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ABSTRACT Sharing a secret key between two physically separated nodes, Alice and Bob, is possible
through the use of quantum key distribution (QKD) techniques. In the presence of an eavesdropper, Alice’s
key may not be identical with Bob’s key, due to the characteristics of a quantum channel. To obtain identical
keys at Alice and Bob, we propose a block-based key verification protocol that relies onNewton’s polynomial
interpolation. As the nodes solely share random numbers and indices of the removed blocks, no information
is revealed about the secret message, at a cost of higher computational complexity. The error propagation
through the key verification process is prevented by the characteristics of the proposed approach.

INDEX TERMS Key verification, polynomial interpolation, quantum key distribution, secret sharing.

I. INTRODUCTION
Quantum key distribution (QKD) enables sharing a secret
message between two distant nodes, Alice and Bob. A secret
message can be used as a cryptographic key to encrypt
messages that are being transmitted over an insecure chan-
nel. Unlike the well-known key sharing algorithms [1],
the security in QKD is established by the laws of quantum
physics [2], [3]. The first QKD protocol is BB84, developed
by Bennett [4]. A typical QKD protocol consists of two
parts: a key agreement scheme and a key verification process.
In the key agreement part of the protocol, BB84 encodes the
information into randomly selected non-orthogonal quantum
states, referred to as qubits. As Bennett and Brassard suggest,
these qubits are commonly generated by the light polarization
and are shared through fiber networks or free space optical
links [5]–[7]. The uncertainty principle and the no-cloning
principle guarantee that any eavesdropping attempt causes
disruption of the quantum signal with a high probability and
may introduce errors at the receiver node [2].

Following this work, QKDhas expanded into an active area
of research, both in theoretical and practical aspects. New key
agreement protocols have been proposed [8]–[10], and their
security proofs have been obtained [11]. Yet, BB84 protocol
remains the most popular protocol, used within practical
QKD systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tai-hoon Kim.

Assuming the presence of an eavesdropper (referred to as
Eve) and a noisy communication channel in the key agree-
ment procedure, the secret keys obtained by Alice and Bob
may not be identical. Although a key verification process is
carried out in the original paper of BB84, the formal problem
statement and the associated key verification procedure are
defined in the work of Brassard and Salvail [12]. While
proposing a reconciliation protocol to verify the secret mes-
sages, the protocol causes some information leakage to the
eavesdropper. The aim of this verification process is to correct
possible errors in the distributed secret key with a minimum
information leakage. In accordance with this aim, Brassard
and Salvail present a reconciliation algorithm, which is later
named as Cascade. Over the decades, some improvements are
introduced to Cascade algorithm, but its main disadvantage,
the communication load, is still an open issue [13], [14].

In 2003, the Winnow protocol is proposed for key rec-
onciliation by Buttler et al. [15]. The performance of the
Winnow protocol largely depends on the number of erroneous
bits and their uniformity. As the main difference from Cas-
cade, the Winnow protocol may introduce additional errors,
if the error distribution is not uniform. However, the Winnow
algorithm can decrease the number of transmissions between
Alice and Bob.More recently, key reconciliation is studied by
adapting the error correcting codes [16]–[18]. Error correct-
ing codes are originated for reversing the disruptive effects
caused by the communication channel. While the compu-
tational complexity varies according to the selected code,
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error propagation and information leakage are still open
issues in these code-based approaches [19], [20]. The recent
research activities about key reconciliation are discussed in
Section II.C.

In this paper, we propose a key verification protocol with
zero information leakage. The fundamental idea behind our
key verification protocol depends on polynomial interpola-
tion as Shamir’s (k, n) thresholding scheme, where the pro-
tocol generates random y-axis values in a finite field and
selects a certain number of key bits as x-axis values, then
interpolates them to obtain a polynomial [21]. The rest of
the y-axis values are determined by applying the remaining
key bits to the constructed polynomial, which are utilized
to compare the x-axis values. By sharing only the y-axis
values of the polynomial, Alice and Bob detect erroneous bits
and remove them to obtain identical secret keys. The shared
information can not be used by the eavesdropper unless the
eavesdropper knows a predetermined number of bit-streams
through the key bits, which is limited by the nature of the
QKD system [2]. Without revealing any useful information
about the key bits to the eavesdropper, we aim to overcome
the main paradigm of the key reconciliation protocols that
some information regarding key is compromised in order to
find and reconcile the erroneous bits.

The main contributions of this paper can be listed as below;

• We propose a key verification protocol for QKD, where
Alice and Bob aim to eliminate the erroneous bits from
the secret key obtained at Bob instead of correcting
them. This paradigm difference in the verification pro-
tocol reduces the revealed information during the key
verification to zero.

• We show that Alice and Bob obtain identical secret
keys after the proposed key verification protocol. The
error propagation through the key verification process is
prevented by the inherent characteristics of the proposed
approach. Therefore, privacy amplification becomes
unnecessary for the QKD procedure.

• We eliminate all erroneous bits in the secret key,
we show that our protocol also reduces the revealed
information during the key agreement part to zero.

One drawback of our algorithm is the increased com-
putational complexity in comparison to state-of-the-art key
verification algorithms.

The remainder of this paper is structured as follows.
In the following section, we give the foundations on poly-
nomial interpolation and describe the QKD system model.
In Section III, the proposed key verification algorithm is
described. In Section IV, we provide the analysis of our
algorithm. Finally, the concluding remarks are drawn and the
future work is presented in Section V.

II. BACKGROUND AND RELATED WORK
A. POLYNOMIAL INTERPOLATION
We first present the basic notions that will be employed
in the key agreement algorithm. An approximation method,

polynomial interpolation, has been used for many prob-
lems in the computational sciences and cryptography [21].
Let Fq denote a finite field with q number of elements
where q is a prime power. A polynomial p(x) over Fq
means that it has all coefficients in Fq. Let the data points
(x0, y0), (x1, y1), . . . , (xr , yr ) be given such that xi, yi ∈ Fq
and xi 6= xj for i 6= j. The following theorem has been known
since Newton and has been exploited for many different
purposes [22].
Theorem 1: For the points (x0, y0), . . . , (xr , yr ), there is

a unique polynomial pr (x) of degree at most r such that
pr (xi) = yi where 0 ≤ i ≤ r (Chapter 4, Theorem I of [22]).
The applications of polynomial interpolation is mainly due

to the following corollary.
Corollary 2: Let pr (x) be a polynomial of degree r. Inter-

polating any r + 1 or more points on the graph of y = pr (x)
results in pr (x) (Chapter 4, Theorem I of [22]).

Let (x0, y0), . . . , (xr , yr ) be as above. In Newton’s interpo-
lation method, a polynomial of a degree r

pr (x) = c0 +
r∑
i=1

ci
i−1∏
j=0

(x − xj)

is constructed and the coefficients ci sequentially obtained by
pi(xi) = yi for i = 1, 2, . . . , r . Note that, pr (x) is identical
to p(x).

A significant point for the polynomial interpolation is that
at least r + 1 points must be known on the graph of the
polynomial p(x) to construct it. It is infeasible to obtain p(x) if
less than r + 1 points are known [21]. Note that the degree of
p(x) is r , and the finite field Fq is assumed to be large enough.
Polynomial interpolation was previously used for set rec-

onciliation purpose [23]. In set reconciliation, each node has
an individual set that might have different elements from
other sets. Alice and Bob generate a polynomial from their
set elements and share randomly selected reference points on
the polynomial. Then, both nodes regenerate a polynomial by
its roots in order to find both the erroneous and missing ele-
ments. In quantum key verification, the erroneous elements
are located at Bob’s side. Hence, Bob should figure out the
erroneous key bits with help from Alice.

B. QKD SYSTEM MODEL
Figure 1 shows a QKD system consisting of two links:
(i) a quantum channel for the key agreement process and
(ii) an authenticated public communication channel for the
key distillation process. In the key agreement process, Alice
transforms the generated key bit string KA of length 2L
into qubits and shares them via the quantum channel. Bob
measures these qubits and maps measurement results into
his key bit string KB of length 2L. Due to the characteristics
of the quantum channel and possible eavesdropping activity,
Bob does not know the accuracy of his measurements and
needs to estimate the disparities between the KA and KB.
Key distillation is a post processing step that is used to
obtain identical secret keys at Alice and Bob. The process
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FIGURE 1. QKD system model.

starts with key sifting. In key sifting, Alice and Bob share
half of the randomly selected bits and estimate quantum bit
error rate (QBER) denoted by ε. If QBER is above the key
verification threshold, 0, an error is reported and no key is
constructed. If QBER is less than 0, Alice and Bob discard
only the shared bits in the key sifting process in order to
eliminate any revealed information to Eve.

Let us denote the remaining bit string at Alice with A and
the remaining bit string at Bob with B. Following a similar
notation to [12], we denote the random variables by capital
letters, the entropy of a random variableU withH (U ) and the
conditional entropy ofU andV is denoted byH (U |V ), if each
bit from string A is randomly and independently selected,

H (A) = |A|,

and the conditional entropy is

H (A|B) = L × H (ε),

where |A| = |B| = L. At the end of the key verification,
we define the proposed verification protocol with V ε(A,B) =
[S,Y ], where the final secret string S is produced from
the correlated strings A and B by exchanging information
string Y . The key verification protocol is detailed in the
following section.

C. RELATED WORK
A detailed comparison of the existing information reconcili-
ation schemes can be found in [24]. More recently, research
efforts in the key reconciliation focus on designing error
correction codes in a more efficient configuration. In [25],
the author proposes discretized Gaussian modulation based
continuous variable QKD to achieve a high reconciliation
efficiency with a low complexity. The authors of [26] propose
the usage of the Raptor codes for the first time in the QKD
literature to obtain a better performance in the long distance
QKD links. In [27], the authors present a polar coding struc-
ture for the key reconciliation and compare the efficiency and
the complexity of their methodwith an LDPC based structure.
LDPC based key reconciliation schemes have been compared
and a symmetric blind information reconciliation method for
QKDhas been proposed in [28]. In [29], the authors propose a

FIGURE 2. A block diagram of the proposed key verification protocol that
takes place in the key verification block of Figure 1.

concatenated method for information reconciliation in QKD
systems. The authors claim that their method outperforms
other one-way information reconciliation schemes in terms
of reduced computational requirements and communication
delay. One of the main limitations of the aforementioned rec-
onciliation schemes is the information leakage that is lower
bounded by the Slepian-Wolf limit [30]. These methods do
not guarantee identical secret keys after reconciliation and
hence may lead to error propagation [24]. As an important
difference from the existing information reconciliation liter-
ature, the proposed key verification algorithm does not leak
any information during the process and guarantees identical
secret keys at the end of the process, with a cost of an
increased complexity.

III. KEY VERIFICATION PROTOCOL
The inputs of the key verification protocol are the sifted key
bits of Alice and Bob, A and B, each of length L. The key
verification process is applied to each block individually and
the quantum channel between Alice and Bob is assumed to be
a binary symmetric channel (BSC)with an error probability, ε
[16]. As previously mentioned, any communication between
Alice and Bob is carried out through a classical authenticated
channel, which is also assumed to may be intercepted by an
eavesdropper.

The proposed key verification protocol is depicted in
Figure 2. The protocol starts by determining the parameters to
be used in the following steps. Then, Alice divides her sifted
key into k blocks using the serial to parallel converter block
and transforms bit chunks of length n into decimal numbers
in each block by using the set generation algorithm. At the
following step, she determines whether there are sufficient
number of bits can be used by the key verification process.
Here κ denotes the minimum number of bits required to
complete key verification. If sufficient number of bits are
present, Alice continues with the polynomial generation algo-
rithm and sends the y-axis values of the polynomial of a
degree r to Bob. Note that, r is pre-shared between Alice and
Bob. Based on y-axis values, Bob verifies his bit chunks and
deletes unverified chunks, using the key verification block.
In order to obtain identical keys, Bob shares the deleted block
indices with Alice and then Alice removes the same blocks.
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Algorithm 1: Set Generation Algorithm
Input: n, Bvj for j = 0, 1, . . . , k − 1, v ∈ {A,B}
Output: Svj = {a0,j, a1,j, . . . , as−1,j} from Bvj

1: for j = 0 : k − 1 do
2: for i = 0 : s− 1 do
3: Cv

i,j = Bvj (ni : n(i+ 1)− 1) ;
4: ai,j = Dec(Cv

i,j) ;
5: Svj (i) = ai,j
6: end
7: if C{Svj } < s then
8: send j to other node ;
9: delete Svj ;
10: else
11: save Svj ;
12: end
13: end

The details of the algorithms of the proposed protocol are
presented on the remainder of this section.

A. SET GENERATION
The proposed algorithm is summarized in Algorithm 1. C{S}
denotes the cardinality of the set S. Let BAj be the jth block
with length m at Alice and BBj be the jth block at Bob, where
j ∈ {0, 1, . . . , k − 1}. The algorithm first splits the blocks BAj
and BBj into chunks CA

i,j and C
B
i,j such that each has n number

of bits, where i ∈ {0, 1, . . . , s − 1} and s = m/n (Step 3 of
Algorithm 1). In order to obtain distinct chunks in a block, s is
selected to be less than 2n. Note that, the size of blocks and
chunks should be selected in a way that it is almost infeasible
to have two chunks with the same bit strings.

Then, set generation algorithm on the block BAj continues
by generating decimal numbers, ai,j, from the chunks, Cνi,j by
using Dec(·) function that converts the bit strings to decimal
values (Step 4 of Algorithm 1) and transforming blocks into
distinct set elements in Fq (Step 5 of Algorithm 1). The dec-
imal equivalent of the chunks are referred to as set elements.
Following this step, Alice checks whether each chunk in a
block is transformed into distinct set elements (Steps 7-12 of
Algorithm 1). Basically, we have

ag,j 6= ah,j if g 6= h for 0 ≤ g, h ≤ s− 1,

where ag,j denotes the gth set element of the jth block.
If the number of set elements is less than s, Alice removes
the corresponding block (Step 9 of Algorithm 1) and sends
the index of the deleted block to Bob (Step 8). Otherwise,
Alice saves the block (Step 11 of Algorithm 1) and continues
to inspect following blocks (Steps 1-13 of Algorithm 1).

At the end of the set generation, the algorithm outputs
ordered sets

SAj = a0,ja1,j . . . as−2,jas−1,j, for j = 0, 1, . . . , k − 1

Algorithm 2: Polynomial Generation Algorithm

Input: SAj = {a0,j, . . . , as−1,j} for
j = {0, 1, . . . , k − 1}, r

Output: y, p (Polynomial)
1: for j = 0 : k − 1 do
2: x jA = randomly sample r + 1 elements from SAj
3: yj = generate r + 1 random numbers
4: p = Polynomial-Interpolate(x jA, y

j);
5: for i = r + 1 : s− 1 do
6: yj(i) = p(SAj (i))
7: end
8: end
9: y = {y0, y1, . . . , yk−1}
10: save y

at Alice. In practice, it is more convenient not to use any field
extension, therefore it can be assumed that q is itself a prime
integer with more than 20 digits. We consider the elements
ai,j ∈ Fq. Note that q should be larger than each ai,j for i =
0, . . . , s− 1.
As expressed above, Bob waits for an alert from Alice

before starting the set generation. If the remaining number
of bits is less than κ , Alice sends an alert to restart the key
distribution. Otherwise, Bob generates the set of numbers

SBj = a′0,j, . . . , a
′

s−2,ja
′

s−1,j, for j = 0, 1, . . . , k − 1

in Fq from his received bits of the BBj .

B. POLYNOMIAL GENERATION
The polynomial generation algorithm is summarized in
Algorithm 2. Let r be an integer, which will later be defined
in terms on ε, and let

ϑ : {0, . . . , s− 1} → {0, . . . , s− 1}

be any permutation map on {0, . . . , s − 1}. First, Alice ran-
domly selects r + 1 elements from SAj by

x jA = {aϑ(1),j, . . . , aϑ(r+1),j}

(Step 2 of Algorithm 2). Then, she also randomly selects r+1
number of yji ∈ Fq (Step 3 of Algorithm 2). Then, she sets up
r + 1 pairs

(aϑ(1),j, y
j
ϑ(1)), (aϑ(2),j, y

j
ϑ(2)), . . . , (aϑ(r+1),j, y

j
ϑ(r+1)).

By using Polynomial-Interpolate function, Alice
interpolates these points in order to produce a polynomial
p(x) of degree r (Step 4 of Algorithm 2). Note that the
elements ai,j at Alice are produced by randomly selected
bit-strings, and the numbers yji are also randomly selected.
Therefore, the r + 1 pairs on the Euclidean space are random
and the probability that the polynomial p(x) is of degree less
than r is negligible [21]. The degree problem can be rewritten
as given below.
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Theorem 3: Let h(x) be a polynomial of degree r − 1. The
probability that a randomly selected point in the Euclidean
space is on the graph of h(x) is negligible.

Proof: Let h(x) be a polynomial interpolating some
points in the Euclidean space. Let a be random point on the
space. It is highly unlikely that the point a lies on the graph
of h(x) [21]. The induction on r justifies the theorem. �

Finally, Alice produces the remaining y vector via

p(aϑ(r+2),j) = yjϑ(r+2), . . . , p(aϑ(s−1),j) = yjϑ(s−1),

for j = 0, 1, . . . , k − 1 (Steps 5-7 of Algorithm 2).
At the end of the polynomial generation algorithm, jth

block at Alice’s side has the following pairs.

a0,j a1,j · · · ar,j a(r+1),j · · · a(s−1),jxy xy xy xy xy xy xy
yj0 yj1 · · · y

j
r yjr+1 · · · yjs−1

C. KEY VERIFICATION
Bob generates the set of numbers SBj from the block BBj
by using the set generation algorithm. The key verification
algorithm is summarized in Algorithm 3. The steps between
2 and 21 show the key verification process and these steps
are repeated for each block individually. First, Bob selects
corresponding r + 2 elements in x jB,

x jB,tr = a′χ (1),j, . . . , a
′

χ (r+2),j

where tr denotes the trial index (Step 4 of Algorithm 3). Then,
Bob selects the corresponding r + 2 elements in yj,

yjtr = yjχ (1), . . . , y
j
χ (r+2)

(Step 5 of Algorithm 3). Bob interpolates the following data
set

(a′χ (1),j, y
j
χ (1)), (a

′

χ (2),j, y
j
χ (2)), . . . , (a

′

χ (r+2),j, y
j
χ (r+2)),

where χ is another permutation function on {0, . . . , s −
1} (Step 6 of Algorithm 3). Bob first checks whether the
degree of the generated polynomial is equal to r (Step 7 of
Algorithm 3). As long as Bob obtains a polynomial p′(x) of
degree r then the set elements at Bob

a′χ (1),j, a
′

χ (2),j, . . . , a
′

χ (r+2),j

should be the same as Alice’s elements. In fact, Theorem 3
states that when p(x j) is a polynomial of degree r interpolat-
ing r + 1 pairs then the probability that a random pair (x, y)
on the graph of p(x) is negligible.

Note that once Bob obtains the same polynomial as Alice,
he can detect incorrect chunks in a block. For example, for
the remaining yjc values at the yj vector, Bob checks if

p′(a′c,j)
?
= yjc.

Once the equality holds for some c, it means that a′c,j was
received correctly. It should be noted here that when Bob real-
izes p(a′g,j) 6= yjg for some yjg, then he concludes a′g,j 6= ag,j.
This property ensures that all erroneous elements would be

Algorithm 3: Key Verification Algorithm

Input: yj, SBj = {a0,j, a1,j, . . . , as−1,j} of length m,
j = {0, 1, . . . , k − 1}, r , NT
Output: deleted j indices

1: for j = 0 : k − 1 do
2: tr = 1;
3: while tr<NT do
4: x jB,tr = randomly sample r + 2 elements

from SBj ;

5: yjtr = select corresponding r + 2 elements
from yj ;

6: ptr =
Polynomial-Interpolate(x jB,tr , y

j
tr );

7: if degree(ptr ) = r then
8: tr = NT ;
9: yjb = ptr (SBj )
10: for i = r + 1 : s− 1 do
11: if yjb(i) = yj(i) then
12: keep SBb,j(i)
13: else
14: delete SBb,j(i)
15: save j
16: end
17: end
18: else
19: tr = tr + 1 ;
20: end
21: end
22: end

detected at Bob’s side; thus, errors will not propagate through
the key verification process. In addition, Bob may solve

p(x) = yjg

and obtain the correct data points sent by Alice, but the num-
ber r , which is the degree of p(x), might be large and so find-
ing a root p(x) might not be feasible. Moreover, the equation
p(x) = yjg might have more than one roots so it requires addi-
tional communication to decide which ones match Alice’s
elements. Therefore, Bob keeps only a′1,j, . . . , a

′

r+2,j and a
′
i,j

with p(a′i) = yji and removes the other elements in SBj (Steps
11-14 of Algorithm 3). Note that, Bob sends the indices of the
elements that he removes through key verification process to
Alice (Step 15 of Algorithm 3).

Bob may receive at least one erroneous bit for some
chunks, such that the number of matching set elements of
his with Alice’s is less than r + 2. In this case, Bob will
never be able to construct the same polynomial with Alice.
Therefore, the algorithm should define a maximum number
of trials for the receiver side. Let us denote this number by
NT and its selection is given in the practical considerations
section. Whenever Bob tries more than NT times to find
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polynomial p(x) for a block then bothAlice andBob disregard
the corresponding block completely in the process of key ver-
ification. The process continues until all remaining blocks are
processed through the key verification algorithm. An illustra-
tive example of the presented key verification protocol for a
single block is given as the below. Note that, same process is
repeated for every block.
Example:

• Let ε = 0.16, m = 12, n = 3, r =

2 and the field be R. The jth block of the sifted
keys are BAj = {010 011 110 111 001} and BBj =
{010 011 101 111 001}.

• Set generation: Alice forms a set from BAj as SAj =
{2, 3, 6, 7, 1} by (010) → 2, (011) → 3, (110) →
6, (111)→ 7, (001)→ 1.

• Polynomial generation: Alice randomly selects 3 num-
ber of yji as yj = {1, 4, 2}. Then, she sets a polynomial
with degree of 2, where p2(2) = 1, p2(3) = 4, p2(6) = 2.
The polynomial can be constructed as

p2(x) = 1+
4− 1
3− 2

(x − 2)+
4−1
3−2 −

2−4
6−3

6− 2
(x − 2)(x − 3)

= −
11
12
x2 +

91
12
x −

21
2
.

The corresponding yji’ of the remaining aji’ is found via
p2(x = 7) = −7/3, p2(x = 1) = −23/6. Then, Alice
shares yj = {1, 4, 2,−7/3,−23/6} with Bob.

• Bob forms a set from BBj as SBj = {2, 3, 5, 7, 1} by
(010) → 2, (011) → 3, (101) → 5, (111) →
7, (001)→ 1.

• Key verification: Bob tries to construct a polynomial
with a degree of 2 with 4 reference points.

At the 3rd trial, Bob finds the right degree of the poly-
nomial. As stated in Theorem 3, since the degree of
the polynomial is 2, Bob concludes p′2(x) = −

11
12x

2
+

91
12x −

21
2 . Then, he verifies the remaining set elements

by controlling p′2(x = 2) ?
= 1, p′2(x = 3) ?

= 4, p′2(x =

5) ?
= 2, p′2(x = 7) ?

= −7/3, p′2(x = 1) ?
= −23/6. Since

p′2(x = 5) 6= 2, Bob removes 5 from his set and sends
its index i to Alice.

• Alice removes 5 from her set. Final keys in both Alice
and Bob become K = {010 011 111 001}.

In the above example, for the convenience of the oper-
ation, real number field is chosen to illustrate polynomial
generation. In practice, however, multiplication operation is
performed in the finite field Fq, where q is a large prime
integer.

IV. ANALYSIS ON THE KEY VERIFICATION PROTOCOL
In this section, analysis related to the presented key verifi-
cation protocol is given in order to support the comparisons
given in Section I.

A. INFORMATION LEAKAGE
Information leakage is the amount of disclosed information
(in bits) during the QKD process. Let us denote the amount
of total leaked information during QKDwith Ilk and observed
string at Eve with E . Then, the leaked information can be
defined as

Ilk , I (A;E),

where I (A;E) denotes the mutual information of random
variables A and E . A QKD system consist of a quantum
communication link and a classical public link between Alice
and Bob. Since both media are open to interception from Eve,
both media can leak information [31]. Then, we can state

Ilk (S) = Iqlk (S)+ I
p
lk (S).

Here, Iqlk (S) is the amount of leaked information during the
quantum key agreement part, where Alice and Bob use the
quantum communication link. Iplk (S) is the amount of leaked
information during the key verification part, where Alice and
Bob use the classical public link.

During the key agreement process, eavesdropping activity
is assumed to introduce errors on the transmitted qubits [32].
Therefore, revealed information at quantum key agreement
part is

Iqlk (S) = ε × n.

Here, ε × n shows the number of erroneous bits in a block
for an ε QBER and n-bit block. The key distillation medium
is assumed to be an authenticated public channel, where any
transmitted information during the key verification process
is assumed to be obtained from the eavesdropper. During
key reconciliation, Alice and Bob aim to correct erroneous
bits at Bob by sharing side information about the secret key.
Here the information of the final secret is upper bounded by
|S| ≤ H (A) = H (B). According to Slepian-Wolf limit [30],
the revealed information for the key reconciliation processes
with error control coding codes is lower bounded by

Iplk (S) ≥ H (A|B).

By intuition, Alice reveals the minimum amount of informa-
tion if she knows Bob’s information about the secret. This
assures information leakage during the key reconciliation
process as long as ε > 0.

Contrary to the key reconciliation schemes, we aim to
eliminate all erroneous bits at Bob. Hence, the information
of the final secret key is upper bounded by |S| ≤ I (A,B).
Eliminating the error correction condition also helps us to
change the information leakage limit.
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Theorem 4: Revealed information during our proposed
key verification process is zero for 0 ≤ r−1

n .
Proof: During the proposed key verification scheme,

the only shared information is the y axis values of the gen-
erated polynomial, y. Let us denote the mutual information
of y and the secret with I (S;Y ). Then,

Ilk (S) , I (S;Y ) = H (S)− H (S|Y ).

For the selected 0 ≤ r−1
n , Eve is assumed to obtained at

most (r−1)s consecutive bits from the Alice’s key during the
key agreement process. Let us rewrite the uncertainty about
the secret at Eve as H (S|Y ,Ar−1), where Ar−1 denotes any
permutation of (r − 1)s number of bits from A and note that
from the chain rule

H (S|Y ,Ar−1) ≤ H (S|Y ).

As proved in Shamir’s (k, n) thresholding scheme [21], r − 1
revealed element pairs (ai, yi), does not reveal any informa-
tion about polynomial of degree r , where every candidate
secret S corresponds to a unique polynomial of degree r − 1.
From the construction of the polynomials, all their probabil-
ities are equal. Thus, if

H (S|Y ,Ar−1) = H (S|Y ) = H (S)

then, I (S;Y ) = 0. �
Corollary 5: Revealed information in any QKD scheme

using the proposed key verification scheme is zero for
0 ≤ r−1

n .
Proof: Since eavesdropping at quantum channel causes

error, we can assume that Iqlk (S) corresponds to erroneous ele-
ments of the secret key. Theorem 3 ensures that all erroneous
elements (along with some correct elements) are deleted
during the key verification algorithm at Bob. Hence, our
algorithm guarantees that

Iqlk (S) = 0,

and consequently

Ilk (S) = 0.

�

B. BLOCK VERIFICATION PROBABILITY
Under ε error probability BSC assumption, the exact QBER
of an individual block and the distribution of erroneous ele-
ments through the chunks can not be determined. The proba-
bility of correct chunk and inherently a set element is

P(a′i,j = ai,j) = (1− ε)n. (IV.1)

The probability of obtaining exactly z number of correct
chunks in a block j is

Pc(z)=P(C{SAj ∩ S
B
j }=z)=

(
s
z

)
(1− ε)nz(1−(1−ε)n)s−z.

(IV.2)

Now let’s assume that, Bob is not limited with NT and
tries every possible element combination for key verification.
In this case, Bob needs to obtain at least r + 2 correct set
elements in order to verify a block. Then, the probability of
block verification would be

Pc =
s∑

k=r+2

(
s
k

)
(1− ε)nk (1− (1− ε)n)s−k . (IV.3)

Since Alice and Bob know the estimated QBER and ε at
the beginning, the parameters n, r , s could be determined with
respect to the requirements.

The following part of this paper shows the importance
of the computational power of Bob. The key verification
probability will be rewritten by limiting the trial number at
Bob.

C. COMPUTATIONAL COMPLEXITY
Alice, in our quantum key verification method, interpolates
r + 1 pairs and obtains a polynomial of degree r for a block.
This operation costs O(r log(r)) bit operations. Alice also
needs to compute the images of all remaining points under
p(x). Note that each block has s elements i.e. chunks. The cost
of computing p(a) is O(r) for a single point a. As the number
of remaining points is s−r−1,O(r(s−r−1)) bit operations
requires to find the corresponding y-values for each block.

Alice forms the interpolating polynomial with r + 1 pairs
and she broadcast the y coordinates of these pairs. Bob pairs
up his r + 2 data points with broadcast y values and inter-
polates them. The resulting polynomial will be completely
different even if a single data point of Bob does not match
with Alice. The data points are formed with using bit strings,
therefore a single bit error could cause a distinct polynomial
at Bob.
Lemma 6: Let s be the number of elements in the block

formed by Alice and r + 1 be the number of pairs that are
employed to construct interpolating polynomial p(x). Assume
that only e number of points of Bob do not match to Alice’s
such that s − e ≥ r + 2. If Bob randomly selects ψ number
of data points and interpolates them then the probability that
the polynomial is of degree r is(s−e

ψ

)( s
ψ

)
where r + 2 ≤ ψ ≤ s.

Proof: There are s chunks which corresponds to a data
point in each block on both sides. ψ number of pairs are
employed to obtain the polynomial. The polynomial will
match with Alice’s once all the pairs match on both sides.
As there are e disparities between Bob and Alice, selecting
the correct ones out of all is(s−e

ψ

)( s
ψ

)
�
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Lemma 6 suggests that ψ ≥ r + 2 should be as small as
possible, therefore the best option is ψ = r + 2 and that is
why Bob employs r + 2 pairs to construct polynomials.

D. PRACTICAL CONSIDERATIONS
The experiments on key distribution generally assume the
initial key length L = 104 or L = 105 and the threshold
0 = 10%. As it is indicated in the Section II, if the estimated
error rate is above the threshold value (ε > 0), the key
verification process will be restarted. If not, according to the
error rate and the number of set elements, the degree of the
polynomial is determined and the process continues.

The minimum number of key length after verification, κ ,
is another important constraint. At the end of the key distri-
bution process, the generated key should be durable to brute
force attacks from quantum computers. In this case, κ should
be longer than 256 bits. If the key verification algorithm
deletes more than L − κ bits, than the process is stopped and
a new distribution is required.

1) THE MAXIMUM NUMBER OF TRIALS (NT )
NT is a critical parameter and creates a bottleneck for the
running time and the key verification rate. As the number
of trials increases, the algorithm takes a longer time but
the probability of finding correct elements required for the
correct polynomial generation increases.

The probability of selecting r + 2 correct elements from a
block containing z correct elements at the first trial is

P1(x|z) =

( z
r+2

)( s
r+2

) , (IV.4)

and the probability of selecting r + 2 correct elements after l
independent trials is

Pl(x|z) = (1− P1(x|z))l−1P1(x|z). (IV.5)

Eventually, the probability of selecting r+2 correct elements
after at most NT trials becomes the following

P̃(x|z) =
NT∑
l=1

(1− P1(x|z))l−1P1(x|z). (IV.6)

Lemma 7: For block verification, the correct elements in a
block is lower bounded by the degree of the polynomial, where
r+2 ≤ z. In this case, the probability of key verification after
NT trials for a block would be lower bounded by

Pc ≥ P̃c =
s∑

z=r+2

P̃(x|z)Pc(z). (IV.7)

The final form of the lower bound for the block verification
after NT trials is

P̃c =
s∑

z=r+2

NT∑
l=1

(
1−

( z
r+2

)( s
r+2

))l−1( z
r+2

)( s
r+2

)(s
z

)
×(1− ε)nz(1− (1− ε)n)s−z. (IV.8)

In line with ε, n, P̃c and computational capabilities of Bob,
we can select the NT before the verification started and drop
the block after NT trials.

V. CONCLUDING REMARKS
In this paper, we propose a key verification protocol for
quantum key distribution (QKD), where the legitimate sender
and the legitimate receiver obtain identical secret keys as
the protocol terminates. By solely sharing random numbers
and deleted block indices, the revealed information to the
eavesdropper is proven to be zero during the key verifica-
tion process. Also, the protocol guarantees eliminating the
revealed information to the eavesdropper during the quantum
key agreement process. For future work, we aim to correct
erroneous bits at the cost of a higher complexity.
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