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ABSTRACT Functional electrical stimulation (FES) has been widely used in limb rehabilitation. The first
step for the precision rehabilition is to clarify the variation of limb angle induced by FES. In this study,
an electric stimulator and an inertial sensor are used to build a human body experimental platform. Motion
characteristics of ankle angle induced by electrical stimulation pulse variation are obtained through exper-
iment. The obtained ankle angle characteristics are used to train a neural network-based Hammerstein (H)
model and the model parameters are identified by the genetic algorithm, which can effectively predict
the ankle angle change induced by electrical stimulation. The structural parameters of the H model are
adjusted according to the normalized root mean square error value (NRMSE) of the training data. The
10-fold cross-validation is used to verify the feasibility and effectiveness of the model. Experimental results
show that the neural network-based H model can effectively predict the output change of the ankle angle
induced by the electrical stimulation pulse, and its root mean square error (RMSE) and NRMSE are 2.78 ±
0.33◦ and 23.70 ± 1.77%, respectively. Therefore, the proposed model can provide a theoretical basis for
predicting ankle angle change in an electrical stimulation closed-loop control system.

INDEX TERMS Functional electrical stimulation, ankle angle, Hammerstein model, neural network, genetic
algorithm.

I. INTRODUCTION
The foot drop is a gait abnormality caused by damage to
the central nervous system and suppression of advanced
motor function dominated by the cerebral cortex, thereby
resulting in the release of primitive reflexes from the lower
central nervous system. The incidence of foot drop is increas-
ing annually. Patients often exhibit specific spastic patterns.
Spasms are usually caused by the contracture of the Achilles
tendon due to the lack of stretching in the triceps of the calf
muscle [1].When the anterior tibial muscle and lateral muscle
groups of the calf are insufficiently activated, the patient
experiences long-term braking, which leads to difficulty in
ankle dorsiflexion and disused muscle atrophy [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Le Hoang Son .

Most of the foot drop patients are associated with ankle
dyskinesia. The main rehabilitation methods for ankle dor-
siflexion are passive exercise [3] and functional electrical
stimulation (FES) [4]. Passive exercise refers to rehabilitation
training with the help of artificial apparatus or instrumenta-
tion. Such a method has a long treatment period and is highly
dependent on a rehabilitator. Patients can easily become over-
tired, and secondary muscle injury can even occur during the
rehabilitation process [5]. FES is a technique that uses low-
energy electrical pulses for muscle stimulation. It stimulates
muscles through pre-programmed procedures, induces mus-
cle contraction or simulates normal autonomousmovement to
improve or restore the voluntary function of patients [4]–[6].
FES effectiveness depends on the precise control of stimula-
tion time and intensity [7], [8]. Thus, establishing a reliable
model between the FES signal and induced ankle angle output
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is important. An accurate and reliable ankle model can be
used for exploring not only ankle movement characteristics
induced by different electrical stimulation parameters, but
also for adjustments and optimization of the electrical stim-
ulation configuration parameters to maximise the electrical
stimulation effect.

The existing FES joint angle model studies are mainly
divided into two aspects. The first aspect is modelling
by using the nonlinear system identification method.
Munih et al. [9] used pseudorandom binary sequence data
for the identification model, and the model of ankle dorsi-
flexion and plantar flexion is equivalent to a second-order
function with zero and time delay. The recursive least squares
algorithm was applied in the identification of model struc-
ture parameters to establish the relationship between pulse
width (PW) and ankle dorsiflexion force. Li et al. [10] estab-
lished a muscle excitation model with PW and evoked elec-
tromyography as the input and output, respectively, through
the H model. Model predictive control is adopted to com-
pute the PW based on H model which can online update its
output parameters. Schauer and Vrontos [11] established the
reference of the FES-induced muscle recruitment serves and
the voluntary muscle activity extracted from EMG signals as
input, joint angle as the model of output. the model was iden-
tified by least squares method. The second aspect involves
the construction of H models, such as neural network [12],
extreme learning machine [13], and fuzzy algorithm [14],
from an artificial intelligence perspective. Błażkiewicz and
Wit [15] developed an artificial neural network able to accu-
rately simulate the changes in the angle of the ankle, knee
and hipjoints during the gait cycle. Rahmatian et al. [16] used
neural networks to design joint models with surface EMG
as input and ankle joint angle and velocity as output. The
model approximated velocities of the joint opening and clos-
ing by time-delayed artificial neural network. Janczak [17]
described the dynamic linear and static nonlinear parts of the
H model by using neural network methods to train the study
via the backpropagation algorithm. However, this algorithm
is sensitive to the initial value and easily falls into the local
optimum, thereby causing failure in identification training.

The ankle angle model induced by the FES is a com-
plex system with many unknown variables, and its nonlin-
earity and time-variability complicate its quantification in
the model [18]–[20]. In this study, the relationship between
electrical stimulation parameters and ankle angle is estab-
lished by using the ‘‘black box’’ nonlinear model [21]. This
model can establish a direct connection between parameter
input and angle output without considering the changes in
internal parameters. The FES equipment with inertial sensor
is selected to construct the experimental test system with
the electrical stimulation pulse width and ankle angle as
the input and output, respectively, simplifying the data mea-
surement process. For a neural network with feedback and
feedforward links, the ‘‘sawtooth phenomenon’’ occurs when
the error back-propagation algorithm results in an inefficient
algorithm. Updating the calculated error gradient information

FIGURE 1. Block diagram of the Hammerstein model.

during training is difficult, thus making it difficult for the
algorithm to converge. Therefore, the genetic algorithm is
applied to the H-model on the basis of the neural network
due to its remarkable flexibility and convergence [22]–[25].
This algorithm can optimize the neural network structure and
transform the model parameter optimization problem into an
optimization problem of weight and threshold on the neural
network structure.

The response characteristics of hysteresis, nonlinearity
and time-variation of the ankle angle induced by electrical
stimulation pulse, which provides theoretical and supporting
data for establishing the H-model on the basis of the neural
network structure, are investigated. The genetic algorithm is
applied to the H model for parameter identification training.
Lastly, 10-fold cross-validation is used to verify the effec-
tiveness of the model in predicting the ankle angle change
induced by electrical stimulation. The rest of this paper is
arranged as follows. Section II establishes the experimental
platform for adjusting the ankle angle with different electrical
stimulation variables. The H model structure based on the
neural network is established, and the global optimal solution
is determined by using the genetic algorithm. Section III
obtains the experimental data induced via different electrical
stimulation variables through the built-in in vivo experimental
platform, which is used to train the neural network-based
H model, determine the H model structural parameters and
verify the H model reliability. Section IV discusses the phe-
nomena in the experiments and models. Lastly, Section V
presents the conclusion of this study.

II. METHODS
A. HAMMERSTEIN MODEL OF NEURAL NETWORK
1) HAMMERSTEIN MODEL
The H model [26], [27] consists of a static nonlinear function
followed by a linear dynamic subsystem, as shown in Fig. 1.

In the H model, u(k), x(k), and y(k) represent the input,
intermediate signal and the output of the system at instant k ,
respectively. f (u) is the nonlinear function, G(z−1) is the
transfer function of the linear dynamic part. The H model can
be expressed by the Eq. (1–3):

x(k) = f (u(k)), (1)

y(k) = G(z−1)x(k), (2)

G(z−1) =
B(z−1)
A(z−1)

=
b0+b1z−1+b2z−2+ · · · +bnbz

−nb

1+a1z−1+a2z−2+ · · · +anaz−na
. (3)

2) STRUCTURE DETERMINATION OF HAMMERSTEIN
MODEL BASED ON NEURAL NETWORK
The H model based on neural network was established on
the basis of the ankle motion response characteristics induced
by electrical stimulation. The use of a neural network as the
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FIGURE 2. Block diagram of the H model based on neural network.

model structure transforms the model parameter optimisation
problem into the training problem of the neural network
model. The genetic algorithm is utilised to determine the
training parameters and the neural network model structural
parameters. The H model comprises a series of nonlinear
static and linear dynamic parts. This model does not depend
on past data and involves a small amount of computation,
which is widely used in models [28], [29].

The model of ankle angle change induced by FES is
designed as the H model based on the neural network. The
type of neural network is Multi-Layer Perceptron (MLP),
which consists of two parts, as shown in Fig 2. The first part
is a static nonlinear part, which is a single hidden layer feed-
forward neural network [30]. The single-layer neural network
with feedback hysteresis constitutes the dynamic linear part
of the second part. The effect of electrical stimulation pulse
width on activation is linearly and non-linearly correlated
within and outside the threshold range, respectively. The
potential recruitment curve in the process that starts from the
electrical stimulation to the muscle activation state is equiv-
alent to the static nonlinear part. By contrast, the process of
dynamic muscle contraction induced by electrical stimulation
is equivalent to the dynamic linear part.

The input signal u(k) represents the electrical stimulation
frequency and the pulse width, the intermediate signal x(k)
is the activation function and y(k) marks the ankle angle
signal of the model output. Z−1 is the the unit delay. Neural
network neurons in static nonlinear part are S-type neurons.
The activation function is g(x) = (1 – e−2x)/(1+e−2x), which
is the type of the Tanh. In the S-type nonlinear activation
function, the TanH overcomes the shortcomings of non-zero
mean output in the Sigmoid. It delays the saturation period
with the better fault tolerance. N is the order of delay and
M represents the number of static nonlinear hidden layer
neurons. The model relation expression obtained from the
connection relationship of the neural network, as shown in
Eq. (4–5):

x(k) =
M∑
m=1

βmg(ωm · u(k)+ ηm), (4)

Substituting the Eq.(4) into the Eq.(2), and then joining the
Eq.(3) to obtain the Eq.(5).

y(k) = −
N∑
i=1

aiy(k−i)+
N∑
j=1

M∑
m=1

bjβmg(ωmu(k−j)+ηm). (5)

FIGURE 3. Experimental platform for obtaining input signal parameters of
the H model.

FIGURE 4. Set the reference coordinate system on the ankle to calculate
the ankle angle.

All parameters that must be determined in the model include
the following: ωm, βm, ai, bj are the connection weight of
each layer. ηm are the threshold of each layer. Where m =
1, 2,. . . , M ; i = 1, 2,. . . , N ; j = 1, 2,. . . , N . These model
parameters need to be determined by training the neural
network with experimental data.

B. EXPERIMENTAL PLATFORM
The input signal parameters of the H model are obtained via
the experimental platform shown in Fig. 3, which comprises
of an electrostimulator, inertial sensor and a PC. The inertial
sensor comprises of the Trigon Lab wireless base station and
two inertial sensor modules.

The inertial sensor calculates the angle by using the ground
as the reference system. The origin of the reference coor-
dinate system is set on the ankle and considers it as two
connecting rods, and the calf and the foot are considered to
be a rigid body. The directions of the foot and the calf are
set as the x- and y-axes, respectively, as shown in Fig. 4.
The calculation of the ankle angle requires application of
a sensor on the instep and the shank to avoid errors in
ankle angle measurement due to changes in human posture.
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TABLE 1. General characteristics of subjects.

After the initial angle is measured, the relative ankle angle θ is
calculated by using Eq. (6). In the post-experimental process,
the ankle dorsiflexion angle is obtained by subtracting the
relative angle θ produced by the experimental stimulus from
the measured initial state angle.

Table 1 lists the four subjects with no history of any
lower limb injury that were selected for the experiment.
A 4 cm × 4 cm physiotherapy electrode was used in this
study. The electrical stimulation instrument was a Motion-
Stim 8 electrostimulation device (Medel, Germany). The
optimal electrode placement position on the tibialis anterior
muscle fibres was determined via the neuromuscular locator.
Given the purpose of the experiment, the electrical stimu-
lation output sequence programme was compiled, and the
ankle angle was corrected. During the experiment, the crus
of the subject naturally bent, and the knee and hip joints
were maintained at a 90◦ angle from the horizontal plane,
thereby showing a relaxed state. Each electrical stimulation
did not exceed 20 s. Considering the contingency factor of the
experiment, each group of experiments was repeated thrice to
obtain the average. The interval between the two groups was
30 min to reduce the subjective memory effect, adaptability
and voluntariness of the subject.

θ = 180
◦

− (α + β), (6)

C. OPTIMAL SOLUTION BASED ON GENETIC ALGORITHM
The training of the H model parameters based on the neural
network structure can be transformed into the problem of
determining optimal weight and thresholds, and the process
is a complex function optimisation process. The applica-
tion of the genetic algorithm to neural network training has
been widely used. This algorithm was proposed by Professor
Holland of the Michigan University in the United States;
genetic algorithm, a type of optimisation method with a
solid biological basis, is used for obtaining the optimal solu-
tion in the process search by simulating the natural genetic
mechanism and biological evolution theory [31], [32]. This
method can automatically find global optimal solutions in
accordance with the changes in the environment and optimise
the weight and threshold parameters of the neural network in
the H model structure. Fig. 5 shows the flowchart of genetic
algorithm, consisting of five steps.
Step 1 Generating the Initial Population:
The initial population mainly depends on the size of the

population and the initialising individual parameters. The
number of population size is d , and the length of each

FIGURE 5. Flowchart of genetic algorithm.

individual is defined as n, which represents the total number
of weight and threshold in the model, as shown in Eq. (7):

n = rq1 + q1 + q1q2 + q2 + q2q3N + q3 + q3q3N , (7)

where r represents the number of nodes in each input layer
of the static nonlinear part of the H model, q1 refers to the
number of each hidden layer of static nonlinearity in the H
model, q2 is the number of static nonlinear output layers in the
H model, q3 denotes the number of medium dynamic linear
neurons in the H model and N represents the delay order of
the feed forward and feedback links in the model structure.
Step 2: Fitness Evaluation:
Fitness is the criterion by which an individual is chosen or

not, and the optimal solution is the one with the largest fitness
criteria. F is expressed as fitness, as shown in Eq. (8):

F =
n∑
i=1

|(yi − oi)|, (8)

where yi is the expected output of the i-th node in the model
structure, oi is the predicted output of the i-th node in the
network structure and n is the number of output nodes in the
model structure.
Step 3 Select Operation
The optimised individual will be passed on to the next

generation through the roulette selection on the basis of indi-
vidual fitness evaluations. The probability of each individual
being selected is calculated as shown in Eq. (9):

Pi = fi

/ N1∑
j=1

fj, (9)

where fi is the fitness of each individual, andN1 is the number
of populations. Individuals with high selection probability are
directly inherited to the next generation.
Step 4 Crossover and Mutation Operations:
Cross-operation aims to maintain the stability of the popu-

lation and facilitates movement toward the optimal direction.
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FIGURE 6. Relationship between different electrical stimulation
frequency and induced ankle angle.

Different chromosomes are cross-operated in the same loca-
tion through individual coding as shown in Eq. (10):{

akj = akj(1− b)+ aljb
alj = alj(1− b)+ akjb

, (10)

where b is a random number between 0 and 1. Variation pre-
vents the partial convergence of the crossover and ensures the
diversity of the population. The specific operation modifies
the j gene in the i-th individual as shown in Eq. (11):

aij =


aij +

(
aij − amax

)
∗ f (g) r > 0.5

aij +
(
amin − aij

)
∗ f (g) r ≤ 0.5

f (g) = r2
(
1− g

/
Gmax

)2 , (11)

where amax and amin are the upper and lower bounds of the
gene aij, respectively; Gmax is the maximum reproductive
evolution algebra; g is the current iteration number; r is the
random number between 0 and 1; and r2 is a random number.
Step 5 Repeat Steps 2 to 4:
The above steps are repeated until the weight of network

connection and the training index of threshold reach the
precision requirement.

III. RESULTS
A. DETERMINATION OF ELECTRICAL STIMULATION
INPUT PARAMETERS
On the basis of the above experimental platform for the ankle
angle acquisition, the effects of different electrical stimula-
tion parameters (frequency, amplitude and pulse width) on the
angular motion characteristics of the ankle were investigated.

1) The amplitude of electrical stimulation current was set
to 25 mA and the electrical stimulation pulse width
increased from 90 µs to 130µs in steps of 10µs. Aver-
age and standard deviation of the induced ankle angle
measured at different electrical stimulation frequencies
for each pulse width are shown in Fig. 6. To avoid
musle fatigue effect, FES frequency should be as low
as possible. Therefore, according to Fig. 6, a 25 Hz was
selected as the input frequency to avoid muscle fatigue

FIGURE 7. Effect of different electrical stimulation amplitudes on ankle
angle.

FIGURE 8. Effect of different electrical stimulation pulse width on ankle
angle.

and maintain the electrical stimulation time and pulse
width at the maximum adjustable linear range.

2) The electrical stimulation pulse width and frequency
were set to 100 µs and 25 Hz, respectively, and
amplitude of the stimulation current changed. When
the amplitude of electrical stimulation current reached
31 mA, the subjects developed a tingling sensa-
tion. Therefore the amplitude range was limited to
12–31 mA in advance (Fig. 7). The experimental
results showed that the ankle angle increased with
amplitude and the highest ankle angle derivation was
achieved for 25mA stimulation current. Thus, the stim-
ulus input amplitude was set to 25 mA.

3) The experimental setting of the electrical stimulation
amplitude and frequency was 25 mA and 25 Hz,
respectively, and the pulse width increased linearly.
Fig. 8 illustrates the experimental results of the sub-
ject 2, which indicates that the minimum threshold of
the ankle was obtained at for the pulse width of 70 µs.
The maximum threshold of pulse width was set to 110
µs due to the prickling sensation of subject no. 3 when
the pulse width reached 110 µs.

The threshold change of pulse width of different subjects
measured under the same electrical stimulation experiment
conditions is shown in Table 2. The results provide a data ref-
erence for the input parameters of the neural network-based
H model.
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TABLE 2. Threshold of the electrical stimulation pulse width for different
subjects.

TABLE 3. Functional electrical stimulation parameter settings.

4) The experimental study was conducted based on the
experimental platform described in Section II.B, using
the related input parameters are shown in Table 3. Vari-
ations in the electrical stimulation pulsewidth affect the
subsequent model identification. In this study, filtered
random noise (FRN) was used as the model identifica-
tion data, which were applied as the electrical stimula-
tion input variation pulse (Fig. 9), and its influence on
the joint angular motion characteristics was analysed.
In Fig. 9(a) and 9(b) results for pulse sequences lasting
two and one seconds respectively are presented. It is
shown that the ankle output angle significantly lagged
behind the electrical stimulation input pulse in both
cases. However, Fig. 9(b) also shows that the time-
varying characteristics of the random pulse variation
are not proportional to the change in its joint angle and
the non-uniformity of decline characteristics.

B. PARAMETERS DETERMINATION OF THE H MODEL
The model parameters are divided into structural and training
parameters. The structural parameters include the nonlinear
static partial hidden layer point number M in the H model
and the delay order N in the linear dynamic equation. The
training parameters include population size and evolutionary
algebra of genetic algorithm.

1) DETERMINATION OF POPULATION SIZE AND
EVOLUTIONARY ALGEBRA
The two-second period change of FRN data in Fig. 9(a) was
used as the pulse variation sequence of electrical stimulation
model. The ankle angles of 10 groups of different random
sequences were collected, of which 9 groups were selected
as the training data, and 1 group was used as the test data.
The 10 groups of data obtained in the experiment were
used for testing and network training through the 10-fold
cross-validation. When the population size was determined,

FIGURE 9. FRN electrical stimulation pulse width sequence:
(a) two-second period change, (b) one-second period change.

TABLE 4. Convergence algebraic value under the same population size.

the optimal fitness of an individual was fixed within a certain
range. The population size was set to 12 and the genetic
optimisation had 20 generations to ensure that the best fitness
of individuals could be achieved under each calculation of the
genetic algorithm, thereby indicating the fitness change in the
optimisation process (Fig. 10). The evolutionary algebra con-
verged upon reaching the eighth generation, and the fitness
did not decrease. The same data set was trained 10 times,
and the evolutionary algebraic values were recorded under
the same population size (Table 4). Table 4 shows that evo-
lutionary algebra takes 10 generations to guarantee the best
training effect.

2) DETERMINATION OF STRUCTURAL PARAMETERS
OF THE NEURAL NETWORK MODEL
The experimental data were used in the simulation test by
applying the genetic algorithm inMATLAB and changing the
Hmodel parameters. The root mean square error (RMSE) and
the normalised root mean square error (NRMSE) between the
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FIGURE 10. The change of fitness in the process of individual
optimization under the calculation of genetic algorithm.

model output angle and the in vivomeasured ankle angle were
calculated as the evaluation indices for estimating the ankle
angle of the H model as shown in Eq. (12−13):

RMSE =

√√√√ 1
N

N∑
t=0

(θm − θs)2, (12)

NRMSE =
1

θ̄m

√√√√ 1
N

N∑
t=0

(θm − θs)2, (13)

where θm is the actual measured ankle angle, θ̄m is the average
of the actual angle, θs is the theoretical model output angle
and N is the number of time sampling points. By using
the identical electrical stimulation angle data as in training,
one set was randomly selected from the 10 data sets for
testing whilst the 9 remaining sets were used for training. The
experiment was repeated, and each experiment changed the
delay order or the number of hidden layer points. The delay
order N was 1, 2 and 3, and the number of hidden layer points
M was 5, 10 and 15, which were combined into 12 different
parameter combinations. The RMSE and NRMSE values of
the samples were calculated. The results show that RMSE and
NRMSE are the smallest when the hidden layer number M
and the delay order N are 15 and 2, respectively. Therefore,
the number of hidden layer pointM of the H model and delay
order N are set to 15 and 2, respectively.

3) HAMMERSTEIN MODEL VERIFICATION
After determining the parameters of the H model via the
genetic algorithm, 10-fold cross-validation was applied to
the in vivo experiment data to verify the error effect of the
H model. The two-second pulse variation FRN sequence
shown in Fig. 9(a) was considered to be the model training
sample. Nine groups were randomly selected as the training
data, and the last group was considered the test data. A total
of 90 randomfluctuation sequences were sufficient to activate
all angular motion characteristics of the ankle induced by
the electrical stimulation waveform. Figs. 11(a) and 11(b)
present the test results of a training and non-training sample,
respectively. The curve in Fig. 11 shows that the model output
data can track the actual data. The experiment was repeated

FIGURE 11. Model test results: (a) training sample input, (b) non-training
sample input, (c) average relative error and standard deviation of
training samples, (d) average error and standard deviation of
non-training samples.

TABLE 5. Different individual simulation error results.

20 times for comparison. Figs. 11(c) and 11(d) illustrate the
obtained relative error curves.

Figs. 11(c) and 11(d) show that the relative error of the
electrical stimulation waveform with the training sample as
input is within ±10% and that of the electrical stimulation
data input with the non-training sample is ±25%, respec-
tively. The model could accurately track the changing trend
of actual data. Table 5 lists the mean and standard deviation of
RMSE and NRMSE for four subjects. The RMSE and NRMSE
are 2.78± 0.33◦ and 23.70± 1.77%, respectively, indicating
the feasibility of this model.

Klauer et al. [33] proposed to construct a feedback control
model through an H-model and an artificial neural network
based on radial basis functions. The model uses an EMG
as the input to the model and the output is the angle of the
shoulder abduction joint. The model was validated in two
healthy subjects with RMSE values for joint angle errors of
3.56◦ and 3.44◦, respectively. The average value of the RMSE
value of the joint angle error herein is 2.59 ± 0.35 ◦.

IV. DISCUSSIONS
A. ANALYSIS AND DISCUSSION OF THE ANKLE
MOTION CHARACTERISTICS INDUCED BY FES
The hysteresis, time-varying, nonlinear and other motion
characteristics of the ankle angle can be summarised on the
basis of the ankle angle acquisition experiment induced by
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electrical stimulation. The physiological function response of
the ankle induced by electrical stimulation is not a mechan-
ical or physical process. The hysteresis shows that the ankle
angle lags behind the electrical stimulation signal. Starting
from the muscle biomechanical bone model, the process of
electrical stimulation-induced muscle contraction is a pro-
cess of gradually collecting potentials per unit time. Thus,
muscle contraction will lag behind the electrical stimulation
sequence. The time-varying and nonlinear characteristics are
observed in electrical stimulation therapy possibly due to the
effects of electrical stimulation fatigue, stiffness and antag-
onistic muscle synergy. When the electrical stimulation time
is extremely long, the muscle will gradually enter the state
of fatigue. When the muscle is continuously contracted, its
physiological characteristics change; its excitability, contrac-
tility and conductivity decrease [34], and the same electri-
cal stimulation intensity cannot reach the same angle. With
the change in stimulation time, angular jitter, non-linearity
and other problems arise due to muscle fatigue, and even
muscle stiffness and angle invariance due to excessive stim-
ulation are also observed. From the analysis of the stiffness
effect, the ankle has different stiffness coefficients at different
angles. Therefore the activation of the same angle requires
electrical stimulation of different intensities. Under the same
electrical stimulation intensity, the large current angle causes
a minimal increase in the angular amplitude, resulting in the
nonlinearity of the ankle joint angle and electrical stimula-
tion intensity. From the perspective of antagonistic muscle
synergy, a large number of electrical signals are induced in
a unit time. The change rate of the electrical signal exceeds
the recruitment speed of the tibialis anterior muscle fibres and
triggers the involuntary reflex mechanism of the central ner-
vous system [35], thereby prompting the dorsiflexion of the
gastrocnemius, soleus and other antagonistic muscles [31].

Selecting the proper input data form for the complex
motion characteristics of the ankle and the identification of
angle model parameters of the ankle induced by electrical
stimulation is crucial. The appropriate electrical stimulation
pulse sequence can ensure that the electrical stimulation
intensity is within the range of the muscle contraction of the
subject. The input electrical stimulation signal can gradually
collect additional potentials per unit time instead of instanta-
neously exciting a large number of electrical signals. Hence,
the problem of abnormal physiological reactions, such as
physical discomfort caused by triggering the involuntary
reflex mechanism of the human body, is avoided [36].

B. DISCUSSION AND ANALYSIS OF THE H MODEL
The H model based on the neural network is a ‘‘black box’’
model suitable for complex and time-varying nonlinear sys-
tems [18]–[20]. The model combines the advantages of the
Hammerstein and neural networks and embodies the char-
acteristics of static nonlinearity and dynamic linearity of the
system. The H model trains the parameters of the model by
using the genetic algorithm, mining the laws from the data
itself and applying the laws to other data. However, the law

between the electrical stimulation parameters of the H model
and the angle of the ankle has poor versatility because of the
hysteresis, time variation and nonlinearity of the anklemotion
angle induced by FES and the individual differences between
the subjects. Therefore, the phenomenon of large model error
occurs.

The pulse sequence of FRN electrical stimulation (Fig. 9)
shows that the stimulation effect of the pulse sequence lasting
for one and two seconds is different. The data of stimu-
lation time for two seconds can clearly track the angular
motion characteristics of the ankle possibly due to the slow
ankle system induced by electrical stimulation. The change
of the electrical stimulation pulse for one second exceeds
the reaction time of the joint mechanism, thereby indicating
the occurrence of an error. Tables 1, 2, and 3 show that the
NRMSE and RMSE values of subject2 are relatively small.
The pulse width threshold and body mass index (BMI) of
subject2 were higher than those of the three other subjects
as shown in table 1. Therefore, the H model is found to be
effective for subjects with large BMI.

At present, most of the treatment products for patients
with ankle dyskinesia are open-loop type electrostimulators.
The output parameters of this electrostimulator are single,
and the output parameters cannot be adjusted in real time
according to the degree of muscle fatigue. Therefore, in the
course of treatment, the phenomenon of insufficient stimula-
tion or excessive stimulation may lead to the situation that the
patient’s condition cannot be improved or even muscle dam-
age occurs. In order to solve the problems in the above FES
treatment, the researchers began to focus on the FES closed-
loop feedback control system. The neural network-based H
model established in this study can be used as the control
model of the FES closed-loop feedback control system. The
control system can optimize and adjust the electrical stimu-
lation output parameters in real time, which greatly improves
the treatment effect of patients with ankle dyskinesia. The
development of this control system is also our main goal in
the later period.

V. CONCLUSION
In this study, the human ankle dorsiflexion motion angle is
considered the research object, and an experimental platform
is built by using an inertial sensor and an electrical stimu-
lator to conduct experiments on the changes in ankle angle.
Different threshold values of electrical stimulation, including
amplitude, frequency and pulse width, are experimentally
studied. Simultaneously, the angular hysteresis, nonlinearity
and time-varying motion characteristics of the ankle induced
by the input sequence of FRN electrical stimulation are
obtained. According to the motion characteristics of ankle
angle, an H model based on the neural network structure is
established. The FRN electrical stimulation pulse sequence
is selected as the model input, and the data are trained via
the genetic algorithm that transforms the model parame-
ter optimisation problem into the training problem of the
neural network model. According to theRMSE of the training
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results, the structure and training parameters of the H model
are adjusted. Establish a model relationship with the FES
pulse width sequence as the input and the ankle control angle
as the output. Lastly, the 10-fold cross-validation is used
to verify the feasibility and effectiveness of the model. The
experimental results show that the neural network-based H
model can effectively predict the angle change induced by
FES, its RMSE and NRMSE are 2.78 ± 0.33◦ and 23.70 ±
1.77%, respectively. Therefore, applying the genetic algo-
rithm to the neural network-based H model can provide a
model basis for the closed-loop control strategy of the FES
system.

This paper studies the ankle angle modeling and achieves
certain achievements, but there are still some shortcomings
and improvements. Firstly, the experimental studies on the
motor characteristics of the ankle under electrical stimulation
are all carried out in healthy subjects. There was no experi-
mental study on stroke patients or patients with spinal cord
injury. Secondly, the controller should be designed to match
the ankle model, and further study how to compensate for the
lack of stimulation angle induced by muscle fatigue under
electrical stimulation.
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