that the training sam-
ples are represented as vectors in a multidimensional feature
space, each with a class label. The training phase of the
algorithm consists only of storing the feature vectors and class
labels of the training samples. In the classification phase, k is
a user-defined constant, and an unlabeled vector is classified
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TABLE 3. Multivariate time series classification datasets and their characteristics.

TABLE 4. Classification accuracy compared with the state-of-the-art methods.

by assigning the label which is most frequent among the k
training samples nearest to that unlabeled point. Since the
KNN algorithm mainly relies on the surrounding limited
samples, rather than relying on the method of discriminating
the class field to determine the category, therefore, the KNN
method is more suitable than other methods for samples
with more overlaps or intersections in class fields. By using
Equation 7, the degree of difference between an unlabeled
sample and each training sample can be solved, and then the
KNN classifier is used to select the category to an unlabeled
sample.

IV. EXPERIMENTAL RESULTS
In this section, we conduct experiments on four datasets
to analyze the performance of our method, compare the
performance of the proposed algorithm with the state-of-
the-art methods, and illustrate the application scenarios that
our method is suitable for. Our algorithm is implemented
in Python 3.6.7, and all experiments are performed on a
computer with Intel(R) Xeon(R) CPUE5-2620 0@2.00GHz
CPU, 64 GB RAM, Ubuntu 16.04.

A. DESCRIPTION OF DATASETS
In the experiments, four real datasets were selected from
the University of California Irvine (UCI) Machine Learning
Repository [35] and the CMU Graphics Lab Motion Capture
Database [36]. All selected datasets are listed in Table 3.

The University of California Irvine (UCI) Machine Learn-
ing Repository provides a dataset, namely the Japanese Vow-
els dataset. The Japanese Vowels dataset collected nine male
speakers for two consecutive Japanese vowels /ae/. For each
utterance, a 12-degree linear prediction analysis was applied
to it to obtain a discrete-time series with 12 LPC cepstrum
coefficients. This means that a speaker’s utterance forms a
time series with a length in the range of 7-29, and each
point of the time series has 12 features (12 coefficients). The
total number of time series is 640. Among them, 270 time
series are used as training sets and 370 time series are used

as test sets. CMU created a Graphics Lab Motion Capture
Database, from which we selected the WalkvsRun dataset,
the KickvsPunch dataset, and the CMUsubject16 dataset for
our experiments.

B. COMPARATIVE EXPERIMENTS
For the above four datasets, we compare the proposed algo-
rithm with the state-of-the-art MTS classification algorithms,
including MLP [24], Encoder [11], MCNN [11], t-LeNet
[25], MCDCNN [26], Time-CNN [27], TWIESN [28]. Eval-
uation metric is accuracy, which is shown as Equation 9.

Accuracy =
the number of samples classified correctly

the number of all samples
(9)

Table 4 presents the experimental results for different
methods. The experimental results of MLP, Encoder, MCNN,
t-LeNet, MCDCNN, Time-CNN, TWIESN are reported
by [11]. Comparing the performance of the state-of-the-art
methods, we can see that KLD-GMC achieves better perfor-
mance on all datasets.

Through Table 4, we can get some interesting conclu-
sions. First of all, comparing with other methods, KLD-GMC
achieves best performance onmost datasets which have many
variables. The reason for this phenomenon is obvious: our
method converts the MTS sample into the parameters of
the multivariate Gaussian model by calculating the mean
vector and the inverse covariance matrix of theMTS samples,
so that the multivariate Gaussian model can be constructed by
using those two parameters. The most important parameter
is the inverse covariance which can measure the relationship
between variables in the sample well. Therefore, the more
variables in the sample, the more information can be obtained
by the inverse covariance, and the constructed multivariate
Gaussian model can also represent the sample better, so that
our method can achieve better performance.

The second conclusion is that KLD-GMC is not very good
at dealing with anomalies, and cannot achieve best results on
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FIGURE 2. Classification accuracy varies with k at different values of λ′ for JapaneseVowels.

some datasets. In general, the distribution of data points in a
class is relatively concentrated, but in the real world, there is a
situation where the exception point of one class may be closer
to another. And then, by calculating the Kullback-Leibler
divergence between the unlabeled sample and each training
sample to determine the degree of difference between them,
if the 1NN classifier is used, the exception point will greatly
affect the result. Hence, we apply the KNN classifier to
improve the effect, the KNN classifier makes decision based
on the dominant category of k objects rather than a single
object’s category, and experimental results show that the
KNN classifier does improve the effect and achieve the best
performance.

The third conclusion is that our method is superior com-
pared with the current deep learning-based method, which
not only can exceed most methods in effect, but our method
is more interpretable. In addition, in the case of small sam-
ple datasets, deep learning-based methods may not train the
model well with small amount of data. Our method mainly
considers how to better represent the data, it refers to the
characteristics of the data: the relationship between multiple
variables, for this reason our method does not have a process
of training the model. So that there is no over-fitting condi-
tion, our method does not sensitive to the size of the training
dataset. Therefore, the proposed method is very suitable for
multivariable situations, such as car networking with many
sensors [37], health monitoring equipment [38] and so on.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
As can be seen from Section III, the proposed approach con-
sists of twomain parts. The first part is to use Graphical Lasso
to solve the sparse inverse covariance of all subsequences of
the training set and the unlabeled sample. The second part
is to calculate the Kullback-Leibler divergence between the
unlabeled sample and each training sample, and classify the
unlabeled sample by using the Kullback-Leibler divergence
as the similarity measurement, where the KNN classifier is

used. Similarly, the complexity of the algorithm in this paper
is mainly composed of these two parts. Therefore, the compu-
tational complexity of the proposed algorithm can be obtained
by analyzing the two parts.

The first part uses Graphical Lasso to solve the sparse
inverse covariance, which has been studied by many
researchers. As articles [34], [39] proved, computational
complexity for solving the sparse inverse covariance is
O(K∗D3), whereK is the maximum number of iterations, and
D is the number of variables in MTS. Therefore, the compu-
tational complexity of the first part is O(N ∗K∗D3), where N
is the number of samples in the training set.

The second part is to calculate the Kullback-Leibler diver-
gence between the unlabeled sample and each training sam-
ple. The Kullback-Leibler divergence is used as the similarity
measurement, and the KNN classifier is used to classify test
samples. The computational complexity of calculating the
Kullback-Leibler divergence between the unlabeled sample
and a training sample is O(D3) by analyzing the KLD equa-
tion item by item, whereD is the number of variables inMTS.
Therefore, the computational complexity of the second part is
O(N ∗D3).
In conclusion, the overall computational complexity of the

proposed algorithm is O((K + 1)∗N ∗D3).

D. IMPACT OF PARAMETERS ON PERFORMANCE
Among the proposed approach, there are two parameters that
may have an impact on the performance of MTS classifica-
tion. The first hyperparameter is λ′ which controls the weight
of the penalty function. The second is the choice of k in the
KNN classifier. Figure 2 uses the JapaneseVowels dataset
as an example to describe the accuracy of the classification
results as a function of k under different λ′. Figure 3 describes
the accuracy of the classification results as a function of λ′ in
the case of k = 6.

An important parameter is the value of k. It can be observed
fromFigure 2 that in the case of λ′ ≤ 0.01, the value of k is the
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FIGURE 3. Classification accuracy varies with λ′ in the case of k = 6.

same when the effect is the best. So we can get an experience
that the value of k is universal for a given dataset. In the
JapaneseVowels dataset, k = 6 is a suitable choice.
The value of λ′ is a more important parameter. According

to Figure 3, in the case of k = 6, we can see the performance
achieved the best result when 0.005 ≤ λ′ ≤ 0.01. On the
one hand, if λ′ is too large, the penalty function will have
an excessive influence on the solution of the sparse inverse
covariance, so that the data cannot be accurately character-
ized. On the other hand, if it is very small, the penalty function
will have little or no effect on the solution of the sparse inverse
covariance, and the correction of the solution process will
not be enough, which will lead to the deterioration of the
characterization data. Therefore, we need to choose a suitable
value, as shown in Figure 2, in the JapaneseVowels dataset,
the best results will be achieved when λ′ = 0.01, K = 6.
Through the experiments on the JapaneseVowels dataset,

we applied λ′ = 0.01, K = 6 as the empirical parameters
to other datasets, and the results verified that it can achieve a
good performance.

V. CONCLUSION
In this paper, we consider the problem of MTS classification,
which is one of the foundations of pattern recognition appli-
cations, and propose a novel model-based MTS classification
method KLD-GMC. KLD-GMC first converts the MTS data
into the parameters of the multivariate Gaussian model: the
mean vector and the inverse covariance matrix; then uses the
Graphical Lasso to sparsely solve each inverse covariance to
obtain the sparse inverse covariance. After that, we consider
the Kullback-Leibler divergence as the similarity measure-
ment between different samples. The Kullback-Leibler diver-
gence between each unlabeled subsequence and each training
subsequence can be calculated by using the mean and the
sparse inverse covariance. Finally, each test subsequence is
classified by using the KNN classifier. Experimental results
show that the method has higher accuracy.

A valuable enhancement for KLD-GMC is to improve the
computational efficiency, on account of the Kullback-Leibler
divergence between every unlabeled sample and every train-
ing sample has to be calculated which cause the high com-
putational cost. Thus, further research should be carried out
on the computational optimization of the proposed method.
In addition, the choice of parameters is a difficult problem.
Since the different datasets have the different numbers of
the variables, the choice of λ′ and k will change slightly.
Although the empirical values λ′ = 0.01, k = 6 have already
achieved a very good performance, we need to consider how
to design the algorithm to set the parameters adaptively in the
future.

APPENDIX
In this section, we will detail the proof of Equation 7 and
introduce some basic theorems used in the proof process.

Assuming that there is an n-dimensional matrix A, then the
trace of matrix A (represented by tr (A)) is equal to the sum of
the eigenvalues of A, that is, the sum of the properties of the
main diagonal elements of the matrix A, with the following
properties:

tr (αA+ βB) = αtr (A)+ βtr (B) (10)

tr (AB) = tr (BA) (11)

Equation 12 can be derived from Equation 11:

tr (ABC) = tr (CAB) = tr (BCA) (12)

The result of the trace operation is constant under the
transposition operation, as shown in Equation 13:

tr (A) = tr
(
AT
)

(13)

For the column vector λ, the result of the formula λTAλ is
a scalar, so there is:

λAλT = tr
(
λTAλ

)
= tr

(
AλλT

)
(14)
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The property of expectation E and covariance
∑

in a
multivariate distribution is shown in Equation 15:

E
[
xxT

]
=

∑
+µµT (15)

Equation 15 is proved as follows:∑
= E

[
(x−µ) (x − µ)T

]
= E

[
xxT − xµT − µxT + µµT

]
= E

[
xxT

]
−µµT − µµT + µµT = E

[
xxT

]
−µµT (16)

Assuming x is a column vector, Equation 17 can be
obtained by using Equation 14, and the proof process is as
shown in Equation 18:

E
(
xTAx

)
= tr

(
A
∑)
+ µTAµ (17)

E
(
xTAx

)
= E

[
tr
(
xTAx

)]
= E

[
tr
(
AxxT

)]
= tr

[
E
(
AxxT

)]
= tr

[
AE

(
xxT

)]
= tr

[
A
(∑
+µµT

)]
= tr

(
A
∑)
+ tr

(
AµµT

)
= tr

(
A
∑)
+ tr

(
µTAµ

)
= tr

(
A
∑)
+ µTAµ (18)

Using the above properties and derivations, we can get
Equation 19, the proof process as follows:

DKL (P1||P2)

=

∑
x∈X

P1 (x) log
P1 (x)
P2 (x)

= EP1 [logP1 − logP2]

=
1
2
EP1

[
−log

∣∣∣∣∣∑
1

∣∣∣∣∣− (x − µ1)
T
−1∑
1

(x − µ1)

+ log

∣∣∣∣∣∑
2

∣∣∣∣∣+ (x − µ2)
T
−1∑
2

(x − µ2)

]

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ + 1
2
EP1

[
− (x − µ1)

T
−1∑
1

(x − µ1)

+ (x − µ2)
T
−1∑
2

(x − µ2)

]

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ + 1
2
EP1

{
−tr

[
−1∑
1

(x − µ1) (x − µ1)
T

]

+tr

[
−1∑
2

(x − µ2) (x − µ2)
T

]}

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ + 1
2
EP1

{
−tr

[
−1∑
1

(x − µ1) (x − µ1)
T

]}

+
1
2
EP1

{
tr

[
−1∑
2

(x − µ2) (x − µ2)
T

]}

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − 1
2
tr

{
EP1

[
−1∑
1

(x − µ1) (x − µ1)
T

]}

+
1
2
tr

{
EP1

[
−1∑
2

(x − µ2) (x − µ2)
T

]}

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − 1
2
tr

{
−1∑
1

EP1
[
(x − µ1) (x − µ1)

T
]}

+
1
2
tr

{
EP1

[
−1∑
2

(
xxT − µ2xT − xµT2 + µ2µ

T
2

)]}

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − 1
2
tr

{
−1∑
1

∑
1

}

+
1
2
tr

{
−1∑
2

EP1
(
xxT − µ2xT − xµT2 + µ2µ

T
2

)}

=
1
2
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − 1
2
n+

1
2
tr

{
−1∑
2

(∑
1

+µ1µ
T
1 − µ2µ

T
1

−µ1µ
T
2 + µ2µ

T
2

)}
=

1
2

[
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − n+ tr
(
−1∑
2

∑
1

)
+ tr

×

(
−1∑
2

µ1µ
T
1 −

−1∑
2

µ2µ
T
1 −

−1∑
2

µ1µ
T
2 +

−1∑
2

µ2µ
T
2

)]

=
1
2

[
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − n+tr
(
−1∑
2

∑
1

)

+tr

(
µ1

−1∑
2

µT1 − 2µT1

−1∑
2

µ2+µ2

−1∑
2

µT2

)]

=
1
2

[
log

∣∣∑
2

∣∣∣∣∑
1

∣∣ − n
+tr

(
−1∑
2

∑
1

)
+ (µ2−µ1)

T
−1∑
2

(µ2− µ1)

]
(19)

We put the sparse inverse covariances 21 and 22 into
Equation 19 to take the place of the covariances

∑
1 and

∑
2,

finally we can get Equation 7:

DKL (P1||P2) =
1
2

log
∣∣∣2−12

∣∣∣∣∣∣2−11

∣∣∣ − n+ tr
(
212

−1
2

)

+ (µ2 − µ1)
T 22 (µ2 − µ1)

 (7)
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