IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 3, 2019, accepted September 14, 2019, date of publication September 24, 2019,
date of current version October 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943356

Blockchain-Based Verifiable Multi-Keyword
Ranked Search on Encrypted Cloud
With Fair Payment

YANG YANG 12345 HONGRUI LIN'-5, XIMENG LIU"“'3, (Member, IEEE),
WENZHONG GUO"'!, XIANGHAN ZHENG', AND ZHIQUAN LIU3

lCollege of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

2Guangxi Key Laboratory of Cryptography and Information Security, Guilin 541004, China

3Guangdong Provincial Key Laboratory of Data Security and Privacy Protection, Guangzhou, Guilin 510632, China

#Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350108, China
SUniversity Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350108, China

Corresponding authors: Yang Yang (yang.yang.research@gmail.com) and Wenzhong Guo (guowenzhong @fzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872091, in part by the Guangxi Key
Laboratory of Cryptography and Information Security under Grant GCIS201721, in part by the Opening Project of Guangdong Provincial
Key Laboratory of Data Security and Privacy Protection under Grant 2019B030301004-13, and in part by the Open Fund Project of Fujian
Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, under Grant MJUKF-IPIC201906.

ABSTRACT In traditional cloud computing system, searchable encryption is deemed as a core technology
to realize data confidentiality protection and information retrieval functions. However, the online payment
problem and mutual distrust between cloud platforms and users may hinder the wide adoption of cloud
service. In this paper, we construct a blockchain based multi-keyword ranked search with fair payment
(BMFP) system, which leverages smart contracts to verify the correctness and completeness of the search
result, and automatically execute the fair payment operations. The system realizes public verifiability on
a multi-keyword ranked search result. The data owner manages the search authority, and a concrete fair
payment smart contract is designed. The BMFP is compatible with Ethereum, and the verification algorithm
executed by the smart contract is cost-efficient.

INDEX TERMS Blockchain, cloud computing, fair payment, verifiable searchable encryption, top-k ranked

search, multiple keywords.

I. INTRODUCTION

With the advent of cloud computing platform [1], an increas-
ing amount of enterprises and individuals have the intention
to take advantage of this emerging technology and migrate
the large volume of data to a cloud platform to save the
local storage cost. The cloud platform offers immediate ser-
vices for remote storage and computation, which facilitates
whenever and wherever data access and usage. Meanwhile,
personal data privacy protection is enforced by the GDPR
(General Data Protection Regulation)/HIPAA (Health Insur-
ance Portability and Accountability Act) in Europe/USA.
To guarantee security and data usability, searchable encryp-
tion technology [2], [3] simultaneously realizes data confi-
dentiality and search over encrypted data, which becomes

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis

140818

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

a hot research topic for cloud computing. Majority work only
supports single keyword search [4], [5] such that a large
number of files are sent back to the user without recom-
mended order. A practical scheme should realize multiple
keywords search with a ranked result and high efficiency,
which allows a user to search multi-keywords in each query
and the most relevant encrypted files containing these key-
words are returned to save the bandwidth.

Searchable encryption system also faces a new attack
paradigm, where the cloud server is not honest to execute
the search operation (to save computation resources) and
sends incorrect or incomplete search result to the users [6].
In the pay-for-use business model, the user is forced to pay
the service fee to the cloud platform even though the above
scenario occurs. If the payment model is changed to pay-
after-use, the dishonest or malicious data user may slander the
cloud platform and refuse to pay the service fee even though

VOLUME 7, 2019


https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0002-5059-3145

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

he receives the correct result. Also, the value of data needs be
considered such that the data owner should be paid message
fee for providing digital resources. Therefore, the searchable
encryption system should ensure fair payment among data
owner, data user and cloud platform. The traditional payment
schemes have several limitations: it requires a fully trusted
party (such as a bank) to deal with the payment with fairness;
the trustworthy party maybe not have the ability to verify the
search results or other outsourced computation operations;
the privacy of data owner or data users maybe leaked.

Blockchain technology [7] brings a new decentralized pay-
ment paradigm to deal with these problems, which is not
controlled by any centralized authority. Smart contract in the
blockchain is a self-executing contract with the terms and
clauses (between buyer and seller) being directly written into
lines of codes. Smart contracts [8] permit trusted transactions
and agreements to be carried out among anonymous parties
without the participation of a central authority, legal sys-
tem, or external enforcement mechanisms. Thus, blockchain
and smart contract are suitable to execute the verification
operation and realize fair payment [9] in a searchable encryp-
tion system.

A. OUR CONTRIBUTION

To tackle with the above challenges, we propose a blockchain
based multi-keyword ranked search with fair payment system
(BMFP), and the contributions are summarized as below.

We design a verifiable multi-keyword search system to
realize (weighted zone score based) top-k ranked search,
where only the most relevant encrypted files are returned to
data users. A novel multi-keyword ranked inverted index data
structure and an efficient look-up table are designed. Thus,
the search efficiency increases with the keyword number
rather than the number of total documents. The verification
algorithm in BMFP is more efficient than the verification
tree-based searchable encryption schemes.

We propose a framework that combines Ethereum
blockchain and smart contract to realize fair payment in
a searchable encryption system. The data owner has full
authority to manage the data and search privileges, where
trusted public key generation center is not necessary. The
data user needs to pay message fee to data owner for using
the encrypted data, and pay the service fee to the cloud
platform for using the search service. The fair payment smart
contract of BMFP guarantees: if the correct and complete
search result is returned to data user, the message and service
fees are transferred to data owner and cloud, respectively;
otherwise, the data user’s fees are returned to his account.
Also, the search result can be publicly verified by all the
nodes in the blockchain.

B. PAPER ORGANIZATION

The rest of the paper is organized as follows. Section II
overviews the related works of blockchain, fair payment
and searchable encryption. Section III introduces the back-
ground knowledge of weighted zone score, inverted index

VOLUME 7, 2019

and Ethereum. Section IV describes the system model and
workflow. Section V and Section VI show the concrete con-
struction and smart contracts of the BMFP system. The per-
formance and security analysis are discussed in Section VII.
The conclusion is shown in Section IX.

Il. RELATED WORK

A. SEARCHABLE ENCRYPTION

The concept of searchable encryption was put forward by
Song et al. [10] to enable single keyword search over
encrypted data through building the encrypted searchable
index. Multiple keyword searchable encryption schemes
are proposed to enable the conjunctive keyword search.
Cao et al. [11] used inner product similarity to quantita-
tively evaluate the similarity between query and encrypted
index, and proposed a multi-keyword ranked search system
over encrypted data. Yang et al. [13] put forward a multi-
user multi-keyword ranked search scheme to support arbi-
trary language query, which is constructed based on Paillier
homomorphic encryption algorithm. He et al. [14] suggested
an attribute-based hybrid Boolean keyword search scheme
based on prime-order bilinear groups. A lightweight traceable
system supporting keyword search is proposed in [15], which
offloads most of the heavy cryptographic computations to the
cloud and realizes traitor tracing function.

To verify the correctness of the search results,
Wang et al. [12] proposed a verifiable data retrieval algorithm
based on Bloom filter and Merkel hash tree. Liu et al. [16] uti-
lized RSA accumulator to support two conjunctive keyword
search, which makes use of broadcast encryption technology
to support multiple user application. Zhu et al. [17] leveraged
Merkel Patricia tree and incremental Hash to build a proof
index with a dynamic data update. Ge et al. [5] constructed
a searchable encryption scheme with symmetric-key based
verification scheme utilizing an accumulative authentication
tag. Yang et al. [19] proposed a novel Chinese multi-keyword
fuzzy rank searchable encryption scheme, which achieves
efficient fuzzy keyword search without constructing a large
fuzzy set.

B. BLOCKCHAIN

Recently, designing verifiable privacy-preserving search
schemes over encrypted data has received considerable
research interest, where the correctness and integrity of
search results can be verified. Although many verification
techniques (e.g., Homomorphic MAC [6] or RSA accumu-
lator [16]) can detect a dishonest behavior of cloud service
provider who returns incorrect search result, it cannot prop-
erly work without a trusted third party. To address this prob-
lem, Hu et al. [20] proposed a blockchain-based searchable
encryption: the search index is stored in the smart contract,
and the search algorithm is executed by smart contract rather
than the cloud service provider. A similar method in [20]
is also adopted by Chen et al. [21], Wang et al. [22] and
Wu et al. [23]: the search operation of the smart contract

140819



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

Block height: 1314

Header hash: 8d74beec1b¢996322ad76813baf372d

Block

| Version

i

i

]

p N i
Timestamp | i

\ Y, !
]

]

]

i [ Nonce: 89895374742

Block !

Qrevious header hash: 9a271f2a9l6b0b6¢e(ycecb2429 Theader !
“ ]

Merkle root:

Hash
Hash(T1)| |Hash(T2)| |Hash(T3)| |Hash(T4))
*
Hash
(Hash(T3)| |Hash(T4))

l#I

{ Hash(T1) W [ Hash(T2) ] { Hash(T3) } [ Hash(T4) }
(I

[Transaction} [Transaction] [’Transaction] (Transacuon]
i 2 3

Hash ]
(Hash(T1)| |Hash(T2)]

|

|

|

|

|

I

| Block i
| comtuwt
|

|

|
I

|

|

FIGURE 1. Structure of blockchain.

is always trustworthy to return correct result such that the
result verification is not necessary. However, these scheme
[20]-[23] suffer from low scalability and high cost since the
complex search operation executed by smart contract costs a
lot of ETH/ETC. Zhang et al. [24] leverages Bitcoin-based
timed commitment [25] protocol to design a fair payment
system. However, the smart contract of Bitcoin is not Turing-
complete and the function is too limited. Similar ideal to [24],
Cai et al. [9] used Ethereum to design a t-time-locked pay-
ment protocol (rather than Bitcoin) to realize pay-after-use
with fairness in searchable encryption.

Ill. PRELIMINARY

A. WEIGHTED ZONE SCORE

Term frequency is always used to evaluate the importance of
a keyword in a document. However, a document has different
zones (such as zones of title, abstract and main body), and the
keywords appear in different zones have different importance.
For example, the keywords in the title are more important
than that in abstract, and the keywords in the main body
have the least importance compared with the other zones.
We adopt the weighted zone scoring method [18] to calcu-
late the relevance score. Consider a set of documents and
each of them has ¢ zones, which are assigned with weights
g1,--.,8 €[0,1]suchthat}}_  g; = l.For1 <i <t,lets
be the Boolean score denoting a match (or absence) between
a keyword w and the i-th zone of a file F. Then, the weighted
zone score is defined as Sy, r = Zf: 1 8isi. For keyword set
W = (wi,...,wpn), the weighted zone score is denoted as

m
Sw.r =22 Sw.F

140820

Block height: 1315

Header hash: a2bbdb2de53523b8099b37013f2515

Block

\ \
|| Timestamp
/ J/

Version

Nonce: 69795874761

Block
{ Previous header hash: 8d74becclbe996322ad76813baf372d ok

—

header

Merkle root:

Hash
(Hash(T1)| IHash(TZ)I |Hash(T3)| |Hash(T4)),
Hash Hash
(Hash(Tl)l |Hash(TZ)) (Hash(T3)| |Hash(T4))

Hash(TB)] [Hash(mﬂ =

(Transactlon] (Transacnon} {Transactlon ‘ [Transactlon} n

Block

|
|
|
|
|
|
[ Hash(T1) } [ Hash(T2) } | | .
| content
|
|
|
|
|
|

TABLE 1. An example of inverted index.

wy | P, Fy, Fs,- -
wo | Fo, F3,F7, Fy,- -

Wy, | F1, F5, Fig,- -+

B. INVERTED INDEX

The inverted index is an efficient information retrieval data
structure for accelerating the search process, which stores
a mapping from a keyword to a set of documents (contain-
ing the keyword). An example of inverted index is shown
in Table. 1, where the first line indicates that the identifiers
of the files containing keyword wy are F1, F», F3, and so on.

C. BLOCKCHAIN TECHNOLOGY AND ETHEREUM

1) BLOCKCHAIN TECHNOLOGY

Essentially, blockchain is a distributed and shared public
ledger storing the transactions permanently in an ordered
way, and each block is identified with a unique ID (created
by a hash algorithm). The structure of blockchain is shown
in Fig. 1. The header of blockchain contains the following
core fields.

o Previous header hash: stores the hash value of the pre-
vious block, which is a cryptographic link that connects
the blocks together and guarantees the tamper-proof of
the blockchain.

« Nonce: is a field whose value is adjusted by miners so
that the hash of the block will be less than or equal to the
current target of the network.

VOLUME 7, 2019



Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

Step 1

Alice Send Bob

cryptocurrency
Q to Bob ()

- 4 Broadcasting the transaction

via P2P network

Transaction from Alice to Bob 3 \

o ] s

> Pool of unconfirmed

Genesis Block

transactions

§ Select transactions
1 from pools and pack
i them in a new block

Other miners verify the new block

< T Step 3
e | PoW
% % Processing

Miner 1 MiTr 2 Miper n~—

O ®

N Miner n solves PoW and
broadcasts the new block

FIGURE 2. Blockchain transaction and POW consensus.

o Merkle root: is the root of a Merkle tree (or say a hash
tree) that encodes the block transactions in an efficient
and secure manner, which enables the quick verification
of block transactions. Merkle root can be deemed as
the hash of all the hashes of all the transactions in the
block.

The content of blockchain contains a set of transactions (with
inputs and outputs), where the inputs include the unspent
transaction output (UTXO) and a signature (signed by the
UTXO owner), and the outputs include the address (public
key) of the recipient and the value to be transferred.

2) PROOF OF WORK AND TRANSACTION

Proof of work (PoW) is a consensus protocol used widely
by many cryptocurrencies (such as Bitcoin and Ethereum),
and the process is known as mining and the nodes participate
in the mining process are called miners. In PoW, the miners
struggle to solve a mathematical problem, which requires
considerable work to complete it, but the result can be easily
verified. The miner who is the first one to solve the problem
has the right to mine the next block, and is rewarded a
certain mount of cryptocurrency associated with the block.
The average time to mine a block is around 10 minutes for
Bitcoin network, and that is 20 seconds for the Ethereum
network.

The workflow of blockchain transaction is shown in Fig. 2

and described below.

1) A user attempts to send a certain amount of cryptocur-
rency to someone else. A transfer transaction with a
signature should be generated by the user.

2) The user broadcasts the transaction in P2P network,
which is included in a pool of unconfirmed transactions
and wait to be processed by the miners.

VOLUME 7, 2019

WM Step 4
Block N-1 2 .‘ /%\ | Step
1 ﬁ - - |
EZA N /oo
?' ‘,\\ - — . g
Block N (latest) =) | T
Step 5

3) The miners select a collection of unconfirmed transac-
tions from the pool and pack them in a new block. Then,
these miners competes to solve a hard cryptography
problem by finding a nonce (random number).

4) The miner who is the first one to get the satisfactory
nonce broadcasts the new block in the network. The
other miners verify the legitimacy of the new block. If it
is valid, the other miners confirm its validity to reach a
consensus.

5) Then, the new block is added to the blockchain.

PoW is a computationally intensive mathematical problem
since the multiple miners working towards a common objec-
tive lead to tremendous wastage of computing power and
electricity.

3) SMART CONTRACT AND ETHEREUM

The conception of smart contract was first proposed by
Nick Szabo in 1995 [26]. A smart contract, in fact, is a
digitized form of legal contract, which is represented by a
program executed by a computer. Smart contract is utilized to
build a trust relationship between the participates, which does
not require a trusted third part (TTP). The implementation
of smart contracts had not been realized for years for the
sake of lacking a programmable digital system until the emer-
gence of Bitcoin and Ethereum. The scripting language of
Bitcoin is a weak version of smart contract since it has several
limitations: lack of Turing-completeness and low scalability.
Compared with Bitcoin, Ethereum is called a programmable
blockchain. Instead of pre-defining a set of operations (as in
Bitcoin), Ethereum allows the users to execute any complex
operations according to demand. In this way, Ethereum serves
as a platform for various types of decentralized blockchain
applications, including but not limited to cryptocurrencies.

140821



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

Ethereum platform allows a user (with a external owned
account (EOA)) to call a smart contract (with a contract
account) to implement specific function. Both EOA and con-
tract account are featured with a 20-bytes hexadecimal str-
ing e.g., 0xca35b7d915458ef540ade6068dfe2f44e8fa733c.
An Ethereum smart contract is deployed on Ethereum
blockchain (in bytecode format) and executed in Ethereum
Virtual Machine (EVM). A smart contract may include mul-
tiple functions. Therefore, an application binary interface
(ABI) is necessary to specify which function in the contract
is to be invoked and what is the format of the output. The
contract account stores the code of smart contract, which can
be triggered by EOA. In Ethereum, the user leverages private
key to control his EOA, such as transferring ether to another
address or triggering the execution of a smart contract. In this
paper, we use smart contracts as a fair arbiter to verify the
completeness and correctness of the search results provided
by CP and guarantee the fair payment among data users, data
owners and service providers.

IV. SYSTEM MODEL

A. SYSTEM ARCHITECTURE

The blockchain based multi-keyword ranked search with
fair payment (BMFP) system consists of the following
entities.

e Data owner (DO): owns a set of documents to be out-
sourced to the cloud platform (CP). DO extracts multiple
keywords from the plaintext file and constructs secure
index and file ciphertext, which are sent to CP for remote
storage. DO is responsible to authorize search privilege
to the data users (DU) and earns message fee when DU
searches on DO’s data.

o Data user (DU): is authorized by DO who grants the
search authority to him. To issue a search query, DU
generates a search token and submits the search request
to CP using smart contract. If the search result (returned
by CP) is verified to be correct and complete (by smart
contract), DU pays service fee to CP and message fee to
DO; otherwise, no fee is payed.

o Cloud platform (CP): stores the encrypted index and
encrypted files for the DOs and provides online search
service to the DUs. CP is responsible to execute the
search operation on encrypted index and returns the
correct results to DUs in order to earn the service
fee.

o Blockchain and smart contract: Blockchain utilizes
smart contract to record the verification data of the
stored encrypted files for DO, such that smart contract
could verify the correctness and completeness of the
search results. Diverse smart contracts are deployed by
DO or DU to execute the user management, fair payment
and search related functions.

B. SYSTEM WORKFLOW
The workflow of BMFP is shown in Fig. 3, which includes
the following steps.

140822

Cloud Platform

(CP)
@®©/

Data Owner

N

@

o e
® ®
© Data User
®

Blockchain and smart contract

FIGURE 3. System workflow.

)
2)

3)

4)

5)

6)

7

8)

DO generates the system parameter and secret keys.
DO extracts a keyword set from the files, and gener-
ates encrypted keyword index. DO also encrypts the
files with symmetric encryption algorithm, and then
outsources encrypted index and ciphertext to CP.

DO deploys smart contracts for user management and
fair payment, and records the verification data in the
smart contract for fair payment.

DU requests for search authorization, and DO grants
the search privilege to DU utilizing the user manage-
ment smart contract. After that, DO grants the autho-
rized search key to DU.

DU deploys a smart contract for search related func-
tions, generates a multi-keyword search token (using
the authorized search key), and sends it to blockchain
to trigger the fair payment smart contract. Before the
request, DU is required to deposit enough search fee
(including message fee and service fee) in the smart
contract. If DU is verified to be an authorized user
and enough search fee is deposited, the smart contract
will automatically broadcast the search token in the
blockchain and CP will receive it.

After executing the search operation according to the
search token, CP returns the top-k ranked document
identifiers to smart contract for verification.
According to DO’s verification data, the fair payment
contract verifies the correctness and completeness of
the returned search result. If it is verified valid, the con-
tract will automatically use DU’s deposited search fee
to pay message fee to DO and service fee to CP
(according to the predefined allocation proportion);
otherwise, DU’s search fee is returned to his own
account.

The ciphertext documents is sent to DU when the
verification is passed. After receiving the ciphertext
documents from CP, DU decrypts the encrypted files.

VOLUME 7, 2019



Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

TABLE 2. Notations.

D plaintext documents collection D = {Dy, Ds, ..., D,,}
C ciphertext documents collection C = {C4, C, ...,Cy }
F document identifiers collection F = (F},---, F,)
w the keyword dictionary of D
w a keyword set
token search token for keyword set W
D(W) plaintext document collection containing keyword set W'
c(W) ciphertext document collection containing keyword set W
F(W) document identifiers collection containing keyword set W/
EF(W) encrypted document identifiers collection containing keyword set W
[F(W)| the number of document identifiers containing keyword set 1/
Di(W) top-k plaintext documents (containing V') with the highest weighted zone score
Cr(W) top-k ciphertext documents (containing W) with the highest weighted zone score
Fr(W) top-k document identifiers (containing 1¥) with the highest weighted zone score

E;(W) the j-th document identifier in F (W)

EF;(W) the j-th encrypted document identifier in EF (W)
ELlproof encrypted index/verification data for encrypted index
T look-up table
SEnc/SDec  symmetric encryption/decryption algorithm
ekisk symmetric encryption key/symmetric search key
Ve pseudo random function (PRF) with key x4
s message authentication code (MAC) with key ko
allb concatenation of strings a and b
FpPC fair payment contract
UMC user management contract
UIC user interface contract

C. FORMAL DEFINITION
In this work, the BMFP system contains seven algorithms.
The main notations of this paper is shown in Table. 2.

o Setup(1*) — PP: This algorithm is executed by DO.
Taken as input a security parameter A, it outputs the
public parameter PP. (See step 1 of Fig. 3.)

. KeyGen(lA) — (ek, sk, vk): Taken as input a security
parameter A, DO generates the symmetric encryption
key ek, search key sk and verification key vk. (See step
1 of Fig. 3.)

o Enc(D, W, ek, sk,vk) — (EZ,C,proof): Taken as
input the document collection D, DO extracts the key-
word dictionary W from D to generate encrypted index
ET utilizing sk. Plaintext document collection D is
encrypted to ciphertext collection C using symmet-
ric encryption algorithm SEnc and encryption key ek.
DO utilizes vk to generate verification data proof for
ET. In addition, DO deploys user management and fair
payment smart contracts on blockchain. (See step 2-3
of Fig. 3.)

o Trapdoor(W,sk) — token: DU deploys search related
smart contract on blockchain and requests search privi-
lege from DO. If it is permitted, DO grants search key sk
to DU. Taken as input a keyword set W and search key
sk, DU generates the multi-keyword search token foken.
(See step 4-5 of Fig. 3.)

o Search(EZ, token) — (Cr(W), Fr.(W)): Taken as input
encrypted index £Z and search token token, CP out-
puts the top-k most relevant results (Cx (W), Fx(W)) and
proof to smart contract for verification. (See step 6 of
Fig. 3.)

o Verify(vk, proof , token, F(W)) — 1/0: Taken as input
verification key vk, verification data proof , search token
token, search result F (W), smart contract verifies the
correctness and completeness of the result. If it is valid,
the fair payment contract outputs 1 and transfers the

VOLUME 7, 2019

message/service fee to DO/CP. Otherwise, the contract
outputs 0 and returns the search fee to DU. (See step 7
of Fig. 3.)

e Dec(Cr(W), ek) — Dy(W): Taken as input ciphertext
collection Cx (W) and symmetric encryption key ek, DU
recovers the plaintext collection Di(W). (See step 8
of Fig. 3.)

V. CONCRETE CONSTRUCTION

In this section, the concrete construction of BMFP system
is introduced according to the seven algorithms shown in
Section I'V. Here, we use Ethereum as the blockchain plat-
form to design the concrete scheme.

e Setup(1*) — PP: Given security parameter A, DO selects
a pseudo random function (PRF) y,, : {0, 1} x {0, 1}* —
{0, 1}¢ and a MAC function 1, : {0, 1}* x {0, 1}* — {0, 1}/,
where d is the length of document identifier and / is the output
length of a standard MAC function (such as SHA256 based
HMAC). DO chooses symmetric encryption/decryption algo-
rithm pair SEnc/SDec with symmetric key space EK. Set
public parameter as PP = (yy,, t,, SEnc/SDec).

° KeyGen(l*) — (ek, sk, vk): Given security parameter
A, DO randomly selects secret keys k1, k2 €g {0, 1}’\ and a
symmetric encryption key ek €r EK. Set the search key as
sk = k1 and the verification key as vk = 3.

e Enc(D, W, ek, sk, vk) — (£Z, C, proof): Given a plain-
text document collection D, DO extracts several keywords
from each document to form a keyword dictionary W =
Wi, oo, we).

TABLE 3. Inverted index structure of BMFP.

W FW) W FOW)
(“M,llm"ifl) (Fl,Fz,F‘i«,“') (11/'1,71/'2,11/'3) (F27F6aF7$‘”)
(wr, wr,wy) (Fy, F5, Fio,---) (wy, wa,wy) (F11, Fra, Fis, - )
(w1, w2, ws) (Fa, F3, Fg,--+) (w1, w3, wy) (Fe, F10, F11,-++)
(w1, wr, wr) (Fy, F5, Fy,---) (w1, w3, w;) (F1, Fy, Fy, -+ )

(w2, w3, w3) | (Fy, Fra, F15,--+) (w2, w3, wyq) (Fi, Fao, F31,+ )

(w2, wr,wy) | (Fy, Fig, Fig, ) (wa, w3, wr) (F7, F11, Fua,---)

(wr—1,wrywr) | (Fa, Fy, Fiay o) || (Wr—gswro1,wy) | (F5, Fo, Fy, o)

Firstly, BMFP adopts the inverted index data structure to
realize multi-keyword ranked search. To simplify the nota-
tion, Table. 3 shows an example of the inverted index sup-
porting three conjunctive keyword search. Assume the three
keyword set is denoted as W = (w;, wj, wy), and the key-
words are arranged in lexicographical order. If DU wants to
query less than three keywords, the query should be extended:
asingle keyword query for w; is extended to (w;, w;, w;); atwo
keyword query for (w;, w;) is extended to (w;, wj, wj). The
identifiers of files containing the keyword set W is denoted
as F(W) = (Fy,, Fy,, .. .), and the files in (W) are sorted

140823



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

according to the weighted zone score Sy r = Zi:] Swa F
introduced in Subsection III-A.

Based on the above inverted index, DO utilizes search key
sk = k1 and verification key vk = k> to build the encrypted
index containing verification data. The encrypted index is
composed of a look-up table 7 and the associated encrypted
file identifiers. The look-up table is a < key, value > struc-
ture where the key field contains the output of a pseudo
random function y,, and the value field contains a tuple
< value, proof >. The value field stores the encrypted
address of the file identifier array; and the proof field
stores the proof data for the multi-keyword ranked search
result.

Concretely, DO calculates y,, (W) for each keyword
set W in the inverted index, sets T [y, (W)l.value =
address(F(W)) & ye,(W || 0) and Ty, (W)l.proof =
Moy Viey W) I Fx(W) || -+ || Fr(W)), where Fir(W) =
(F1(W), ..., Fr(W)) are the top-k identifiers of the docu-
ments that have the highest weighted zone scores. The nota-
tion address(F(W)) denotes the address pointed to the file
identifier collection F(W). If the number of files containing
W is B and B < k, we construct T [y, (W)l.proof =
WoaW) | Fi(W) || - || Fp(W)) and Fe(W) =
(F1(W), ..., Fg(W)). The file identifiers in F(W) are
encryptedto EF(W) = (EF((W), ..., EFx(W)) = (F1(W)®
Ve W I D, ..., Fx(W) @ ye,(W || 1)). The plaintext
document collection D is encrypted to ciphertext document
collection C using symmetric encryption algorithm SEnc
and symmetric key ek. DO sets the encrypted index as
ET = (T {EF(W)lwcw), and outsources (£Z, C) to cloud
platform.

After that, DO deploys a fair payment contract (FPC) in
Ethereum and the verification key vk = k> is embedded in
FPC as a private argument (coded in Solidity), where k> is
only known to DO. FPC is the core component in BMFP,
which is responsible for checking the validity of each DU
requesting for a search service, recording and broadcasting
the search token, verifying the search results from CP and
eventually achieving fair payments. After FPC is deployed,
DO builds user management contract (UMC) to enroll the
authorized users. The detail of FPC and UMC are given in
subsection VI-D and VI-C.

e Trapdoor(W, sk) — token: The trapdoor generation
algorithm is run by DU. When DU requests a search service
from CP for the first time, he should firstly request search
privilege from DO. If the request is permitted, DO grants
search key sk to DU. Taken as input a query keyword set W
and a search key sk, DU generates the multi-keyword search
token foken. Then, DU deploys a user interface contract (UIC)
to deposit enough search fee in the deposit pool of FPC
(associated with his own account). Specifically, DU gener-
ates the search trapdoor as token = (y,(W), y, (W || 0),
Vi (W || 1)), and DU invokes the initRequest() function of
FPC to upload the token to FPC. UIC is also used to receive
the verified results from FPC. The details of UIC is shown in
subsection VI-E.

140824

e Search(EZ, token) — (Cx(W), Fr(W)): Receiving the
search token token, FPC invokes UMC to check whether DU
is an authorized user. If DU is authorized, FPC emits an
Ethereum event for informing CP to execute search operation.
Capturing the event emitted by FPC, CP parses the event into
a tuple (Y, (W), Ve e (W || 0), ¥, (W || 1)) to execute the
search operation. In the look-up table 7, CP uses y, (W) to
search for 7 [y, (W)].value and T [y,, (W)].proof . CP recov-
ers an address address(F(W)) pointed to F (W) by computing
T Ve, W)l.value®y,., (W || 0). CP recovers the file identifier
Fi(W) by computing EF;(W)® y,.,(W || 1) for each F;(W) €
Fx(W). Then, CP sends Fi(W) and T [y, (W)].proof to FPC
for verification.

o Verify(vk, proof , token, Fx(W)) — 1/0: This pro-
cess is run independently by the fair payment con-
tract (FPC). Receiving an identifier collection Fy(W)
ranked by weighted zone score, FPC verifies the correct-
ness and completeness of the identifier collection Fi(W).
Suppose the received proof data from CP is Proof and
the search token from DU is token = (yi,(W), yie, (W ||
0), ¥, (W || 1)), FPC re-computes proof’ = i, (Yie, (W) |
Fi(W) || Fo(W), ..., Fx(W)) and verifies whether the equa-
tion proof = proof’ holds. If it is true, FPC transfers DU’s
search fee to DO and CP (as message fee and service fee,
respectively) from deposit pool according to the predefined
allocation proportion, and sends the search result to UIC
smart contract. Otherwise, FPC transfers DU’s deposited
search fee back to his own account.

e Dec(Cr (W), ek) — Dy(W): DU gets the search result
Cr(W), and decrypts the ciphertexts using symmetric key ek
to obtain the plaintext document collection, i.e., Dp(W) <«
SDec. (Cr,(W)).

VL. SMART CONTRACT DESIGN

In this section, we introduce the basic variables and func-
tions in Solidity [32], and illustrate the interactions among
the smart contracts. Then, we construct the concrete smart
contracts (programmed in Solidity) for Ethereum.

A. BASIC VARIABLES AND FUNCTIONS

We introduce some variables in the global namespace to pro-
vide information about the blockchain, and some functions of
general utility in Solidity. The following variables are used in
this work.

o msg.value indicates number of wei associated with the
transaction. We use $fee to represent the number of wei
that user should pay for a searching operation. Note that
1 ETH = 108 wei.

o tx.origin corresponds to an initial address when a full
call chain is created. Suppose an external owned account
(EOA) with address A invokes a smart contract with
address B, and another contract with address C is
invoked in contract B, in that way a full call chain A —
B — C is formed and the origin address A is x.origin.

o msg.sender refers to an account address that directly
invokes a smart contract, which can be an EOA or

VOLUME 7, 2019



Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

a contract account. When a smart contract is deployed,
the msg.sender is the address of the smart contract
creator; when a function is called, the msg.sender is
associated with the address of the smart contract caller.

The following functions are used in this paper.

o Function assert (bool prerequisite): The bool value of
prerequisite means that whether the prerequisite for run-
ning the following statement is satisfied or not. If and
only if the prerequisite is met (i.e., the bool value of
the prerequisite is true), the following statements of
program will be executed. Otherwise, the exception will
be thrown and the program execution will be suspended.

o Function address.transfer (uint amount): Send a given
amount of wei to the address, which can be an external
owned account or a contract account.

B. INTERACTIONS AMONG SMART CONTRACTS

Since both of EOA and contract account accept ETH/ETC,
the EOA of DUs can establish a transaction to transfer ether
to the contract account of FPC. Denote deposit pool as the
amount of ether that FPC holds. Recall that we leverage smart
contract to verify the search results from CP, and both the
completeness and correctness of search results are guaranteed
using smart contract. The contract interaction in BMFP is
shown in Fig. 4, which includes the following steps.

1) DO negotiates with CP on the allocation proportion and
search fee. Then, DO deploys FPC and UMC, and DU
deploys UIC on Ethereum.

2) DU deposits $amount wei into the deposit pool of FPC.

3) DU issues a search token to FPC attached with the
address of his own UIC.

4) FPC checks whether the DU has enough wei in deposit
pool and whether DU is an authorized user by invoking
UMC.

5) If the conditions in 4) are satisfied, FPC broadcasts the
token, and then CP receives it and returns search results
after executing search operation.

6) FPC verifies the results from CP using verifying key
stored in FPC.

7) If the verification function in FPC outputs true, it trans-
fers the message fee and service fee to DO and CP
from deposit pool, respectively, and invokes the UIC
to save the identifiers collection. (DU’s search fee is
divided into service fee and message fee according to
the predefined allocation proportion);

8) Otherwise, the search fee in the deposit pool is sent
back to DU.

In BMFP, DU gets the correct results if the search fee is trans-
ferred to CP and DO; CP is rewarded the service fee as long as
it faithfully executes the search algorithm; DO is rewarded the
message fee when a search process is successfully operated.

C. USER MANAGEMENT CONTRACT

DO deploys user management contract (UMC) to manage an
authorization user list userList, which maps a user address to
a Boolean value (‘1" represents an authorized user address,

VOLUME 7, 2019

contract userManagement {

address DO;
address FPC;
mapping (address=>bool) private userList;
function addUser(address userAddr){
if (msg.sender == DO){

add the userAddr into the userList.
}
}

function removeUser(address userAddr){
if (msg.sender == DO){
remove the userAddr from userList.
}
}
function verifyUser(address userAddr) public
view returns (bool){
if (msg.sender == FPC) {
verify the validity of tx.origin
}
}
}

Listing 1. Sketch of user management contract.

“0” represents a revoked user address). DO is able to
add/delete user by invoking addUser/removeUser functions
in UMC, which can only be executed by DO. The function
verifyUser is called by FPC for user authentication utilizing
the userList. The sketch of UMC is shown in Listing. 1.

D. FAIR PAYMENT CONTRACT

FPC is deployed by DO after DO and CP has completed
the negotiation about the allocation proportion of search fee.
FPC verifies the search result of the submitted query token:
once CP offers wrong results or does not offer all of the
results, the search results will be rejected by FPC and CP will
receive no payment. Oppositely, once FPC gets the correct
results associated with a specific token, the search results will
be authenticated and FPC will transfer the search fee from
the deposit pool to CP and DO (according to the allocation
proportion), which solves the problem that CP deliberately
returns partial or wrong results to save computing resources.
On the other hand, automatic payment from the deposit pool
will be triggered if a correct search result is provided. Thus,
DU cannot interrupts the process of payment since the money
will be automatically deducted from his account in deposit
pool of FPC. DO should record the application binary inter-
face (ABI) and the account address addr of FPC, and make
them public in the network. All the parties involved in this
system can validate that the FPC deployed on the addr is
exactly identical with source code via Etherscan [33]. The
code sketch of FPC is shown in Listing. 2. The following three
function interfaces are offered by FPC:

o deposit() — balance value: DU invokes this function to
deduct money from his EOA account and deposits it into
the deposit pool of FPC. When FPC receives a deposit
from a DU, it updates the balance value of this DU by
adding the deposit value into this users’ account.

o initRequest(token,address) — Ethereum event: This
function is used to be called by DUs to request a search
request. The initRequest function will check the validity

140825



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

Cloud Platform Account

AL

0x231dce====- 7cdad2be

® CP receives token and

service fee [&]
@ = returns search results

verify results

Deposit pool

return search fee if
results are not valid

AN

@ deploy

@ message fee

0xd27car++--a65389ad ——

® deposit

® token 0x2c5fa-+-a639cfdc

Ox50feb3 ------ 1345a24c

Data Owner Account @ ywc check . Data User Account
validity of user, Fair Payment Contract Wn results to UIC
(FPC
© deploy . ) - @® deploy

User Management Contract
(UmMC)

0x147Dd====+- 23a09acf

FIGURE 4. Interactions among smart contracts.

of caller by invoking the verifyUser function in UMC.
Once the address of DU is an element in userList, that
is to say, DO is willing to share his documents with this
DU, and DU has enough amount of wei in deposit pool,
the last line of initRequest function emits an Ethereum
event related to this token. CP listens to those events
emitted by FPC. CP receives and parses the event into
tuple (userAddr, token), which is used as the input of the
search function. Once the search operation is completed,
CP calls the verifyResultFromCP function in FPC to
authenticate the results and get the service fee.

o verifyResultFromCP(userAddr, identifiers, proof) —
Boolean: The function is invoked by CP. As long as the
search results from CP is verified to be complete and
correct (by verify algorithm in sectionV), FPC transfers
$fee x (1 — proportion) amount wei to CP and $fee x
proportion amount wei to DO. Otherwise, the search
fee is returned to DU. Eventually, the function invokes
receiveResults function of UIC associated with specific
userAddr to save the results. In listing 2, we assume
that CP and DO divide the search fee equally, i.e., the
allocation proportion of search fee is 1:1.

E. USER INTERFACE CONTRACT

In the peer-to-peer network of Ethereum, user’s contract
interfaces (as well as server’s interfaces) can listen for events
being emitted on the blockchain without much cost by run-
ning web3.js libraries of JavaScript, which makes it easy to

140826

User Interface Contract
(UIC)

0xd2a65+-+--- 0dc86¢c4f

track transactions. However, if CP returns the search results
by emitting events, it may has security risks. Everyone mon-
itoring the blockchain will get some results without any
authentication mechanism. In order to solve this problem,
we introduce the user interface contract (UIC) deployed by
DU. Once the search results are authenticated with complete-
ness and correctness, FPC invokes the UIC to record the
search results. Only the creator of UIC (i.e., the data user) has
the right to check the search results: receiveResults function
receives valid results sent by FPC; getSearchResults function
returns search results after assuring that the caller of this
function is the contract creator. The code sketch of UIC is
described in Listing 3.

VIi. PERFORMANCE ANALYSIS

In this section, we compare the functionalities of BMFP
with the other schemes in [9], [20]-[24]. Then, BMFP is
implemented in Ethereum testing network to evaluate its
performance.

A. FUNCTION COMPARISON
As shown in Table. 4, we compare the functions of BMFP
with the available searchable encryption schemes: Hu’s
scheme [20], Chen’s scheme [21], Wang’s scheme [22], Wu’s
scheme [23], Zhang’s scheme [24], and Cai’s scheme [9].
Consider the following properties in a searchable encryp-
tion scheme: privacy-preserving multi-keyword search,
search results ranking and verification of search results.

VOLUME 7, 2019



Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

TABLE 4. Comparison of various schemes.

[\

Properties [20] [21]

[22] [23] [24] [25] BMFP

Multi-keyword X
Result ranking X
Result Verification Vv
Decentralization vV
Fair Payment Vv
Access control X
Blockchain

X < < <X X

Expenditure in blockchain high high

<X X <X X
X < L X X

LU X X
X < L X X
L

Ethereum Ethereum Ethereum Ethereum Bitcoin Ethereum Ethereum
Executor of search algorithm blockchain blockchain blockchain blockchain cloud

cloud cloud
high high high low low

contract fairPayment{
struct dataUser({
bytes32 token;
uint256 balance;
address UIC;
}
address payable DO;
address payable CP;
mapping (address=>dataUser) private addrToDU;
bytes32 private Key;
uint256 constant fee;
event getToken(bytes32 token, address userAddr);

constructor (bytes32 verifykey){
key = verifykey;
}
function deposit() public returns(uint256){
if (msg.value != 0){
addrToDU[msg. sender ]. balance += msg.value;
}
return addrToDU[msg.sender]. balance;
}
function initRequest(bytes32 token,address UIC)({
invoke verifyUser function in UMC
assert (addrToDU[msg. sender ]. balance >= fee);
addrToDU[msg. sender ]. token = token;
addrToDU [msg. sender ].UIC = UIC;
emit getToken(token ,msg.sender);
}
function verifyResultFromCP (userAddr,ids , proof){
Tag=Hmac(Key ,addrToDU[userAddr]. token ,ids);
if (proof == Tag){
DO. transfer (fee/2);
CP.transfer (fee/2);

addrToDU[userAddr]. balance —= fee;
}else {

userAddr. transfer (fee);

addrToDU [userAddr ]. balance —= fee;

}

invoke receiveResults function from
addrToDU[userAddr ].UIC
}
}

Listing 2. Sketch of fair payment contract.

The schemes in [9], [20]-[24] only support single-keyword
search over encrypted inverted index. The schemes in
[20]-[23] use smart contracts to store encrypted index and
execute the single-keyword search algorithm. In order to
store the large volume index in blockchain, these schemes
[20]-[23] have to partition the complex searchable index into
thousands of pieces, and store them in thousands of block-
chain transactions (due to the low storage capacity of
each transaction). These transactions have to be dealt with

VOLUME 7, 2019

contract userInterface {
address DU;
address FPC;
mapping (bytes32=>string []) resultHistory;
function receiveResults(bytes32 token, ids){
if (msg.sender == FPC){
save the ids into resultHistory;
}

}
function getSearchResults(bytes32 token) public
view returns (string [] results){
if (msg.sender == DU) {
return results from resultHistory.
}

}
}

Listing 3. Sketch of user interface contract .

(i.e., upload to blockchain) one-by-one (rather than in a con-
current way), which takes a tremendous amount of time. The
schemes in [9], [24] and BMFP scheme, the cloud platform
(rather than smart contract) is tasked to store the encrypted
index and implements the keyword search operation, which is
much more efficient than [20]-[23]. However, [9], [24] only
support single keyword search, while BMFP scheme is more
flexible to realize multi-keyword search.

The schemes [9], [20]-[24] do not rank the retrieval
result, which is not convenient for usage. Compared to these
schemes, our proposed BMFP system returns ranked docu-
ments in a specific order based on the weighted zone score.
The schemes in [20]-[23] execute the search operation by
Ethereum smart contract without the need of verifying the
result, while Zhang’s scheme [24] exploits pre-defined input-
script and output-script of Bitcoin to verify the search result.
Therefore, these schemes [20]-[24] achieve result verifica-
tion based on the trustworthy of smart contract execution.
Cai’s scheme [9] does not execute the verification algorithm
unless the data user applies for an arbitration request. Receiv-
ing the request, each arbiter node independently performs the
judgment process, who re-implements the keyword search
algorithm to verify whether the search result is correct. Then,
these individual arbitration results converge to an arbitration
smart contract to make a decision. It can be seen that the
scheme in [9] wastes a lot of computation resources in the
arbitration process.

140827



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

Wu’s scheme [23] is not a fully decentralized scheme
since it involves a key manager, while the other schemes do
not rely on any trusted entity. Exploiting the built-in pay-
ment mechanism of Bitcoin and Ethereum, all these schemes
[9], [20]-[24], BMFP include a fair payment protocol except
Wu’s scheme [23]. The schemes in [22], [23] and BMFP
support access control, where the data owner specifies the
authorized user set in smart contract. The expenditures in
blockchain are quite high in [20]-[24] due to the following
reasons. The schemes in [20]-[23] leverage Ethereum smart
contracts to execute the whole search algorithm, which results
in a mass of expenditure due to the costly smart contract
executing. And the Bitcoin based time commitment scheme
in [24] also consumes a respectable amount of Bitcoin and the
price of Bitcoin is too high. Cai’s scheme [9] and our BMFP
simply use smart contract to implement the verification pro-
cess rather than the costly search algorithm, which greatly
reduces the expenditure in blockchain. Compared with the
above schemes, our proposed BMFP scheme is more flexible
in multi-keyword ranking search and cost-efficient in search
result verification.

B. PERFORMANCE TEST

In this section, we implement the proposed BMFP scheme
to analyze its feasibility and performance. We implement
the searchable encryption algorithms in BMFP using Java
and construct the Ethereum smart contracts using Solidity.
The pseudo random function p,, 1is instantiated by
HMAC-MD5 and message authentication code function ft,
by HMAC-SHA256. Since BMFP involves blockchain and
searchable encryption, the specific configuration of exper-
imental platform for blockchain and searchable encryption
are listed as follows:

o Searchable encryption test environment: The search-
able encryption algorithms are implemented by Java
language and run on a laptop with a Intel core i5-
7300HQ@2.50GHz processor, 8GB RAM, a 512 GB
SSD and the system operation is ubuntu 18.04LTS.

o Ethereum platform: Solidity language is used to pro-
gram smart contract, and the simulation is conducted
on Ethereum Virtual Machine (EVM). We implement
the smart contracts with Ethereum TestRPC, which is a
fast and customizable blockchain emulator and allows
making calls to the blockchain without the overheads
of running an actual Ethereum node. At the time of
this writing, the exchange rate of ether and the USD is
1 ether = 236 USD.

1) PERFORMANCE OF BUILDING ENCRYPTED

INDEX AND SEARCH

The database of the experiment is 5000 English academic
papers, which is used to test the encrypted index building
algorithm and search algorithm. For each paper, a weighted
zone score is assigned to the document, which is calcu-
lated as below. Each paper contains 3 zones: title, abstract,
and body, where the weights of “title/abstract/body” zones

140828

are 0.6/0.3/0.1, respectively. The extracted keywords are
assigned with different weights according to the specific
zone. The keyword index dataset (built from 5000 papers)
contains 5,018,562 tuples of (kws, ids) pairs, where kws
represents the three keywords (arranged in lexicographical
order) and ids represents the set of file identifiers (sorted
with the weighted zone score in descending order). We test
the performance of searchable encryption algorithm in BMFP
with different numbers of entries (kws, ids), which ranges
from 295,240 to 5,018,562 shown in Fig. 5. It can be seen
that it costs only 2.089 seconds to build the encrypted index
for 295,240 keyword set entries; and the building time for
5,018,562 entries is less than 40 seconds.

40

35 A

1,21é,865 1,79é,940 2,99},411 5,01é,562
Number of the keyword set entries

0 T
295,240

FIGURE 5. Time for encrypted index building.

x10°

Time (ms)

0.25 4

0.00 T T T T
1,216,865 1,798,940 2,997,411 5,018,562

Number of the keyword set entries

295,240

FIGURE 6. Time for search.

Fig. 6 shows the search time that varies with the keyword
set entries, where the search time is the average time calcu-
lated from 100 independent queries. It can be observed that
the search time grows with the number of (kws, ids) entries.
The average search time for a query is less than 1 second
when the entries is less than 1,798,940; and the search time is
1.976 second for 5,018,562 entries. The experimental result
shows that BMFP is efficient for practical usage.

2) PERFORMANCE OF SMART CONTRACTS
The deployment and invoking of smart contract will pro-
duce cryptocurrency cost. The Ethereum gas consumed in

VOLUME 7, 2019



Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

TABLE 5. Cost of smart contracts (1 Gas = 2 x 10~2 ETH, 1 ETH = 236 USD).

Operation / Cost Gas (x10°) [ETH (x10~%)] USD
deployment of user management contract (UMC) | 3.55669 0.711338 | 0.1678
deployment of fair payment contract (FPC) 12.40226 2.480452 10.5853
deployment of user interface contract (UIC) 6.61865 1.323730 |0.3124
execution of addUser function 0.23798 0.047596 |0.0112
execution of removeUser function 0.14321 0.028642 | 0.0067
execution of verifyUser function 0.23264 0.046528 |0.0109

execution of getSearchResults function 0 0 0

the experiment of the smart contracts is shown in Table. 5,
where Ethereum gas is an unit that measures the amount of
computational effort that it will take to execute certain opera-
tions. At the time of paper writing, the Ethereum transaction
price is 1 ETH = 236 USD. Suppose the gas price is
1 gas =2 x 10° wei. Since 1 wei = 10~!8 ETH, it can be
deduced that 1 gas =2 x 1072 ETH = 4.72 x 10~7 USD.

As shown in Table. 5, the deployment cost of deploy-
ment of user management contract (UMC), fair payment con-
tract (FPC), user interface contract (UIC) are 0.1678 USD,
0.5853 USD and 0.3124 USD, respectively. These expendi-
tures are payed only once during the smart contract deploy-
ment phase.

The addUser interface is executed by DO to register a new
DU and grants the data access authority. The removeUser
interface is invoked by DO to revoke the search and access
authority of a DU. The verifyUser interface is used by FPC to
verify the validity of DU who has submitted a search token.
The execution costs of these three functions are 0.0112 USD,
0.0067 USD and 0.0109 USD, respectively. Since the get-
SearchResults interface only does the read operation to get
resultHistory, which does not modify the state of blockchain
and thus has no cost.

Since the data retrieval is frequently operated in the system,
it is necessary to provide an efficient and inexpensive ver-
ification mechanism. The Solidity function library contains
SHA256 algorithm, but HMAC function is not provided.
Following the standard method of HMAC [27], we construct
HMAC-SHA256 algorithm (based on SHA256) in Solidity
language, which is invoked by the verifyResultFromCP func-
tion. The efficiency and gas consumption of verifyResult-
FromCP are measured with different numbers N of docu-
ment identifiers, which ranges from 10 to 50. As shown
in Fig. 7, the gas cost of result verification slightly increases
with N, which is 1.54234 x 10° gas = 0.0727 USD for
N = 10 and 1.80632 x 10° gas = 0.0852 USD for
N = 50. The execution time of verifyResultFromCP interface
is shown in Fig. 8, which is 2.928 seconds for N = 10,
and 3.778 seconds for N = 50. The simulation results
indicate the efficiency and low cost of our result verification
algorithm.

In Fig. 9, we evaluate the gas consumption of receiveRe-
sults interface with different numbers of file identifiers

VOLUME 7, 2019

S
2.00 X120

1.75 4 ‘///

1.50

1.25 4

W

S 1.00 4
0.75 1
0.50 4

0.25 4

0.00 T T T T
10 20 30 40 50
Number of document identifiers

FIGURE 7. Expenditure of result verification.

4.0
3.51
3.01

151

N
»
s

Time (s)

1.01

0.51

0.0

fO 50 50 4b Sb
Number of document identifiers

FIGURE 8. Time for verification.

(ranging from 10 to 50), and the length of the file identifier
may be 18 bytes, 46 bytes and 81 bytes. The gas cost of
the execution of receiveResults interface linearly increases
with the number and size of the file identifiers. The cost of
uploading 3.95 KB search results to blockchain is 117,044
gas = 0.055 USD.

According to the analysis, the above experimental
results demonstrate the efficiency and low expenditure
of BMFP.

140829



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

x10°

mmm 18 bytes
46 bytes
mmm 381 bytes

1.24

1.04

0.8 4

0.6

Gas

0.2 4

10 20 30 40 50
Number of identifiers

FIGURE 9. Expenditure of receiveResults function.

VIIl. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
blockchain based multi-keyword ranked search with fair
payment system. Specifically, the fair payment and soundness
of BMFP are analyzed. A formal proof in known ciphertext
model is also given.

A. FAIR PAYMENT

In traditional searchable encryption schemes, a reliable cloud
service is required to honestly perform search operations,
and return correct and complete search results. However,
the cloud service is actually not totally honest. If the cloud
platform is paid by the data user in advance, it may return
incomplete or even erroneous results to lower the computa-
tion cost. On the other hand, if the search results are sent to
data user before the payment, the dishonest data user may
intentionally refuse to pay the service fee even though the
search result is correct. The proposed BMFP scheme ensures
fair exchange among cloud platform, data owner and data
user, which is guaranteed by the reliability of smart contracts.
A predefined verification mechanism is honestly performed
by the smart contracts. If the server is dishonest to return the
incorrect or incomplete result, the verification contract will
discover the misbehavior, and the search fees are returned to
the data user. If the returned search result is verified correct,
the data user cannot refuse to pay the service fee to server and
message fee to data owner since the fees are already locked
by the fair payment contract (FPC). Thus, the fair payment is
guaranteed in BMFP.

B. SOUNDNESS

In our scheme, the search result verification is achieved
by the fair payment contract deployed on Ethereum. The
soundness of our proposed scheme is ensured by the security
of Ethereum. Since the PoW consensus mechanism used in
Ethereum is a computationally intensive mathematical prob-
lem, where a large amount of miners work towards a common
objective. Any adversary who wants to tamper the state in
the FPC smart contract should control more than 50% of
the entire Ethereum network’s computation power. So it is

140830

impossible for an individual to make changes to the state
and pre-defined logic of smart contract. The PoW consensus
guarantees the soundness of the proposed scheme.

C. FORMAL PROOF

The access pattern can be obtained by cloud platform by
recording the query trapdoor and the search results. In known
ciphertext model, cloud platform does not get any additional
information except for the access patterns [31].

Theorem 1: BMFP scheme is secure in the known cipher-
text model [31].

The following notions are used in the security proof.

e History is H=(D, Z, W), where D is a document set, Z
is index built from D, W = (wi, w...wp,) is the query
keyword set.

o Viewis V(H) = (C, £Z, token), where C is the encrypted
document set (using the symmetric encryption key ek).
&7 is the encrypted index (using the key of pseudo ran-
dom function sk). token is the encrypted query keyword
set(using the key of pseudo random function sk). The
contents in V(H) is open to cloud platform.

o Trace of a history is the sensitive information learnt by
the cloud server, such as the access pattern. The trace of
a history is defined as Tr(H) = {Tr(Wy), ..., Tr(Wy)},
Tr(Wy) = {(6¢, Rj)W,'CSkv 1 <k < |D|}, where Rj is the
ranking information of weighted zone score of the query
keyword set W; in the top-k file set dy.

In the known ciphertext model, given two histories
{H,H'} with same trace, it generates V(H) and V'(H’),
respectively. If V(H) and V/(H’) are not distinguishable,
the cloud server (or the attacker) cannot obtain any additional
information about the index or the document set except for the
access patterns. Now we prove Theorem 1.

Proof: Denote S as a simulator. Given a history H, the S
can simulate a V'(H’) of View such that the cloud platform
cannot distinguish V(H) and V'(H’). This purpose can be
achieved by S through the following operations:

o (Simulating C) S randomly selects D € {0, Pl p; e
D, 1 <i<|D|andoutputs D' = (D), 1 <i < |D|}

o (Simulating £7') To simulate the £7’, S initializes a
set of arrays {A),---,A’}, where t = C} + C2... +
C!, n is the number of query keywords, t is the
total number of the keywords extracted from files.
Choose a random string ¢ of length d-bit. S com-
putes EF;(W)Y = (F{(W) & ) and sets Aj/- =
Aj[1T, ..., Ajlkl) = (EF\(WY, ..., EFx(W)'). S gen-
erates an encrypted look-up table 77 with ¢ entries. For
j=1,...,1 S generates a three-tuple (rj/ , address(A]/.)ea
V', p’) such that tj’ is a random string of length d-bit,
address(A]’.) is the address of the array A]’., and V' is a
random string of length d-bit and the p’ is a random [-bit
string.

« (Simulating roken’): S chooses a [-bit random string
o', and picks 7/ from 7 at random, where 7'[7/] =
(address(A}) @ V', p'). Then, it returns the trapdoor
token = (t/, V', o).

VOLUME 7, 2019



Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

IEEE Access

Through the above operations, the encrypted index £Z
and the encrypted trapdoor foken generate the same trace as
the one that cloud platform has generated. Since the data
owner uses symmetric encryption algorithm with the secret
key ek to encrypt the documents, cloud platform cannot
distinguish D and C’. Moreover, the content in index £77,
EZ, trapdoor foken’, token are encrypted by pseudo ran-
dom function. If cloud platform (or the attacker) does not
have the secret key sk of pseudo random function, plaintext
index and query keyword set cannot be recovered. Thus,
cloud server cannot get any additional information about
the encrypted index or documents set except for the access
patterns.

IX. CONCLUSION

In this work, we propose the system model, workflow
and concrete construction of blockchain-based searchable
encryption scheme with fair payment mechanism. Based on
inverted index data structure and smart contract, the con-
struction supports multiple keyword search, top-k ranking
and search result verification. The smart contract in our pro-
posed scheme realizes a more reliable searchable encryption
scheme over encrypted data than existing ones, which not
only realizes the verifiability to detect incorrect results from
a malicious cloud platform, but also exploits the built-in
payment mechanism of blockchain to protect all the interests
of data owner, data user and cloud platform. The user man-
agement contract, fair payment contract and user interface
contract cooperate together to fulfill the functions of BMFP.
Through the experimental results obtained on simulations,
we analyze the experimental data and demonstrate the prac-
ticability of our scheme.

REFERENCES

[1] J. W. Rittinghouse and J. F. Ransome, Cloud Computing: Implementation,
Management, and Security. Boca Raton, FL, USA: CRC Press, 2016.

[2] Y. Yang and M. Ma, “Conjunctive keyword search with designated

tester and timing enabled proxy re-encryption function for E-health

clouds,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 4, pp. 746759,

Apr. 2016.

T. Hoang, A. A. Yavuz, and J. G. Merchan, “A secure searchable encryp-

tion framework for privacy-critical cloud storage services,” IEEE Trans.

Services Comput., to be published.

[4] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and S. Nepal,
“Practical backward-secure searchable encryption from symmetric punc-
turable encryption,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 763-780.

[5]1 X.Ge,J. Yu, H. Zhang, C. Hu, Z. Li, Z. Qin, and R. Hao, “Towards achiev-
ing keyword search over dynamic encrypted cloud data with symmetric-
key based verification,” IEEE Trans. Dependable Secure Comput., to be
published.

[6] Z. Wan and R. H. Deng, “VPSearch: Achieving verifiability for privacy-
preserving multi-keyword search over encrypted cloud data,” IEEE
Trans. Dependable Secure Comput., vol. 15, no. 6, pp. 1083-1095,
Nov./Dec. 2016.

[71 S. Nakamoto. (2008). Bitcoin: A Peer-To-Peer Electronic Cash System.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[8] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32, Apr. 2014.

[9] C.Cai,J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword search
in encrypted decentralized storage with fairness,” IEEE Trans. Dependable
Secure Comput., to be published.

3

VOLUME 7, 2019

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]
[27]

(28]

[29]

(30]

(31]

(32]

(33]

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2000,
pp. 44-55.

N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘“Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222-233, Jan. 2014.

J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang, *“Verifiable auditing for
outsourced database in cloud computing,” IEEE Trans. Comput., vol. 64,
no. 11, pp. 3293-3303, Nov. 2015.

Y. Yang, X. Liu, and R. Deng, ‘“Multi-user multi-keyword rank search over
encrypted data in arbitrary language,” IEEE Trans. Dependable Secure
Comput., to be published.

K. He, J. Guo, J. Weng, J. Weng, J. K. Liu, and X. Yi, “Attribute-based
hybrid Boolean keyword search over outsourced encrypted data,” IEEE
Trans. Dependable Secure Comput., to be published.

Y. Yang, X. Liu, R. H. Deng, and Y. Li, “Lightweight sharable and
traceable secure mobile health system,” IEEE Trans. Dependable Secure
Comput., to be published.

X. Liu, G. Yang, Y. Mu, and R. Deng, “Multi-user verifiable searchable
symmetric encryption for cloud storage,” IEEE Trans. Dependable Secure
Comput., to be published.

J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling generic,
verifiable, and secure data search in cloud services,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 8, pp. 1721-1735, Aug. 2018.

C. Manning, P. Raghavan, and H. Schiitze, “Introduction to infor-
mation retrieval,” Natural Lang. Eng., vol. 16, no. 1, pp. 100-103,
2010.

Y. Yang, Y.-C. Zhang, J. Liu, X.-M. Liu, F. Yuan, and S.-P. Zhong, “Chi-
nese multi-keyword fuzzy rank search over encrypted cloud data based on
locality-sensitive hashing,” J. Inf. Sci. Eng., vol. 35, no. 1, pp. 137-158,
Jan. 2019.

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun.,
Apr. 2018, pp. 792-800.

L. Chen, W.-K. Lee, C.-C. Chang, K.-K. R. Choo, and N. Zhang,
“Blockchain based searchable encryption for electronic health
record sharing,” Future Gener. Comput. Syst., vol. 95, pp. 420-429,
Jun. 2019.

S. Wang, Y. Zhang, and Y. Zhang, ‘A blockchain-based framework for data
sharing with fine-grained access control in decentralized storage systems,”
IEEE Access, vol. 6, pp. 38437-38450, 2018.

Y. Wu, S. Tang, B. Zhao, and Z. Peng, “BPTM: Blockchain-based
privacy-preserving task matching in crowdsourcing,” IEEE Access, vol. 7,
pp. 45605-45617, 2019.

Y. Zhang, R. H. Deng, J. Shu, K. Yang, and D. Zheng, “TKSE:
Trustworthy keyword search over encrypted data with two-side ver-
ifiability via blockchain,” IEEE Access, vol. 6, pp. 31077-31087,
2018.

M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in Proc. IEEE Symp. Secur.
Privacy, May 2014, pp. 443-458.

N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, Sep. 1997.

W. Stallings, Cryptography and Network Security: Principles and Prac-
tice. Upper Saddle River, NJ, USA: Pearson, 2017.

K. Kurosawa and Y. Ohtaki, “How to update documents verifiably in
searchable symmetric encryption,” in Proc. Int. Conf. Cryptol. Netw. Secur.
Cham, Switzerland: Springer, Nov. 2013, pp. 309-328.

P. Wang, H. Wang, and J. Pieprzyk, “An efficient scheme of com-
mon secure indices for conjunctive keyword-based retrieval on encrypted
data,” in Proc. Int. Workshop Inf. Secur. Appl. Berlin, Germany: Springer,
Sep. 2008, pp. 145-159.

D. Boneh, B. Biinz, and B. Fisch, “Batching techniques for accumulators
with applications to IOPs and stateless blockchains,” IACR Cryptol. ePrint
Arch., Lyon, France, Tech. Rep. 2018/1188, 2018.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ““Searchable symmet-
ric encryption: Improved definitions and efficient constructions,” J. Com-
put. Secur, vol. 19, no. 5, pp. 895-934, Jan. 2011.

The Introduction Solidity. Accessed: May 6, 2019. [Online]. Available:
https://solidity.readthedocs.io/en/latest/

Verify Publish Contract Source Code. Accessed: May 6, 2019. [Online].
Available: https://www.etherscan.io/verifycontract2

140831



IEEE Access

Y. Yang et al.: Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted Cloud With Fair Payment

YANG YANG received the B.Sc. and Ph.D.
degrees from Xidian University, Xi’an, China,
in 2006 and 2012, respectively. She is also an
Associate Professor with the College of Math-
ematics and Computer Science, Fuzhou Univer-
sity. She has published more than 100 articles
in the topics of cloud security and privacy
protection, including articles in the IEEE
TRANSACTIONS ON  INFORMATION FORENSICS AND

E i Security, the IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE CoMPUTING, the IEEE TRANSACTIONS ON SERVICES COMPUTING,
the IEEE TRANSACTIONS ON INDUSTRIAL INFOrRMATICS, and the IEEE
TransacTions oN CLoup CompuTING. Her research interests include the areas
of information security and privacy protection. She is also a member of
the CCE.

HONGRUI LIN received the B.Sc. degree from the
College of Photonic and Electronic Engineering,
Fujian Normal University, Fuzhou, China, in 2017.
He is currently pursuing the master’s degree with
the College of Mathematics and Computer Sci-
ence, Fuzhou University, Fuzhou. His research
interests include the areas of privacy protection
and blockchain.

XIMENG LIU (S’13-M’16) received the B.Sc.
degree in electronic engineering and the Ph.D.
degree in cryptography from Xidian University,
Xi’an, China, in 2010 and 2015, respectively. He is
currently a Full Professor with the College of
Mathematics and Computer Science, Fuzhou Uni-
versity. He is also a Research Fellow with the
School of Information System, Singapore Man-
" agement University, Singapore. He has published
more than 100 articles on the topics of cloud secu-
rity and big data security, including articles in the IEEE TRANSACTIONS ON
Computers, the IEEE TRANSACTIONS ON INDUSTRIAL INFOrRMATICS, the IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, the IEEE TRANSACTIONS
oN SEervICES CompUTING, and the IEEE INTERNET OF THINGS JOURNAL. His
research interests include cloud security, applied cryptography, and big data
security. He is also a member of the ACM and CCF. He was awarded with the
Minjiang Scholars Distinguished Professor, the Qishan Scholars in Fuzhou
University, and the ACM SIGSAC China Rising Star Award, in 2018.

140832

WENZHONG GUO received the B.S. and M.S.
degrees in computer science and the Ph.D. degree
in communication and information system from
Fuzhou University, Fuzhou, China, in 2000, 2003,
and 2010, respectively, where he is currently a
Full Professor with the College of Mathemat-
ics and Computer Science. His research interests
include intelligent information processing, sensor
networks, network computing, and network per-
formance evaluation.

XIANGHAN ZHENG received the M.Sc. degree
in distributed system and the Ph.D. degree in
information communication technology from the
University of Agder, Norway, in 2007 and 2011,
respectively. He is currently a Professor with the
College of Mathematics and Computer Sciences,
Fuzhou University, China. His current research
interests include new generation network with a
special focus on cloud computing services and
applications, and big data processing and security.

ZHIQUAN LIU received the B.S. degree from the
School of Science, Xidian University, in 2012, and
the Ph.D. degree from the School of Computer Sci-
ence and Technology, Xidian University, in 2017.
He is currently a Lecturer with the College of
Information Science and Technology, Jinan Uni-
versity. He is also a member of the Guangdong
Provincial Key Laboratory of Data Security and
Privacy Protection, Guangzhou, China. His current
research interests include trust management, ser-
vice recommendation, and the Internet-of-Things security.

VOLUME 7, 2019



