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ABSTRACT Mining methods use cemented tailings backfill (CTB) for filling mined-out voids and make
operations safer since employees are working under it. Hence, the durability behavior of CTB is of great
importance in applications, for example, in the assessment of slope stability when extracting ore left in
neighboring stopes. Addition of cement content would increase the strength of CTB but creates extra costs
to mines. To cut cement-related costs as well as improve durability, different types of fibers are added to
CTB samples. This paper aims to analyze flexural behavior of fiber reinforced CTB samples under three-
point bending loading. To do so, a comprehensive laboratory work was undertaken to explore the effect of
fiber reinforcement on bending resistance of CTB samples, based on orthogonal experimental design. The
effect of fiber type (FT), fiber content (FC), solid content (SC) and cement-to-tailings ratio (c/t) on bending
characteristics was investigated. Results indicate that the addition of fiber enhances the bending strength of
fiber reinforced CTB samples and the bearing capacity after the peak in the load-deflection curve. Fibers
help correct the faintness of CTB samples by mobilizing tensile strength along the failure planes. The crack
resistance of fiber is reflected in the crack propagation stage. Secondly, the order of the sensitivity of four
factors on bending strength of fiber reinforced CTB samples is as follows: ¢/t > SC > FT > FC. Lastly,
the main findings of this study can provide a major reference for CTB’s last design in underground mining.

INDEX TERMS Cemented tailings backfill, fiber types and properties, bending strength testing,

load-deflection analysis, microstructural characteristics.

I. INTRODUCTION

Underground mining is one of the main ways to obtain
metal and non-metallic mineral resources. In comparison
with surface mining, underground extraction of ores is cost-
effective if the excavated orebodies provide relatively high
head grades [1]-[3]. There are numerous underground mining
methods with and without backfilling, considering the ore
being mined and the nature of the orebody [4]-[6]. Like-
wise, advanced tools and technologies offer more productiv-
ity and safer mining in underground operations, leading to a
major decrease in the cost of production methods [7]-[10].
The safe, efficient and economical recycling resources have
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gradually become the primary focus of mining companies
worldwide [11]-[14]. For underground mining of metal
mines, mining method with the backfill has been commonly
used due to its high recovery rate, reliable safety and reduced
the surface tailings storage requirement [15]-[18]. Indeed,
the safe and efficient mining of soft orebody is a big tech-
nical problem that needs to be solved urgently by the most
modern mining industries all around the world [19]-[22].
The methods applied for mining such orebodies are overhand
cut and fill (OHCF) and underhand cut and fill (UHCF)
mining methods [23]-[27]. Compared with sublevel stoping
and shrinkage, cut and fill mining offer the advantage of
full selectivity and is preferred in situations where orebody
dips steeply [28], [29]. In this technique, the voids created
by mining is backfilled with an engineered mix of tailings
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(frequently added cement for obtaining a strong back-
fill mass), which helps support the walls of underground
voids [30]—[33]. This type of mining is often done upwards
from lower levels, so the fill is used for ensuring a new
working level for further mining [34].

Mines such as Jiaojia Gold Mine and Jinchuan Nickel Mine
are typical soft rock mines in China and their mining meth-
ods are UHCF [35], [36]. Mining workers and equipment
are directly exposed under cemented tailings backfill (CTB;
it consists usually of filtered tailings, hydraulic cements and
mix water) [37]. When the UHCF mining method is typ-
ically used for underground mining, the stability of CTB
during mining cycle is vital to ensure the safety of per-
sonnel and tools since an unexpected collapse may happen
during mining [23]. Besides, collapse and bending defor-
mation are the two main failure modes of CTB [38], [39].
As mines go deeper as a result of the increased demand for
metals caused by global economic growth and exploitation
of shallow mineral deposits, the stress of surrounding rock
increases importantly and hence the encountered ground con-
ditions in excavated stopes become more challenging [4].
To ensure a secure working platform for most mines,
UHCF with CTB has become a more widely used mining
method [2], [10], [40].

The strength and durability of CTB is a significant issue
in UHCF mining method because of miners working under
it [29]. Hence, the strength properties of CTB samples should
be improved via insertion of mineral and chemical additives,
such as binding agents, natural or artificial pozzolans and
fibers [21], [28], [32]. The improvement of paste backfill
by cement addition increases its stiffness, but increases its
brittleness, causing the enhanced mass to fail in a brittle
way [41]-[43]. Alternatively, fiber addition enhances the
ductility and stability of reinforced CTB without affecting
the strength of the created mass [44]-[48]. Addition of ran-
domly oriented fibers to cementitious material creates an
engineered mix which has enough strength properties and
post-rupture load bearing capacity and offers a relatively low-
cost alternative solution in its geotechnical design [49]-[52].
Figure 1 shows a three-point bending mechanical model of
overlying CTB in the UHCF mining method. Overall, CTB
with the false roof falling off and collapsing to the stope is
mostly layered and block shaped. Can the fiber material be
“cracked rather than broken” under the bending loading?
Can we explore the preparation of fiber reinforced CTB
with low cost, high overall strength, good flexural and crack
resistance, which can reduce the secondary dilution caused
by the backfilling of CTB mass into mined-out stope, and can
realize safe and efficient recovery? This study clarifies these
issues.

Mitchell and Stone [53] firstly proposed the method of
fiber reinforcement for the design of mine backfill in order
to reduce the overall cement usage. They found that adding
fibers could obviously increase the tensile and flexural
strength of structures [54]. Researches on the CTB rein-
forced with fibers have recently become a hot issue for hard
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FIGURE 1. Physical model of overlying CTB in UHCF mining method.

rock mines. The research field mainly involves rheology,
uniaxial compression, bending test and physical models of
fiber reinforced CTB samples [55]-[57].

The techniques used mainly include numerical sim-
ulation codes and laboratory tests [58]-[60]. To better
study the fiber-reinforced mechanisms of CTB samples,
Xue et al. [37], [61], [62] done several experiments includ-
ing uniaxial compressive strength test, Brazilian tensile test
and three-point bending test. The researchers found that the
fibers made a positive contribution on strength properties
of CTB reinforced with different types of fibers. Similar
results were also reported [63]-[68]. However, researchers
not only focus on strength of fiber reinforced CTB samples,
but its rheological properties are also important factors during
its industrial applications. Zhang et al. [69] found that the
apparent viscosities, plastic viscosities and the yield stress
of cement paste increase with increasing length and dosage
of polypropylene fiber. Galicia-Aldama ez al. [56] reported
that the compressive strength and rheological behavior of the
studied material were drastically improved when the coconut
fibers were added in different percentages and three aspect
ratios.

The originality of this paper consists in the evaluation of
the influence of fiber type (FT), fiber content (FC), solid con-
tent (SC) and cement-to-tailings ratio (c/t) on flexural behav-
ior of CTB reinforced with diverse types of fibers. A total
of four FTs (polypropylene, polyacrylonitrile, glass and
polyvinyl alcohol), four FCs (0.2%, 0.4%, 0.6% and 0.8%),
four SCs (65%, 68%, 70% and 75%) and four c/ts (1:4, 1:6,
1:8 and 1:10) was selected as main variables. The orthogonal
experimental method was used to study bending mechanical
properties of fiber reinforced CTB samples. To conclude,
the microstructure of CTB samples with fiber was also exam-
ined by scanning electron microscopy (SEM) to better reveal
the fiber reinforced mechanisms.

IIl. EXPERIMENTAL PROGRAM
The research conducted in this study was divided in two parts.
Part one consisted of depicting the properties of the materials

VOLUME 7, 2019



S. Cao et al.: Flexural Behavior of Fiber Reinforced CTB Under Three-Point Bending

IEEE Access

used during experiments. Part two consisted of explaining
the techniques used in the molding process and undertaken
laboratory testing.

A. MATERIALS
The materials used in performed experiments were tailings,

fibers, cement and water. The detailed characterizations of

these materials are presented in the following sub-sections.
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FIGURE 2. Particle size distribution curves of the tested tailings sample.

1) PROCESSING TAILINGS

The tailings sample used in this study was collected from a
gold mine located in Shandong, a northern coastal province
in Eastern China. FIGURE 2 shows both incremental and
cumulative particle size distribution (PSD) curves of the
tested tailings sample. The proportion of particles under
20 pum accounted for 27%, which indicates a good ability to
retain enough water to form a suitable paste material [70].
According to the gradation theory, the ratio of limiting grain
size (dgp) to the effective particle size (djg) is referred to
as the non-uniformity coefficient (Cy: Dgo/D1g). To prevent
discontinuous gradation, C, of the tailings should be higher
than 10 [71]. The coefficient values of uniformity (C,) and
curvature (Ce: D%O/D6() x Djp) are 15.63 and 1.84, respec-
tively. The executed chemical analysis has well shown that
the total content of SiO,, Al,03, CaO and MgO main oxides
assumed for 82.4% of the studied tailings, which may gener-
ate acids and/or leachates.

2) FIBER TYPES AND CHARACTERISTICS

To rise the internal quality, reduce the maintenance cost
and prolong the service life of cement mortar, backfill, and
concrete, fiber is designed for use in cementitious materials.
Fibers can mostly reduce the formation of shrinkage cracking
in cement mortar, backfilling and concrete prior to curing
process, thereby considering a serious increase both strength
and durability of the studied test material [47]. Four different
types of fiber (polypropylene, polyacrylonitrile, glass and
polyvinyl alcohol) were employed, as shown in FIGURE 3.
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FIGURE 3. Four kinds of fibers: (a) polypropylene; (b) polyacrylonitrile;
(c) glass; (d) polyvinyl alcohol.

TABLE 1. The basic physical and mechanical properties of fibers used.

Tensile  Young's

Fiber type Length Dc;n51t3y strength  modulus ElO:lg.’:Lt/lOIl
(mm)  (g/em’) (MPa) (GPa) rate (%)
Polypropylene 12 0.91 398 3.85 28.0
Polyacrylonitrile 12 0.91 736 4.68 30.0
Glass 12 2.02 369 4.89 36.5
Polyvinylalcohol 12 1.30 1400 3.80 17.0

The basic physical and mechanical properties of fibers were
listed in TABLE 1. The fiber content used in this study is
0.2%, 0.4%, 0.6% and 0.8% by the weight of the sum of dry
tailings and cement.

3) BINDER AND WATER

A small dosage (it typically varies from 2 to 9wt%) of
hydraulic binder is added to CTB samples for enhancing its
mechanical strengths. Most modern mines are now search-
ing for alternative cementitious materials, such as fly ash,
silica fume and slag in order to cut their high cement-
related costs [72]. In this study, ordinary Portland cement
OPC 42.5 was used as the main binding agent. The physi-
cal and mechanical properties of the used cement are listed
in TABLE 2.

TABLE 2. Chemical component of ordinary Portland cement OPC 42.5.

Varieties, (%) SiO, Fe,04 AlOs MgO
OPC42.5 20.37 3.28 4.85 3.61
Varieties, (%) Ca0 SO, Specific surface area, (m*/kg)

OPC 42.5 63.32 1.72 0.16

Additionally, the mixing water is crucial for any type of
mine backfill since it can cause a strength reduction for a
given CTB recipe and curing time. Mix water can be clean
water like tap water or contaminated mine water like process
water [73]. In this study, tap water as mix water was used to
thoroughly mix binder and tailings.

B. METHODOLOGY

1) ORTHOGONAL EXPERIMENTAL DESIGN

The orthogonal table can balance sampling in the range of
factors, so that each test has a strong representativeness,
and these tests can often achieve the experiment’s purpose.
As stated by the analysis results of the previous experimental
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data, FT, FC, SC and c/t are important factors which greatly
affect the strength gaining of fiber reinforced CTB sam-
ples. To systematically explore the bending resistance of
fiber reinforced CTB samples and reduce experimental work-
load, the orthogonal experimental design scheme of 4 factors
(FT, FC, SC and c/t) and 4 levels is adopted in the present
paper. The fundamental design parameters of specific exper-
imental scheme are listed in TABLE 3.

TABLE 3. Orthogonal experimental design parameters.

FC SC

Factor level FT (WL.%) (wt. %) c/t
1 Glass 0.2 65 1:4
2 Polypropylene 0.4 68 1:6
3 Polyacrylonitrile 0.6 70 1:8
4 Polyvinyl alcohol 0.8 75 1:10

2) MOLDING AND CURING OF SPECIMENS

Tailings, fiber, binder and water were mixed for at least
15 min to prepare the rectangular fiber reinforced CTB
samples in this experiment. Moreover, the length, width
and height of specimens are 160 mm, 40 mm and 40 mm,
respectively. The span ratio is 2.5, and the effective span
is 100 mm. Fiber reinforced CTB samples were made with
various FTs, FCs and SCs. SC was set as 65%, 68%, 70%
and 75%. c/t values are 1:4, 1:6, 1:8 and 1:10 respectively.
The prepared samples reinforced with different types of fibers
were demounted and cured in a relative humidity at 95 4+ 5%
and temperature at 20 £ 5°C for a curing time of 7 days.
All materials for the sample preparation were weighed by
electronic scale with an accuracy of 0.01g. FIGURE 4 shows
fiber reinforced CTBs used during the experiments.

FIGURE 4. Photos of rectangular fiber reinforced CTB samples.

3) LOAD-BENDING STRENGTH TESTING

Fiber reinforced CTB samples were subjected to flexural
tests (by three-point bending) according to ISO 679-2009 and
GB/T 50081-2002 standard procedures [74]. A 10kN micro-
computer controlled electronic universal testing system in the
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FIGURE 5. Photo of the three-point bending equipment used.

University of Science and Technology Beijing was used for
bending loading. All experimental data can be automatically
recorded and saved during the three-point bending loading
process. All fiber reinforced CTB samples were tested in a
strain-control mode at a loading rate of 0.1 mm/min until
failure. FIGURE 5 shows a photo of the three-point bending
testing system used in this study.

a: BENDING STRENGTH CALCULATION

The bending strength of FRCTB samples were conducted by
the three-point bending method. The normal bending stress
was calculated as follows:

_ 3pL
2bi?
where, o1 represents the bending strength (kPa), p denotes
the maximum breaking load (N), b stands for the specimen

width (mm), 4 refers to the specimen height (mm) and L refers
the span length (mm).
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FIGURE 6. Schematic diagram of energy absorption calculation of fiber
reinforced CTB beam.

b: EQUIVALENT BENDING STRENGTH

FIGURE 6 show a schematic view of energy absorption cal-
culation of fiber reinforced CTB beam. P is the peak load (N),
8o represents the deflection value at the peak load (mm), when
the deflection value is 28, the energy absorption value of the
initial crack is the area of the triangle OAE (N-mm), §; is the
deflection value when the slope of the load deflection curve
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is close to zero after the peak load (mm), §, is the deflection
value at the end of the fiber action period (mm).

The equivalent bending load (¥, F>) and equivalent bend-
ing strength (f1, f>) for the deflections &1 and §; are calculated

as follows:
0= /03 P (8)ds (@)
I

where, Q1 and Q> are the energy absorption values of the
fiber contribution to fiber reinforced CTB beam when the
deflection is §; and &, that is, the area of ACFE and ADGE
(N - mm). In addition, L, b and h are span, width and height,
respectively.

¢: SEM OBSERVATIONS

Firstly, some samples were separated from the destroyed
fiber reinforced CTBs. The microstructure of CTB with fiber
was analyzed using a scanning electron microscopy (SEM)
named ZEISS EVO 18, Germany. The main parameters
of SEM tool are resolution: 3.0 nm; acceleration voltage:
200V-30kV, 10V step continuously adjustable; image elec-
trical translation: +50um; magnification: 5 ~ 1000,000,
nonstop adjustable and the vacuum pump system: turbo-
molecular plus mechanical pump, no cooling water required.
FIGURE 7 shows SEM tool and CTB after vacuum.

FIGURE 7. SEM test sample (a) and samples prepared after vacuum (b).

Ill. RESULTS AND DISCUSSION

A. LOADING-DEFLECTION CURVE AND

BENDING STRENGTH ANALYSIS

The load-deflection curves of each fiber reinforced CTB in
the orthogonal test were plotted, as shown in FIGURE 8.
If fibers in the most dangerous surface of CTB are unplugged,
they are the end of fiber action. Given that the fiber length
used in this test was 12 mm, combined with peak deflec-
tion (approximately 0.5 mm) and geometric relationship
between the maximum width of the crack and maximum
deflection, the final loading displacement was set to 8 mm,
that is, the mid-span deflection was 8 mm. FIGURE 8 shows
a gradual increase of the mid-span deflection, and the load-
deflection curve of each CTB begins to decrease after reach-
ing the peak load. But no rapid decrease was observed for
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FIGURE 8. The load-deflection curve of fiber reinforced CTB samples:
(a) c/t: 1/4, (b) c/t: 1/6, c/t: 1/8 and (d) c/t: 1/10.
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the load value after the peak, and the strain softening stage
occurs. When the mid-span deflection reached a certain value,
the load was almost no longer reduced, but entered a gradual
descent phase (the tangent slope is zero) until the end of load
phase.

The influence of four factors at four levels on bending
strength of fiber reinforced CTB samples was analyzed by
range analysis, and their effect on bending strength was plot-
ted in TABLE 4 and FIGURE 9. Test no. OE-1 are denoted
as fiber reinforced CTB sample number, where capital “OE”
signifies orthogonal experiment (OE), and ““1”* represents the
tested sample number.

TABLE 4. Orthogonal experimental results of the bending strength of
fiber reinforced CTB samples.

Bending
Test No. FT (V:;Co %) (vftc" %) c/t strength,
) ) (kPa)
OE-1 0.2 65 1:4 508
OE-2 Glass 04 68 1:6 273
OE-3 0.6 70 1:8 275
OE-4 0.8 75 1:10 239
OE-5 0.2 68 1:8 144
OE-6 Polypropylene 0.4 65 1:10 109
OE-7 0.6 75 1:4 1195
OE-8 0.8 70 1:6 431
OE-9 0.2 70 1:10 138
OE-10 Polyacrylonitrile 04 75 1:8 269
OE-11 vaery 0.6 65 1:6 236
OE-12 0.8 68 1:4 524
OE-13 0.2 75 1:6 558
OE-14 Polyvinyl 0.4 70 1:4 642
OE-15 alcohol 0.6 68 1:10 197
OE-16 0.8 65 1:8 239
K1 1294.7 1347.5 1091.4 2869.5
K2 1878.4 1293.2 1138.7 1497.5
K3 1166.3 1902.7 1485.7 926.3
K4 1636.5 1432.4 2260.1 682.6
k1 3237 336.8 272.8 717.4
k2 469.6 3233 284.6 3744
k3 291.6 475.7 371.4 231.6
k4 409.1 358.1 565.0 170.7
R 178.0 152.4 292.1 546.7

According to TABLE 4 and FIGURE 9, when the bend-
ing strength value was higher than 500 kPa, the experi-
mental results numbered OE-1, OE-7, OE-12, OE-13, and
OE-14 were in accordance with the requirements.

Four groups obtained a c/t of 1:4, and three groups exhib-
ited a solid content greater than or equal to 70 wt.%. This
result shows that the order of the weight of influence of
the four factors on the bending strength of fiber reinforced
cement-tailings matrix composites is as follows: c/t > SC >
FT > FC. The cement-to-tailings ratio and solid content are
still two main factors that affect bending strength, while fiber
type and content are secondary factors with the effect of the
former being higher than that of the latter.

From FIGURE 9, the main conclusions are as follows:
(1) Polypropylene fiber has an ideal effect on bending
strength of CTB in four different fiber types. The bending
strength of CTB with polypropylene fiber was 1.45, 1.61,
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FIGURE 9. Effect of different factors on bending strength of CTB.
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and 1.15 times that of glass fiber, polyacrylonitrile fiber, and
polyvinyl alcohol fiber CTB. 2) When the fiber content in
CTB was 0.6 wt%, the corresponding bending strength was
the highest, and its strength value was 475.68 kPa. This is
mostly because of a dense microstructure and a well adhesion
and interface between fiber and CTB, reducing crack propa-
gation.

(3) With the increase of SC, the bending strength of
fiber reinforced CTB increases gradually. Compared with the
bending strength of one-level lower concentration sample,
the increase rates of specimens with 67 wt.%, 68 wt.%, and
75 wt.% SC were 4.33%, 30.47%, and 52.13%, respectively.
(4) With the decrease of c/t, the bending strength of fiber
reinforced CTB samples decreases gradually. Compared with
the bending strength of the one-level lower lime-sand ratio
specimen, the increase rates of the specimens with c/ts of 1:8,
1:6, and 1:4 were 35.7%, 61.67%, and 91.62%, respectively.
Thus, the larger the c/t ratio the higher the corresponding
increase rate. During the bending test design of CTB sam-
ple, the appropriate c/t can be determined first according to
bending mechanical strength requirements.

B. EQUIVALENT BENDING STRENGTH

Based on the variation characteristics of load-deflection curve
of fiber reinforced CTB samples in FIGURE 9, by using
the evaluation method of the fiber concrete standard [75],
the equivalent load and the equivalent bending strength were
calculated, and then post-peak deformation properties were
analyzed. FIGURE 4 shows the effect of bending strength
at the level of each factor. According to the calculation
results of the energy method, the range of values of §; /8 is
5.4 to 21.2, that is, the deflection value of fiber reinforced
CTB entering the yield stage is considerably greater than
the peak deflection, indicating that CTB can still withstand
a large deformation value after the initial crack.

TABLE 5. Equivalent bending strength statistics of fiber reinforced CTB.

Test No. J,/mm 0,/mm J,/mm f,/kPa /> /kPa
OE-1 0.37 5.6 8.0 52 40
OE-2 0.57 35 8.0 71 49
OE-3 0.70 5.1 8.0 103 81
OE-4 0.70 49 8.0 95 69
OE-5 0.25 53 8.0 50 44
OE-6 0.29 59 8.0 40 34
OE-7 0.43 8.0 8.0 241 241
OE-8 0.52 7.6 8.0 153 148
OE-9 0.34 3.7 8.0 60 50
OE-10 0.47 8.0 8.0 89 96
OE-11 0.71 6.6 8.0 87 77
OE-12 0.50 7.2 8.0 208 197
OE-13 0.54 4.4 8.0 123 91
OE-14 0.97 5.2 8.0 236 174
OE-15 0.77 4.7 8.0 103 79
OE-16 1.00 6.5 8.0 119 101

TABLE 5 lists the equivalent bending strength statistics of
fiber reinforced CTB samples. According to analysis of the
effect of equivalent bending strength f1, the ranges between
FT, FC, SC, and c/t are 65 kPa, 72.5 kPa, 63.5 kPa and
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109.75 kPa, respectively. The order of influence (from large
to small) is c/t, FC, FT, and SC. According to an analysis
of the effect of equivalent bending strength f>, the ranges
between FT, FC, SC, and c/t are 57 kPa, 72.5 kPa, 61.5 kPa
and 105 kPa, respectively; and the influential effect from high
to low is c/t, FC, SC, and FT.

In addition to the influential effects of four factors (peak
load here), bending strength is mainly affected by c/t and SC;
and the equivalent bending strengths fi and f, after peak is
mainly affected by c/t and FC. FIGURE 10 shows the effect
of bending strength at various factor levels.

According to FIGURE 10, the following conclusions are
obtained: (1) The effect of fiber type on bending strength and
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develops in fiber reinforced CTB.

equivalent bending strength of CTB samples was the same
and determined by the performance parameters of fiber. The
glass fiber has a high modulus of elasticity, that is, it has
high rigidity, but has poor alkali resistance, and is affected
by corrosion of hydration product, so that glass fiber loses its
original characteristics with the extension of curing time.
The polypropylene fiber is easy to disperse, improves the
uniformity of CTB, reduces the segregation rate of the filling
body, and has good affinity in matrix. The polyacrylonitrile
fiber contains a hydrophilic group (-CN) in its molecular
structure, so that fiber has good bonding property with the
filler. Polyvinyl alcohol fibers have poor adsorption prop-
erties to cement particles and poor water retention, making
it difficult to exert the desired reinforcing effect. (2) As the
fiber dosage increased, the bending strength increased first
and then decreased, and the optimum content was 0.6 wt. %;
the equivalent bending strength, however, increased gradu-
ally. The ratio of equivalent bending strength f> to bending
strength was 16.7%, 27.3%, 25.12%, and 35.95%, which
were obtained at four different content levels. In addition,
compared with the equivalent bending strength at the pre-
vious level, when the contents were 0.4, 0.6, and 0.8 wt.%,
the increase rates of f] were 52.9%, 22.5%, and 7.7%, respec-
tively; and the increase rates of fo were 56.9%, 35.4%, and
7.7%, respectively. (3) With the increase of SC, the bend-
ing strength and equal bending strength increased gradu-
ally. When SC were 68, 70, and 75 wt.%, the increase
rates of f] were 44.9%, 27.8%, and -0.7%, respectively; and
the increase rates of f, were 46.43%, 22.76%, and 9.71%,
respectively. Hence, increasing the fiber content and SC
increased the bending resistance of CTB after the peak, but
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the improvement effect decreased gradually. (4) With the
decrease of c/t, the bending strength and equivalent bending
strength decreased gradually. The ratios of f> to bending
strength under four different c/t conditions were 22.72%,
24.37%, 34.76%, and 33.99%. The larger the c/t, the higher
the brittleness of fiber reinforced CTB and the greater the
decrease of the bending performance after the peak.

C. ESTABLISHMENT AND VERIFICATION OF BENDING
STRENGTH PREDICTION MODEL

The quadratic polynomial regression analysis method is
based on orthogonal design scheme and uses the regres-
sion analysis method to derive the mathematical relationship
model between the given multiple independent variables and
dependent variables. Thus, in combination with the above test
results, the regression equations for bending strength o7 and
equivalent bending strength f> are derived:

01 = —354.076 + 729.335x1 + 5010.151x2 + 93.379x3
—33196.447x4 — 20.38x7
+235.908x3 — 911.233x7 + 15961.308x7
— 188.355x1x2 — 622.81x1x3 — 889.306x1x4
— 5830.845x2x3 — 4293.15x2x4 + 51708.388x3x4

fo = —6059.642 + 105.623x| + 1646.746x; + 16515.74x3
—5992.007x4 — 19.126x7
+21.295x3 — 11314.738x3 + 5038.131x]
+23.302x1x0 — 40.156x1x3 + 45.857x1x4
—2069.649x2x3 — 1101.712x2x4 + 7662.766x3x4
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FIGURE 13. Typical optical and microstructural SEM images of fiber reinforced CTB samples.

where o1 and f> are normal and equal strengths (kPa). x1, x2,
x3 and x4 denote FT, FC, SC and c/t, respectively.

As shown in FIGURE 11, the bending strength is the
abscissa and the predicted value is ordinate. The dispersion
of the coordinate points in this figure is small (close to the
straight-line function y = x).

D. MICROSTRUCTURE OF FIBER REINFORCED CTB
FIGURE 12 shows a schematic view of fiber-reinforced
mechanism on CTB sample under three-point bending loads.
The surface microstructure mechanism of the CTB samples
reinforced with fiber was scanned by means of the SEM test,
as presented in FIGURE 13.

Taking one of CTB sample No. OE-14 as an example,
it was found that fiber reinforced CTB specimen is subjected
to tensile failure under a three-point bending load. Moreover,
the internally doped fibers were completely exposed after the
end of the bending experiment and fiber clusters showed a
distinct stretched state. In other words, fibers are effectively
prevented from deforming when CTB is deformed.

It is also found from FIGURE 13 that the fiber bridging
effect between the cracks is very significant. Although CTB
has cracked and deformed, fiber can effectively connect the
block shaped CTB mix, so that fiber reinforced CTB sam-
ples undergoes large deformation, but there is no cause of
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instantaneous damage. Additionally, the shape of fiber has
also been deformed, and it has changed from the original
cylindrical to the flat column shape, indicating that the crack
propagation drive fiber undergoes tensile deformation during
the failure of CTB sample.

IV. CONCLUSION

In this study, a comprehensive laboratory work was carried
out to better investigate the bending strength of fiber rein-
forced CTB samples. Orthogonal experiment are applied,
and four kinds of FTs (polypropylene, polyacrylonitrile,
glass and polyvinyl alcohol), FCs (0.2 wt.%, 0.4 wt.%,
0.6 wt.% and 0.8 wt.%), SCs (65 wt.%, 68 wt.%,70 wt.% and
75 wt.%) and c/ts (1:4, 1:6, 1:8 and 1:10) values are set in this
study. The main conclusions of three-point bending strength
test by fiber reinforced CTB samples are summarized as
follows:

(1) The bending strength performance of CTB samples
and the bearing capacity after the peak of the load-deflection
curve were improved by adding fiber. The enhanced effect of
polypropylene fiber was the best, and the optimum fiber con-
tent was 0.6 wt. %. With the increase of SC and c/t, the equiv-
alent bending strength of fiber reinforced CTB samples
increased gradually; the increase rate, however, decreased
gradually.
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(2) The order of the sensitivity of four factors on bending
strength of fiber reinforced CTB is as follows: ¢/t > SC >
FT > FC. The c/t and SC are still the main factors affecting
bending strength. FT and FC are secondary factors, but the
effect of fiber type is higher than that of fiber content.

(3) The deflection value of the samples entering the yield
stage of fiber reinforced CTB samples was considerably
larger than the peak deflection, and the equivalent bending
strength of fi and f> after peak were mainly affected by the
¢/t and fiber content. In addition, the effect of the four factors
on toughness of CTB samples after peak from large to small
is in the order: FT, FC, c¢/t, and SC.

(4) The main influencing factor of the crack of fiber rein-
forced CTB was still the mechanical strength properties of
CTB samples. The fiber cracking effect was mainly embod-
ied in the crack propagation stage, and the fracture surface
morphology was closely related to fiber properties and distri-
bution quantity.

This research is part of a large research project studying
behavior and properties of fiber reinforced cement-tailings
matrix composites. It is clear from the executed results that
bending strength of fiber reinforced samples has surpassed
the commonly specified values. Hence, the results presented
in this study are of vital importance and will be used as a
baseline when establishing the final design of CTB samples.
However, additional research should be performed to further
improve bending strength and to advance fiber technology for
in situ standards and applications.
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