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ABSTRACT Traditional decision trees for fault diagnosis often use an ID3 construction algorithm. For
promoting the accuracy and efficiency of decision trees, considering the cluster validity and fault rates,
this paper proposes two improved trees, CV-DTs and FR-DTs. This paper mainly has two highlights. The
first highlight is to propose a CV-DT which is constructed by an improved ID3 algorithm considering the
cluster validity index. A new cluster validity index which can compare the cluster validities of different
attributes is proposed to modify the information gain. This method selects the splitting attributes with
higher classification credibility and increases the diagnostic accuracy. The second highlight is to propose
an FR-DT which is constructed by an improved ID3 algorithm considering the fault rates. This algorithm
not only considers the partitioning ability of each attribute, but also considers the isolation priority of faults
with higher fault rates. This method decreases the average diagnostic steps and promotes the diagnostic
efficiency. Through a simulation case and a real board case, these decision trees are proved to be effective
diagnostic tools which have higher accuracies or efficiencies in analog circuit.

INDEX TERMS Cluster validity, decision tree, fault rate, GMM clustering, ID3 algorithm.

I. INTRODUCTION
Due to the basic characteristics of analog circuits such as
non-linearity and tolerance of components, inefficient fault
models, inadequate accessible nodes, and uncertainty in the
measurements, advanced fault diagnoses in analog circuits
have attracted a lot of research attention [1]–[7]. The most
popular fault diagnostic method for analog circuits is the
fault dictionary based approach as it reduces the diagnostic
complexity and the computation cost [8]. The fault dictionary
is the look-up table which consists of the fault-free and faulty
cases of the circuit. In the fault dictionary based approach,
the fault diagnosis depends on comparing the faulty values
with the knowledge values. This approach has three main
advantages, 1) it can be applied at both the component level
and system level, 2) it can allow users comprehend the whole
inference process, 3) it has a low computation cost.
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A decision tree is a typical fault dictionary based
classification approach, which can reveal the entire process
of classification by interpreting the rules and constructing
an appropriate framework to quantify the values of out-
comes and the possibilities of achieving them. The best-
known construction algorithms of decision trees are ID3
and C4.5. ID3 uses information gain to select split points [9]
and C4.5 uses information gain ratio to select split points [10].
In addition, there are many novel construction methods, such
as new splitting criteria [11] and the use of metaheuristic
searching strategy [12].

Compared with other classification algorithms, such as the
kNN [13], PCA [14], SVM [15] and ANN [16] algorithms,
a decision tree has these advantages. 1) Compared with a
SVM classifier, a decision tree can solve the multi-class
classification problem. The multiple classification problem
is only solved by integrated SVMs. 2) Compared with an
ANN classifier, a decision tree is a kind of rule based clas-
sifier, which has a simple reasoning structure: ‘if symptom
then class’. Based on this reasoning logic, we can easily
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comprehend and interpret the classification results.
3) Compared with a PCA or kNN classifier, a decision tree
can deal with the noisy data well, and it does not calculate the
matrix eigenvalues and a lot of statistics as PCA. 4) Compared
with an SVM classifier and an ANN classifier, a decision
tree does not need to set prior hypotheses or presumptions
about parameters. It does not need to learn the parameters
and thus decreases the computation time and complexity of
the training process.

Fault diagnoses based on decision trees have been widely
applied in many fields, such as electric power apparatus [17],
transmission lines [18]–[20], rotating machinery, and solar
photovoltaic arrays. However, a decision tree also has two
main drawbacks, overfitting and instability [21]. Overfitting
is the result of an improper stopping condition in the con-
struction of a decision tree and it will result in low classifi-
cation or prediction accuracy. Instability is the result of an
improper splitting condition in the selection process of split
points and will result in a high level of noise or disturbance
sensibility.

Many researchers are devoted to the optimization of deci-
sion trees. Kim [21] proposed a semi-supervised decision tree
which splits nodes by utilizing both target variables and the
structural characteristics of data to improve the accuracy of
classifiers. The metric of the best split point is measured by
impurity and inhomogeneity simultaneously. Sok et al. [22]
proposed a multivariate alternating decision tree which
allows boosting within a single decision tree. This method
retains high comprehension and accuracy simultaneously.
Liu et al. [23] proposed a private decision tree algorithm
based on the noisy maximal vote and an effective privacy
budget allocation strategy. The ensemble model under differ-
ential privacy adopts a better impurity metric for evaluating
attributes and thus boosts the accuracy and improves the
stability. Focusing on the monotonic classification, where the
objects with better feature values should not be assigned to a
worse decision class, the present solution is to optimize the
splitting conditions. Hu et al. [24] introduced a new measure
of feature quality, called rank mutual information (RMI),
which combines the advantage of robustness of Shannon’s
entropy with the ability of dominance rough sets in extract-
ing ordinal structures from monotonic data sets. Based on
the RMI, Pei et al. [25] constructedmultivariate decision trees
with monotonicity constraints (MMT). The classification
model partitions via oblique hyperplane in the input space
and uses improved splitting criteria with rank mutual infor-
mation (RMI) or rank Gini impurity (RGI). This method can
improve the monotonic classification accuracy and stability.
Segatori et al. [26] proposed a distributed fuzzy decision tree
learning scheme shaped according to the MapReduce pro-
gramming model, which relies on a novel distributed fuzzy
discretizer based on fuzzy information entropy. In our pre-
vious work, we proposed a quantum clustering based multi-
valued quantum fuzzification decision tree (QC-MQFDT)
[27]. This decision tree uses adaptive fuzzification method to
discretize continuous-valued data and constructs a quantum

fuzzy entropy to evaluate the information of each attribute,
which makes the decision tree more stable and robust.
We also proposed a multi-valued Fisher’s fuzzy decision
tree (MFFDT) [28]. This decision tree uses Fisher’s linear
discriminant principles to obtain optimal attributes which can
make the tree more concise and accurate.

The establishment of a decision tree is mainly affected by
two aspects. The first one is the selection of the splitting
attributes, which has been extensively studied in above lit-
eratures. The second one is the partition ability of a splitting
attributes, which is determined by the clustering results. Dif-
ferent clustering algorithms have different cluster numbers
and different degrees of discrimination.

Clustering algorithms are widely used in history data
processing and analysis. Xu and Tian [29] summarized
19 clustering algorithms as two types. The traditional meth-
ods contain partition based, fuzzy theory based, distribution
based, density based algorithms, and so on. The modern
methods contain kernel based, ensemble based, quantum
theory based, affinity propagation based, spatial data based
algorithms, and so on. Gaussian mixture model (GMM) clus-
tering belongs to the distribution based algorithm. It uses the
weighted sum of several Gaussian distribution functions to
estimate the probability density distribution of samples and
the clustering result is to maximize the probability density
of samples. GMM is a soft classification in which the clas-
sification result is the value of Gaussian probability den-
sity instead of the determined cluster [31], [32]. Therefore
the GMM has the advantages of interpretation and robust-
ness against observation noise in the low-dimensional data
representation [33].

Compared with partition based clustering like K-means
clustering, GMM clustering is regarded as an Mahalanobis
distance based approach to measure the distance between the
data and clusters. Mahalanobis distance has two main advan-
tages. Firstly, it is independent of the measurement scale,
which can change the contribution of each coordinate value
to the distance according to its fluctuation or uncertainty.
Secondly, it can eliminate the effect of deviations, which can
handle the noisy data or measurement certainty. Therefore,
GMM clustering is widely used in the engineering applica-
tions, such as tomography [34], image analysis and recog-
nition [35], [36], bioinformatics pattern classification [37],
urban traffic flow prediction [38], industrial processes moni-
tor [39], and sparse reconstruction [40].

In general, cluster algorithms cannot determine the opti-
mal cluster number automatically. Thus, the usual approach
is to compare the clustering performances with different
cluster numbers. For selecting the optimal value, the clus-
ter validity index (CVI) is proposed, which measures the
degree of each cluster number value fitting the input data.
CVI estimates the quality of a partition by measuring the
compactness within a cluster and the separation among the
clusters. The commonly used CVIs contains Dunn index,
Calinski-Harabasz index, Davies-Bouldin index, S_Dbw
index, and so on [41].
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FIGURE 1. The implementation routine of the proposed decision trees for fault diagnosis.

Traditional fault diagnosis based on decision trees mainly
has two drawbacks. The first one is that the splitting points
are selected without considering the degree of separation
among the clusters. The second one is that the decision tree is
constructed without considering the fault rates. The essence
of ID3 and C4.5 algorithms is to focus on the partitioning
ability of each attribute and to construct the concise and effi-
cient decision trees. In other words, ID3 and C4.5 algorithms
ignore the influences of the cluster validities of different
attributes and the fault rates. The cluster validity mainly
influences the decision accuracy. When two clusters are close
to each other, the wrong decisions may happen frequently
and thus influence whether to follow decisions further. The
fault rates mainly influence the decision efficiency. In fact,
different faults have different fault rates and the faults with
higher rates will happenmore frequently. Therefore, the faults
with high fault rates should be diagnosed as early as possible.

For the purpose of promoting the diagnostic accuracy and
efficiency of decision trees, this paper proposes the fault diag-
nosis using the GMM clustering based decision trees con-
sidering the fault rate and cluster validity separately. These
methods mainly contain two highlights.

Focusing on the first drawback, we propose an improved
ID3 algorithm considering cluster validity and construct a
CV-DT. This algorithm uses a new cluster validity to measure
the degree of compactness in a cluster and the separation
among the clusters, then the new validity is used to modify
the information gain of ID3. This new cluster validity index
is not the validity measurement of different cluster numbers,
but the validity measurement of optimal cluster numbers of
different attributes. It is expressed as the average ratio of
the nearest distance between two neighboring clusters to the
distance between the means of two neighbor clusters. The
higher cluster validity index represents the higher classifica-
tion credibility and has a positive influence on information
gain. Overall, it is verified that CV-ID3 algorithm will have
higher diagnostic accuracy than traditional ID3 algorithm.

Focusing on the second drawback, we propose an improved
ID3 algorithm considering the fault rate and construct

a FR-DT. This algorithm firstly determines the number of
fault data based on the fault rate. The faults with higher fault
rates are allocated more data numbers. Then we define a new
information gain to demonstrate the diagnostic ability of each
attribute. This new entropy consists of two information gain
entropies. One of the information gain entropies is based on
the number of clusters and considers the partitioning abil-
ity of each attribute. The other is based on the fault rates
and considers the isolation priority of faults with a higher
fault rates. Through the synthesis of two information gain
entropies, we will construct a more efficient decision tree
for fault diagnosis. It is verified that the FR-ID3 algorithm
will have a higher diagnostic efficiency than the traditional
ID3 algorithm.

The rest of this paper is organized as follows. In section 2,
the implementation routine of fault diagnosis using CV-DT
and FR-DT is presented. In section 3, the principle of a deci-
sion tree using the ID3 algorithm is introduced. In section 4,
the principle of GMM clustering and CH validity index
are introduced. In section 5, the CV-ID3 and FR-ID3 algo-
rithms are presented to construct the CV-DT and FR-DT.
In section 6, two cases of circuit fault diagnosis are provided,
in which these two decision trees method are verified.

There are several necessary abbreviations for this paper.

ADS average diagnostic steps
CH Calinski-Harabasz
CV-ID3 ID3 algorithm considering cluster validity
CV-DT decision tree constructed by CV-ID3 algorithm
CVI cluster validity index
FR-ID3 ID3 algorithm considering fault rates
FR-DT decision tree constructed by FR-ID3 algorithm
GMM Gaussian Mixed Model

II. IMPLEMENTATION ROUTINE
The implementation routine of the proposed method of elec-
tronic circuit fault diagnosis is illustrated in Fig. 1. The whole
figure consists of three parts. The first part is the construction
process of the CV-DT and FR-DT, the second part is the fault
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diagnosis process using these two decision trees, and the third
part is the methods which are used in the first and second
parts.

In the construction process of CV-DT and FR-DT, differ-
ent faults contain different data numbers based on the fault
rates in the training data. Then these data are partitioned
using the GMM clustering algorithm. Meanwhile, the means
and variances of clusters are obtained. Based on the tradi-
tional ID3 algorithm, we study the effect of cluster validity
and fault rates on the selection of splitting points respec-
tively and propose two new improved ID3 algorithms called
CV-ID3 and FR-ID3 algorithms. In the last step, we use the
standardization distances which depends on the means and
variances of clusters as the diagnostic rules.

In the fault diagnosis process, usingCV-DT and FR-DT,we
first calculate the standardization distances between the vali-
dation data and each cluster, and then we select the decision
branch with the smallest distance. We will firstly compare the
diagnostic efficiency of traditional DT and FR-DT. Then we
compare the diagnostic accuracy of traditional DT, CV-DT,
and other commonly used multiple classification methods.

III. DECISION TREE USING THE ID3 ALGORITHM
A decision tree is a decision support tool which has a
multi-valued tree-like structure. The best-known construction
algorithms of decision trees are ID3 and C4.5. However, in
this paper, because each fault only contains the single class of
value in each test point, the information gain ratio of C4.5 is 1
for any splitting attributes. It means that we cannot select
the optimal splitting attributes and construct a decision tree
through C4.5 algorithm in this paper. The detailed argument
is shown in appendix.

ID3 algorithm uses information gain as the criterion of
attribute selection in the splitting nodes. Because the result of
the attribute selection based on information gain is partial to
the multi-valued attribute, the ID3 algorithm can be regarded
as a kind of greedy search strategy. In other words, the essence
of ID3 algorithm is to construct a decision tree that is as
efficient as possible.

Let A = {A1,A2, · · · ,AM } denote the attributes set and
M be the number of attributes, C = {C1,C2, · · · ,CN }
denote the class set and N is the number of classes. Let
|Cn| (n = 1, 2, · · · ,N ) be the number of samples belonging
to the classCn. LetX =

{
xij, 1 ≤ i ≤ NT , 1 ≤ j ≤ M

}
denote

the sample set, where xij is the value in the ith sample corre-
sponding to attribute Aj. NT is the total number of samples.
The information entropy of the sample set X is shown in

the form

Entropy (X) = −
N∑
n=1

|Cn|
NT

log
|Cn|
NT

(1)

If the sample set X is divided by attribute Aj to the clusters
S1, S2, · · · , Srj , where rj is the number of subsets divided
by attribute Aj. Let |Sk |

(
k = 1, 2, · · · , rj

)
be the number of

samples belonging to the subset Sk , |Ckn| be the number of

samples belonging to class Cn in the cluster Sk . Then the
information entropy of the sample set X in the attribute Aj
condition is shown in the form

Entropy
(
X ,Aj

)
=

rj∑
k=1

|Sk |
NT

Entropy (Sk)

= −

rj∑
k=1

|Sk |
NT

(
N∑
n=1

|Ckn|
|Sk |

log
|Ckn|
|Sk |

)
(2)

The information gain in the attribute Aj condition is shown
in the form

IG
(
X ,Aj

)
= Entropy (X)− Entropy

(
X ,Aj

)
(3)

IV. GMM CLUSTERING AND CH VALIDITY INDEX
GMM uses the combination of finite Gaussian probability
density functions to estimate the distribution of samples. The
purpose of GMM clustering is to maximize the probability
density of the samples. Each Gaussian function is a cluster
and each sample will be clustered into the Gaussian func-
tion which has the largest probability density. The GMM is
defined as

p (x; θ) =
n∑

k=1

πkNk (x;µk , 6k) (4)

where x is a d-dimension data, n is the number of Gaus-
sian functions, θ is the parameters set, πk (k = 1, 2, · · · , n)
is the weight corresponding to each Gaussian function and
n∑

k=1
πk = 1, Nk (x;µk , 6k) is the kth Gaussian probability

density function,µk and6k are the average vector and covari-
ance matrix, respectively.

To obtain the maximum likelihood of probability density,
we often use the EM algorithm to estimate the GMM param-
eters. The EM algorithm contains two steps.

(1) Supposing that the average vector and covariance
matrix of each Gaussian probability density function are
known, we can estimate the probability $ (xi, k) that the
sample xi is generated by the kth Gaussian function.
(2) We uses $ (xi, k) to estimate the average vector µk ,

the covariance matrix6k and the weight πk of each Gaussian
probability density function.

Repeat the two steps above until the GMM param-
eters converge to stable values. Then we will obtain
n clusters corresponding to n Gaussian distributions
Nk (x;µk , 6k) (k = 1, 2, · · · , n).

Because the GMM clustering algorithm need to be preset
a cluster number, a CVI is used to select an optimal cluster
number. The CH validity index uses the sum of squared
distances between a clustering center and the data belonging
to this cluster to measure the degree of data compactness in
the cluster, then uses the sum of squared distances between
the center of the whole data set and each cluster center
to measure the degree of separation among clusters. The
CH validity index is the ratio of the degree of separation
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among the clusters to the degree of data compactness of all
the clusters, and is computed as

CH (NC) =

1
NC−1

NC∑
i=1

nid2 (ci, c)

1
n−NC

NC∑
i=1

∑
x∈Ci

d2 (x, ci)

(5)

where n is the total amount of data, c is the center of the whole
data, NC is the number of clusters, Ci is the ith cluster, ci is
the center of Ci, ni is the amount of data in Ci, and d (x1, x2)
is the distance between two data.

We run the GMM clustering algorithm several times with
possible cluster numbers, and we select the cluster number
NC corresponding to the largest CH validity index as the
optimal cluster number.

V. CONSTRUCTION OF CV-DT AND FR-DT
The traditional ID3 algorithm does not consider the effect
of fault rates and cluster validity. In general, attributes with
higher cluster validity should be selected as early as possible,
so they can promote the diagnostic accuracy of decision trees.
On the other hand, faults with higher fault rates should also
be diagnosed as early as possible, thus they can promote the
diagnostic efficiency of decision trees. Considering the clus-
ter validity and fault rates, this section presents two improved
ID3 algorithms, CV-ID3 and FR-ID3 algorithms.

A. CV-ID3 ALGORITHM
The traditional ID3 algorithm selects splitting attributes based
on the number of clusters and the data number distribution
in each cluster. However, it ignores the effect of the dis-
tribution of clusters and the distribution of data in space
on the classification accuracy. An optimal partition should
have the largest compactness in a cluster and the separation
among the clusters. Thus we can univocally classify the faults
characterized by the highest probability. From the viewpoint
of GMMclustering, the Gaussian distributions of two clusters
are shown in Fig. 2.

C1 and C2 are two clusters generated by the GMM clus-
tering algorithm. When the data fall into areas A or E, they
can be correctly classified into C1 or C2 separately. When
the data fall into the areas B and D, they have the risk of
being misclassified. In the area B, data may be misclassi-
fied into C1, and in the area D, data may be misclassified
into C2. Obviously, the areas B and D are wider and the range
of misclassified data is larger. For decreasing the misclassi-
fied data, we expect to obtain the clusters with smaller areas B
and D. Therefore, besides the number of clusters, we should
select the splitting attribute that has the clusters with a higher
degree of distinction for higher classification accuracy.

Referring to the definition of cluster validity [38],
we expect to use a CVI to compare the cluster validity of dif-
ferent attributes. However, the existing CVIs are only suitable
for measuring the different partition qualities inside a same
data space or inside an attribute. For different attributes and

FIGURE 2. The intersection relationship of two cluster curves.

FIGURE 3. The graphical description of the proposed CVI.

their different data spaces, they have different optimal cluster
numbers, different numerical ranges, and so on, therefore
these CVIs are not applicable.

For measuring and comparing the clustering validity of
different attributes objectively, we propose a new CVI which
eliminates the effect of the optimal cluster numbers and
numerical ranges. The formula of the new CVI is as follows

CVInew =
1

NCopt − 1

NCopt−1∑
i=1

min d (Ci,Ci+1)
d (ci, ci+1)

(6)

where NCopt is the optimal cluster number, Ci is the ith clus-
ter, ci is the mean of Ci, d (ci, ci+1) is the distance between
the mean of Ci and the mean of Ci+1, min d (Ci,Ci+1)
is the shortest distance between Ci and Ci+1. The new
CVI calculation consists of two steps. The first step is the
CH indexes calculation of different attributes. In this step,
we find the optimal cluster number of each attribute NCopt .
The second step is the new CVI calculation of different
attributes. In this step, we calculate the new CVI of each
attribute in the condition of optimal cluster number and find
the max value of CVInew. The detailed description of the
formula is shown in Fig. 3.

As shown in Fig. 3, the dimensionless value min d(Ci,Ci+1)
d(ci,ci+1)

measures the degree of difference between two neighbor-
ing clusters and eliminates the effect of different numerical
ranges. 1

NCopt−1
is used to average the total differences and

eliminate the effect of cluster numbers.
The proposed CVI helps us select the splitting attribute

with higher credibility. However, when two attributes have
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the same CVI, we tend to select the attribute with more
clusters. Therefore, considering the cluster validity and infor-
mation gain simultaneously, we propose a CV-ID3 algorithm.
The formula of information gain considering cluster validity
is as follow.

IGCV
(
X ,Aj

)
= CVInew

(
Aj
)
∗ IG

(
X ,Aj

)
(7)

where IG
(
X ,Aj

)
is the information gain of attribute Aj with

the traditional ID3 algorithm, and IGCV
(
X ,Aj

)
is the modi-

fied information gain of attribute Aj with CH-ID3 algorithm.
Similar to the traditional ID3 algorithm, the proposed

CV-ID3 algorithm selects the attribute with the largest
IGCV

(
X ,Tj

)
as the splitting point. If the CVI of attribute Aj

is equal to 1, it can be regarded that the information provided
by Aj is completely true and valid. However, if CVI of
attribute Aj approaches 0, it can be understood that the infor-
mation provided by Aj is completely confused and invalid.
In this respect, the proposed CVI can be regarded as the
measurement of information credibility.

B. FR-ID3 ALGORITHM
In the rest part of the paper, we mainly discuss the applica-
tion of the decision tree in analog circuit diagnosis. We will
replace the attribute with the test point, and replace the clas-
sification object with the fault mode in the decision trees.

In general, we use the ADS to measure the efficiency of
a decision tree. There are two ADS definitions which are
computed as

ADS1 =

N∑
i=1

si

N
(8)

ADS2 =

N∑
i=1

nisi

n
(9)

where n is the total number of fault data, N is the number of
faults, ni is the number of ith fault data, si is the diagnostic
step of the ith fault in the decision tree, i.e. the number of
splitting attributes that we use to determine ith fault.
The ADS1 is defined as the average diagnostic steps of

all kinds of faults, which assumes that all faults happens
with a same probability. The ADS2 is defined as the average
diagnostic steps of all the faults that happened over a period
of time, which means that different faults may happen with
different frequencies. From the viewpoint of practical appli-
cation, the second definition is more significant.

The essence of the traditional ID3 algorithm is that it is
a kind of greedy algorithm, which means that it expects
to select the attribute which has the most clusters at each
splitting point. In this way, the traditional ID3 algorithm
can construct an optimal decision tree which minimizes (8).
As for (9), we not only need more clusters in each splitting
process, but also need to isolate the fault which has the
larger ni as early as possible. The traditional ID3 algorithm
cannot find the optimal solution which satisfies the isolation
requirement.

In (9), the larger ni means that the ith fault happens with
a higher frequency, thus we can replace ni with the fault
rate λi. Obviously, different faults have different fault rates
and we must consider the number of clusters and fault rates
simultaneously. On the one hand, if we select a splitting
attribute based only on the number of clusters, although the
depth of the decision tree may be shortened, the fault with
a higher rate may be diagnosed by using more diagnostic
steps and thus increases the ADS. On the other hand, if we
select a splitting attribute based only on the fault rates, i.e.
give priority to the diagnosis of faults with higher fault rates,
the depth of the decision tree may increase and thus the
diagnostic steps of other faults will increase. Therefore, for
the purpose of obtaining the general optimal solution of ADS,
we propose a FR-ID3 algorithm which considers the number
of clusters and the fault rates as the selection rules of splitting
attributes simultaneously.

Firstly, in the traditional ID3 algorithm, the data number
of each fault is commonly not definite, which means it can-
not reflect the frequency of occurrence of each fault. In the
FR-ID3 algorithm, we must determine the fault data number
based on the fault rates. If the fault rate of fault A is twice that
of fault B, then the data number of fault A is two times more
than fault B.

Secondly, in the traditional ID3 algorithm, we use one
information gain to measure the amount of information that
each attribute provides. In the FR-ID3 algorithm, we use two
information gain entropies to measure the amount of informa-
tion that each attribute provides. One of the information gain
entropies is based on the number of clusters as the traditional
ID3 algorithm. The other is based on the fault rates and
considers the isolation priority of faults with a higher fault
rate.

Let T = {T1,T2, · · · ,TM } denote the test points set
and M be the number of attributes, F = {F1,F2, · · · ,FN }
denote the fault modes set, N be the number of fault modes,
and λ = {λ1, λ2, · · · , λN } denote the N fault rates. Let
|Fn| (n = 1, 2, · · ·N ) be the number of samples belong-
ing to the fault Fn considering the fault rate. Let X ={
xij, 1 ≤ i ≤ T , 1 ≤ j ≤ M

}
denote the sample set, where

xij is the value in the ith sample corresponding to test point Tj.
NT is the total number of samples.
(1) The information gain based on the number of clusters

is the same as the ID3 algorithm, which is written as

IGNC
(
X ,Tj

)
= EntropyNC (X)− EntropyNC

(
X ,Tj

)
(10)

EntropyNC (X) = −
N∑
n=1

|Fn|
NT

log
|Fn|
NT

(11)

EntropyNC
(
X ,Tj

)
=

rj∑
k=1

|Sk |
NT

Entropy (Sk)

= −

rj∑
k=1

|Sk |
NT

(
N∑
n=1

|Fn|
|Sk |

log
|Fn|
|Sk |

)
(12)
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where IGNC
(
X ,Tj

)
is the information gain based on the

number of clusters, EntropyNC (X) is the information entropy
based on the fault modes, EntropyNC

(
X ,Tj

)
is the con-

ditional entropy based on the partitioning ability of test
point Tj.
(2) The information gain based on the fault rates is written

as

IGFR
(
X ,Tj

)
= EntropyFR (X)− EntropyFR

(
X ,Tj

)
(13)

EntropyFR (X) = −
NT∑
n=1

1
NT

log
1
NT

(14)

EntropyFR
(
X ,Tj

)
= −

mj∑
i=1

1
NT

log
1
NT

mj =
∑
Fn /∈F∗

|Fn| (15)

where IGFR
(
X ,Tj

)
is the information gain based on the fault

rates, EntropyFR (X) is the information entropy based on
the fault data number, EntropyFR

(
X ,Tj

)
is the conditional

entropy based on the isolation ability of a single fault of test
point Tj, F∗ denotes the fault modes set which can be isolated
by test point Tj, mj denotes the number of fault data which
cannot be isolated by test point Tj.

In the formula of EntropyFR (X), because each fault data
needs to be isolated, we regard each fault data as a different
item and the probability of each fault data is 1

/
NT . In the

formula ofEntropyFR
(
X ,Tj

)
, because the isolated faults have

no effect on this conditional entropy, we consider the faults
data that cannot be isolated singly. They can also be regarded
as different and the same probability 1

/
NT . In (15), the larger

EntropyFR
(
X ,Tj

)
meansmj is larger, and the largermj means

the number of faults that cannot be isolated is larger. On the
contrary, if |Fn| which satisfied Fn ∈ F∗ is larger, i.e.
the fault with the higher fault rate can be isolated, then
EntropyFR

(
X ,Tj

)
is smaller and the isolation ability of test

point Tj is better.
(3) The new information gain in FR-ID3
As mentioned above, we cannot use only IGNC

(
X ,Tj

)
or

IGFR
(
X ,Tj

)
as the selection rule of test points. If we select

test points only based on IGNC
(
X ,Tj

)
, theADS2 may become

larger because the faults with a higher fault rates may be iso-
lated using more diagnostic steps. If we select test points only
based on IGFR

(
X ,Tj

)
, the ADS2 may become larger because

the other faults may be isolated using more diagnostic steps.
For considering the number of clusters and fault rates simulta-
neously, we combine IGNC

(
X ,Tj

)
and IGFR

(
X ,Tj

)
together

to form a new information gain.

IGFR
(
X ,Tj

)
= IGNC

(
X ,Tj

)
+ IGFR

(
X ,Tj

)
(16)

Similar to the traditional ID3 algorithm, the pro-
posed FR-ID3 algorithm selects the test point with the
largest IGFR

(
X ,Tj

)
as the splitting point. In this respect,

the FR-ID3 algorithm also can be regarded as a kind of

greedy algorithm. However, in this greedy algorithm’s case,
the largest IGNC

(
X ,Tj

)
or largest IGFR

(
X ,Tj

)
cannot ensure

the largest IGFR
(
X ,Tj

)
either, thus IGFR

(
X ,Tj

)
balances the

importance relationship between the partitioning ability and
the fault isolation priority of test point Tj.

C. COMPARISON BETWEEN CV-ID3 AND
FR-ID3 ALGORITHMS
We have discussed two improved ID3 algorithms. The
CV-ID3 algorithm considers the effect of cluster valid-
ity and improves the fault diagnostic accuracy, and the
FR-ID3 algorithm considers the effect of fault rate and
improves the fault diagnostic efficiency. In general, the
CV-DT and FR-DT are different. The CV-DT has the highest
accuracy and the FR-DT has the highest efficiency. There-
fore, we cannot construct a decision tree with the highest
accuracy and efficiency simultaneously. If we combine these
two algorithms together, such as replacing IG

(
X ,Aj

)
in (7)

by IGFR
(
X ,Aj

)
, the decision tree constructed by this com-

bined algorithm has lower accuracy than the CV-DT and
lower efficiency than the FR-DT.

Based on the different requirements of the fault diagnostic
application, fault diagnosis is divided into online diagnosis
and offline diagnosis. For online diagnosis, it is important to
locate the faults timely and quickly, especially when a timely
decision is needed. Using the FR-ID3 algorithm, the average
diagnostic time of online diagnosis is significantly reduced.
For offline diagnosis, what we care about is how to locate the
fault accurately. For this reason, the CV-ID3 algorithm is used
to ensure the highest diagnostic accuracy.

In general, the FR-ID3 algorithm prefers to select the test
point with more clusters. However, in many cases, more
cluster numbers the partition has, the higher compactness the
clusters have. Thus the CVI of the selected test point may
be small and the accuracy of decision tree will be decreased.
On the other hand, the CV-ID3 algorithm prefers to select
the test point with a larger CVI and in many cases this test
point has few clusters. It will result in a larger ADS and
lower efficiency. In other words, high accuracy will be at the
expense of lower efficiency and high efficiency will be at the
expense of lower accuracy.

For CV-ID3 and FR-ID3 algorithms, the calculation pro-
cess of the information gains are the same as traditional
ID3 algorithm in the definition. Therefore, the time com-
plexity and the space complexity of CV-DT and FR-DT
are the same as traditional DT. The time complexity is
O (N ∗M ∗ D), where N is the number of samples, M is the
number of splitting points, and D is the depth of the tree.
The space complexity is O (N +M∗Split), where Split is the
average number of the partitioning numbers of each splitting
point.

VI. CASE STUDY
A. CASE 1
Case 1 is a simulation model of an op amp active filter
circuit. The circuit is shown in Fig.5. This circuit contains
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FIGURE 4. The op amp active filter circuit.

FIGURE 5. CH validity index curves of K-means clustering algorithm.

12 resistances and 4 capacitors, and we assume each
resistance and capacitor has an open-circuit fault and a short-
circuit fault, thus there are a total of 32 faults that can
be inserted. In the simulation process, an excitation sinu-
soidal source with the frequency of 1 kHz and the amplitude
of 4 V is loaded as the input. The component deviation
tolerance is set as 5% for both the resistances and capaci-
tors, and the lot tolerance is also set as 5%. A total number
of 100 Monte Carlo simulations are carried out for each state.
In each simulation, we only select the last two periods of
waveform as the output voltages, which can confirm that
the circuit has already reached a steady state, and gather the
maximum value as the feature data of each test point.

As this paper aims to improve the ID3 algorithm and
construct new decision trees, the selection of test points are
not discussed specially. We finally select 4 test points in
this op amp active filter circuit [42], which are marked in
the Fig. 4.

We obtained 100 data for each fault state through simu-
lation. We selected 70 data from each fault state randomly
as a training dataset and the remaining 30 data as the
validation dataset. Firstly, we compare 4 clustering meth-
ods, GMM clustering algorithm, K-means clustering algo-
rithm, hierarchical clustering algorithm, Affinity Propagation
(AP) clustering algorithm. We calculate CH validity indexes
of different cluster numbers and select the cluster number
with the largest CH validity index for each test point. The
CH validity index curves of each clusteringmethod are shown
in Fig. 5 to 8.

We calculate the CH validity indexes of cluster num-
bers from 1 to 10. Because K-means clustering, hierarchical
clustering and AP clustering are Euclidean distance-based
method, the CH validity index curves of K-means clustering,

FIGURE 6. CH validity index curves of hierarchical clustering algorithm.

FIGURE 7. CH validity index curves of AP clustering algorithm.

FIGURE 8. CH validity index curves of GMM clustering algorithm.

hierarchical clustering and AP clustering are monotone
increasing, which results in the invalid clustering results, i.e.
one sample is one cluster. For GMM clustering, the standard-
ization distance-based method makes the CH validity index
curves are ups and downs, thus we can find that the optimal
cluster numbers of 4 test points are 5, 8, 8, and 7. The training
dataset and the GMM clustering results of 4 test points are
shown in Fig. 9. Then through theGMMclustering algorithm,
we automatically obtain themean and variance of each cluster
which are then used as decision criterions. We will first com-
pare the diagnostic efficiency of traditional DT and FR-DT.
Then we will compare the diagnostic accuracy of traditional
DT, CV-DT, kNN, SVM, and ANN approaches.

Firstly, we need to determine the data number ratio
of 32 faults based on fault rates. We assume that the fault
rates of F3 to F24, and F27 to F32 are λ. The fault rates of
F1 and F2 are 6λ for unstable solder joints, and the fault rates
of F25 and F26 are 8λ for high temperature. For convenience,
in the calculation of information entropy and ADS, we set
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FIGURE 9. The training data and clustering results of 4 test points. (a) T1,
(b) T2, (c) T3, (d) T4.

FIGURE 10. The traditional DT using the traditional ID3 algorithm.

10 fault data for F3 to F24, and F27 to F32, 60 fault data for
F1 and F2, and 80 fault data for F25 and F26.

Then we use the traditional ID3, FR-ID3, and CV-ID3
algorithms respectively to construct the decision trees. These
decision trees are shown in Fig. 10 to Fig. 12.

FIGURE 11. The FR-DT using the FR-ID3 algorithm.

FIGURE 12. The CV-DT using the CV-ID3 algorithm.

Because traditional ID3 algorithm uses greedy strategy,
the decision tree with ID3 has the largest breadth and the
smallest depth. As shown in Fig. 10, the first splitting point
is T3 which has the most clusters and the largest depth of this
decision tree is only 2. The F1, F2, F25 and F6 which have
larger fault rates are all diagnosed in second step, thus it will
result in larger ADS and lower diagnostic efficiency.

Although the largest depth of FR-DT is 3 and larger than
traditional DT, it avoids the local optimal in greedy strategy
because the modification of information gain considers the
isolation priority of the fault with a higher fault rate. As shown
in Fig. 11, although the first splitting point is T1 which has
only 5 clusters, F1, F2, F25 and F6 are diagnosed using only
one step. Thus it will result in a smaller ADS and higher
diagnostic efficiency. The ADS results of traditional DT and
FR-DT are shown in Table 1. The FR-DT has the smallest
ADS 100/56. The traditional DT has the largest ADS 108/56.

Because the CV-DT selects the splitting point with
higher credibility, it means that this decision tree may have
lower diagnostic efficiency and higher diagnostic accuracy.
As shown in Fig. 11, although the information gains of T3 is
the largest, since the proposed CVI of T1 is much larger than
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TABLE 1. The ADS of traditional DT and FR-DT.

FIGURE 13. The diagnostic accuracy results of DT, CV-DT, kNN, SVM
and BPN.

others, the first splitting point is T1. In addition, the largest
depth of CV-DT is 4, which also means that the improvement
of accuracy may be at the expense of efficiency. Thus, this
decision tree has the smallest breadth and the largest depth.

To verify the high diagnostic accuracy of CV-DT, we also
compare with commonly used multiple classification meth-
ods, such as kNN, SVM, and ANN approaches. In kNN clas-
sification, we use the cross validation method to determine
the optimal k value. In SVMmultiple classification, we select
one-versus-one classification method and use the cross vali-
dation method to determine the parameters of the Gaussian
kernel. In ANN classification, we use the BP network with
three layers and also use the cross validation method to
determine the number of hidden nodes.

Then we use a validation dataset which consists
of 30 pieces data from each fault state to compare the diagnos-
tic accuracy, we count the number of data which are classified
correctly in each fault and calculate the diagnostic accuracy,
as shown in Fig. 13.

where C1 to C17 are the decision results, which repre-
sent the single faults or fault ambiguity groups, as shown
in Table 2.

The average diagnostic accuracies of traditional DT,
CV-DT, kNN, SVM, and BPN are 95.73%, 96.77%, 96.14%,
96.56%, and 96.56% respectively. Obviously, CV-DT not
only has a higher diagnostic accuracy than traditional DT, but
also has the highest diagnostic accuracy among commonly
used multiple classification approaches.

TABLE 2. The different fault classes.

FIGURE 14. The power supply circuit board.

As shown in Fig. 13, the common diagnostic errors of DT
and CV-DT are mainly located in C4, C7, and C14, which
resulted from a high degree of data intersection in T2 and
T3 under the condition of component tolerances. In C11,
C12 and C13, CV-DT avoids the misclassification resulted
from the first splitting point T3 which has lower CH index.

For kNN, SVM, and BPN, they consider that 4 test points
provides information with equal importance, thus the test
point which has confused information will decrease the diag-
nostic accuracy. However, because the order of the test points
are optimized by CH index in CV-DT, the information impor-
tance of each test point is set different. The first selected split-
ting test point has the more importance and larger weight and
the last selected splitting test point has the least importance
and smallest weight. In this condition, the effect on the mis-
classification of the test point that has confused information
can be weakened.

B. CASE 2
Case 2 is a power supply board, as shown in Fig. 14. The
board consists of 6 power supply conversion circuit, including
a 28V to 12V circuit, a 12V to 5V circuit, a 5V to 3.3V circuit,
a 3.3V to 2.5V circuit, a 3.3V to 1.8V circuit, and a 3.3V to
0.9V circuit. We set 6 test points to measure 6 voltage outputs
corresponding to 6 power supply conversion circuits.We used
the pluggable type fault injection method to inject 15 open
circuit faults containing single faults and compound faults.
The schematic circuit diagrams are shown in Fig. 15, and the
15 faults are described in Table 3.

Because the effect of a fault may cover the effects of other
faults, many compound faults are excluded. For example,
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TABLE 3. The 15 injected faults.

FIGURE 15. The schematic circuit diagrams, faults injection locations, and
6 test points.

when F1 happens, i.e. input voltage is open in the 5V to 3.3V
circuit, then the 3.3V to 2.5V circuit, the 3.3V to 1.8V circuit,
and the 3.3V to 0.9V circuit will not work and we cannot
observe the circuits states, whether normal states or faulty
states. Therefore, we obtain 15 groups of fault data and each
group contains 1000 data.We select 700 data from each group
randomly as the training dataset and the remaining 300 data
as the validation dataset. The training dataset and the GMM
clustering results of 6 test points are shown in Fig. 16. The
optimal cluster numbers of 6 test points are 2, 3, 4, 3, 2,
and 3.

We assume that the fault rates of F1, F2, F4, F5, F6, F7, and
F8 are λ, and the fault rate of F3 is 4λ for the high temperature
in the 28V to 12V circuit. We assume that each single fault is
independent and the compound fault happens only when two
single faults happen simultaneously. Therefore, according to
the reliability parallel model, the fault rate of each compound
fault λC satisfies 1

λ
+

1
λ
=

1
λC

, i.e. λC = λ
2 . For convenience,

we set 10 fault data for F9 to F15, 20 fault data for F1, F2,
F4, F5, F6, F7, and F8, and 80 fault data for F3.

Then we use the traditional ID3, FR-ID3, and CV-ID3
algorithms respectively to construct the decision trees. These
trees are shown in Fig. 17 to Fig. 19.

The ADS results of the traditional DT and FR-DT is
shown in Table 4 and the diagnostic accuracy results of the
traditional DT, CV-DT, kNN, SVM, and BPN are shown
in Fig. 20. In this case, we also use cross validation method
to find the optimal parameters of each classification model.

TABLE 4. The ADS of Traditional DT and FR-DT.

FIGURE 16. The training data and clustering results of 6 test points.

FIGURE 17. The traditional DT using the traditional ID3 algorithm.

The average diagnostic accuracies of traditional DT,
CV-DT, kNN, SVM, and BPN are 98%, 100%, 98.89%,
98.89%, and 99.56% respectively. Obviously, CV-DT has the
highest diagnostic accuracy 100%. Although the diagnostic
accuracy of CV-DT is only 2% higher than DT and 0.44%
higher than BPN, we think the accuracy increasing from
99.56% to 100% is more meaningful.

As shown in Fig. 20, the common diagnostic errors of
these multiple classification approaches are mainly located
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FIGURE 18. The FR-DT using the FR-ID3 algorithm.

FIGURE 19. The CV-DT using the CV-ID3 algorithm.

FIGURE 20. The diagnostic accuracy results of DT, CV-DT, kNN, SVM
and BPN.

in F5, F13, and F15, which resulted from a high degree of
data intersection in T4 under the condition of component
tolerances. The CV-DT only uses the T4 information as the
splitting point of F1 and F13 in the last step. On the other
hand, F5, F13, and F15 are distinguished by T6 before the
use of T4. Therefore, CV-DT can avoid the misclassification
by the confused information of T4 completely.

VII. CONCLUSION
Focusing on the two drawbacks of traditional decision trees
with the ID3 algorithm, this paper proposes two improved
decision trees: CV-DT and FR-DT for analog circuit fault
diagnosis. These two decision trees have two highlights. The
first one is to propose a CV-DT which is constructed by
an improved ID3 algorithm considering the cluster validity
index. We propose a new CVI which can compare the cluster
validities of different attributes. The larger CVI demonstrates
that the partition has the higher credibility. We use CVI to
modify the information gain, and this method increases the
diagnostic accuracy. The second one is to propose an FR-DT
which is constructed by an improved ID3 algorithm consid-
ering the fault rates. This algorithm divides the information
gain into two aspects. One of the information gain entropies is
based on the number of clusters and considers the partitioning
ability of each attribute. The other is based on the fault rates
and considers the isolation priority of faults with a higher
fault rate. This method decreases the ADS and promotes the
diagnostic efficiency.

A simulation case and a real board case are firstly given
to compare the diagnostic efficiency of traditional DT and
FR-DT, then compare the diagnostic accuracy among tradi-
tional DT, CV-DT, kNN, SVM, and BPN approaches. The
two cases both show that the FR-DT promotes the diagnostic
efficiency than traditional DT, and the CV-DT promotes the
diagnostic accuracy compared with other multiple classifica-
tion methods.

Our methods work well only when fault data can be dis-
tinguished by the hyperplanes that are vertical or parallel
to any axis in space. When the fault data have a complex
space structure, we may need to use oblique hyperplanes
to distinguish them as our proposed methods are invalid.
In our future work, we need to study the selection of splitting
points which combine two or more attributes, or we need to
study data preprocessing methods and extract attributes with
a higher classification performance.

In addition, based on the decision tree method, the random
forest algorithm is integrating a lot of decision trees for
classification. Based on the proposed modified FR-DT and
CV-DT, when each decision tree has more accurate or effi-
cient diagnostic results, the diagnostic performance of the
random forest is also increasing. In our future work,
we will study the random forest algorithm considering fault
rate or cluster validity.

APPENDIX
For C4.5 algorithm, the information gain ratio is shown in the
form

IGR
(
X ,Aj

)
=
IG
(
X ,Aj

)
SI
(
X ,Aj

) = Entropy (X)− Entropy
(
X ,Aj

)
SI
(
X ,Aj

)
=

N∑
n=1

|Cn|
NT

log |Cn|NT
−

rj∑
k=1

|Sk |
NT

(
N∑
n=1

|Ckn|
|Sk |

log |Ckn|
|Sk |

)
rj∑
k=1

|Sk |
NT

log |Sk |NT
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We unfold the expression of the information gain, we will
obtain

IG
(
X ,Aj

)
=

N∑
n=1

|Cn|
NT

log
|Cn|
NT
−

rj∑
k=1

|Sk |
NT

(
N∑
n=1

|Ckn|
|Sk |

log
|Ckn|
|Sk |

)

=

N∑
n=1

log
|Cn|
NT

rj∑
k=1

|Ckn|
NT
−

rj∑
k=1

N∑
n=1

|Ckn|
NT

log
|Ckn|
|Sk |

=

rj∑
k=1

N∑
n=1

|Ckn|
NT

(
log
|Cn|
NT
− log

|Ckn|
|Sk |

)
In general, one category may contain more than one value

in an attribute, thus |Sk | =
N∑
n=1
|Ckn| ≤

∑
nk

∣∣Cnk ∣∣ and ∣∣Cknk ∣∣ ≤∣∣Cnk ∣∣, obviously, the information gain (IG) is different from
the split information (SI). However, in this paper, we only
consider that the circuit is working in the single condition
and each fault only contains the single class of value in a test

point, thus |Sk | =
N∑
n=1
|Ckn| =

∑
nk

∣∣Cnk ∣∣, ∣∣Cknk ∣∣ = ∣∣Cnk ∣∣, and
|Ckn| = 0 (n 6= nk) in this case,

IG
(
X ,Aj

)
=

rj∑
k=1

N∑
n=1

|Ckn|
NT

(
log
|Cn|
NT
− log

|Ckn|
|Sk |

)

=

rj∑
k=1

∑
nk

∣∣Cnk ∣∣
NT

(
log

∣∣Cnk ∣∣
NT
− log

∣∣Cnk ∣∣
|Sk |

)

=

rj∑
k=1

∑
nk

∣∣Cnk ∣∣
NT

log
|Sk |
NT

=

rj∑
k=1

|Sk |
NT

log
|Sk |
NT
= SI

(
X ,Aj

)
Obviously, the information gain (IG) is equal to the split

information (IG) for each splitting test points.

ACKNOWLEDGMENT
The authors would like to thank the editor and reviewers
for their insightful comments and suggestions, which helped
improve the paper significantly. This research did not receive
any specific grant from funding agencies in the public, com-
mercial, or not-for-profit sectors.

REFERENCES
[1] J. Cui and Y. Wang, ‘‘A novel approach of analog circuit fault diagnosis

using support vector machines classifier,’’ Measurement, vol. 44, no. 1,
pp. 281–289, Jan. 2011.

[2] H. Luo, Y. Wang, H. Liu, and Y. Jiang, ‘‘Module level fault diagnosis
for analog circuits based on system identification and genetic algorithm,’’
Measurement, vol. 45, no. 4, pp. 769–777, May 2012.

[3] H. Luo, W. Lu, Y. Wang, L. Wang, and X. Zhao, ‘‘A novel approach for
analog fault diagnosis based on stochastic signal analysis and improved
GHMM,’’Measurement, vol. 81, pp. 26–35, Mar. 2016.

[4] A. Zhang, C. Chen, and B. Jiang, ‘‘Analog circuit fault diagnosis based
UCISVM,’’ Neurocomputing, vol. 173, pp. 1752–1760, Jan. 2016.

[5] P. Chen, L. Yuan, Y. He, and S. Luo, ‘‘An improved SVM classifier based
on double chains quantum genetic algorithm and its application in analogue
circuit diagnosis,’’ Neurocomputing, vol. 211, pp. 202–211, Oct. 2016.

[6] H. Luo and C. Y. W. Jiang, ‘‘A SVDD approach of fuzzy classification
for analog circuit fault diagnosis with FWT as preprocessor,’’ Expert Syst.
Appl., vol. 38, no. 8, pp. 10554–10561, Aug. 2011.

[7] G. Xu-Sheng, G. Wen-Ming, D. Zhe, and L. Wei-Dong, ‘‘Research on
WNN soft fault diagnosis for analog circuit based on adaptive UKF algo-
rithm,’’ Appl. Soft Comput., vol. 50, pp. 252–259, Jan. 2017.

[8] D. Binu and B. S. Kariyappa, ‘‘A survey on fault diagnosis of analog
circuits: Taxonomy and state of the art,’’ AEU-Int. J. Electron. Commun.,
vol. 73, pp. 68–83, Mar. 2017.

[9] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986.

[10] J. R. Quinlan, Programs for Machine Learning, San Mateo, CA, USA:
Morgan Kaufmann, 1993.

[11] M. Jaworski, P. Duda, and L. Rutkowski, ‘‘New splitting criteria for
decision trees in stationary data streams,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 6, pp. 2516–2529, Jun. 2018.

[12] R. Rivera-Lopez and J. Canul-Reich, ‘‘Construction of near-optimal axis-
parallel decision trees using a differential-evolution-based approach,’’
IEEE ACCESS, vol. 6, pp. 5548–5563, 2018.

[13] S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, ‘‘Efficient kNN classifi-
cation with different numbers of nearest neighbors,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 5, pp. 1774–1785, May 2018.

[14] N. Li, S. Guo, and Y. Wang, ‘‘Weighted preliminary-summation-based
principal component analysis for non-Gaussian processes,’’ Control Eng.
Pract., vol. 87, pp. 122–132, Jun. 2019.

[15] Z. Sun, K. Hu, T. Hu, J. Liu, and K. Zhu, ‘‘Fast multi-label low-rank
linearized SVM classification algorithm based on approximate extreme
points,’’ IEEE Access, vol. 6, pp. 42319–42326, 2018.

[16] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, ‘‘Improving
neural-network classifiers using nearest neighbor partitioning,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2255–2267,
Oct. 2017.

[17] H. Hirose, M. Hikita, S. Ohtsuka, S.-I. Tsuru, and J. Ichimaru, ‘‘Diagnosis
of electric power apparatus using the decision tree method,’’ IEEE Trans.
Dielectr. Electr. Insul., vol. 15, no. 5, pp. 1252–1260, Oct. 2008.

[18] S. R. Samantaray, ‘‘Decision tree-based fault zone identification and fault
classification in flexible AC transmissions-based transmission line,’’ IET
Generation, Transmiss. Distribution, vol. 3, no. 5, pp. 425–436, May 2009.

[19] A. Jamehbozorg and S. M. Shahrtash, ‘‘A decision tree-based method
for fault classification in double-circuit transmission lines,’’ IEEE Trans.
Power Del., vol. 25, no. 4, pp. 2184–2189, Oct. 2010.

[20] A. Swetapadma and A. Yadav, ‘‘A novel decision tree regression-based
fault distance estimation scheme for transmission lines,’’ IEEE Trans.
Power Del., vol. 32, no. 1, pp. 234–245, Feb. 2017.

[21] K. Kyoungok, ‘‘A hybrid classification algorithm by subspace partition-
ing through semi-supervised decision tree,’’ Pattern Recognit., vol. 60,
pp. 157–163, Dec. 2016.

[22] H. K. Sok, M. P.-L. Ooi, Y. C. Kuang, and S. Demidenko, ‘‘Multivari-
ate alternating decision trees,’’ Pattern Recognit., vol. 50, pp. 195–209,
Feb. 2016.

[23] X. Liu, Q. Li, T. Li, and D. Chen, ‘‘Differentially private classification
with decision tree ensemble,’’ Appl. Soft Comput., vol. 62, pp. 807–816,
Jan. 2018.

[24] Q. Hu, X. Che, L. Zhang, D. Zhang, M. Guo, and D. Yu, ‘‘Rank entropy-
based decision trees for monotonic classification,’’ IEEE Trans. Knowl.
Data Eng., vol. 24, no. 11, pp. 2052–2064, Nov. 2012.

[25] S. Pei, Q. Hu, and C. Chen, ‘‘Multivariate decision trees with monotonicity
constraints,’’ Knowl.-Based Syst., vol. 112, pp. 14–25, Nov. 2016.

[26] A. Segatori, F. Marcelloni, andW. Pedrycz, ‘‘On distributed fuzzy decision
trees for big data,’’ IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 174–192,
Feb. 2018.

[27] Y. Cui, J. Shi, and Z. Wang ‘‘Analog circuit fault diagnosis based on
quantum clustering basedmulti-valued quantum fuzzification decision tree
(QC-MQFDT),’’Measurement, vol. 93, pp. 421–434, Nov. 2016.

[28] Y. Cui, J. Shi, and Z. Wang ‘‘Analog circuits fault diagnosis using multi-
valued Fisher’s fuzzy decision tree (MFFDT),’’ Int. J. Circuit Theory Appl.,
vol. 44, no. 1, pp. 240–260, Jan. 2016.

[29] D. Xu and Y. A. Tian ‘‘A comprehensive survey of clustering algorithms,’’
Ann. Data Sci., vol. 2, no. 2, pp. 165–193, Jun. 2015.

VOLUME 7, 2019 140649



J. Shi et al.: GMM Clustering-Based Decision Trees Considering Fault Rate and Cluster Validity

[30] C. Stauffer and W. E. L. Grimson, ‘‘Adaptive background mixture models
for real-time tracking,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., Fort Collins, CO, USA, Vol. 2, Jun. 1999, pp. 246–252.

[31] Y.-M. Cha and J.-H. Han, ‘‘High-accuracy retinal layer segmentation for
optical coherence tomography using tracking kernels based on Gaussian
mixture model,’’ IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 2,
pp. 32–41, Mar./Apr. 2014.

[32] B. A. Akram, A. H. Akbar, and O. Shafiq, ‘‘HybLoc: Hybrid indoor
Wi-Fi localization using soft clustering-based random decision forest
ensembles,’’ IEEE Access, vol. 6, pp. 38251–38272, 2018.

[33] Y. Zhao, A. K. Shrivastava, and K. L. Tsui, ‘‘Regularized Gaussian mixture
model for high-dimensional clustering,’’ IEEE Trans. Cybern., vol. 49,
no. 10, pp. 3677–3688, Oct. 2019.

[34] Z. Ren, S. Gao, L.-T. Chia, and I. W.-H. Tsang, ‘‘Region-based saliency
detection and its application in object recognition,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 24, no. 5, pp. 769–779, May 2014.

[35] X. Hou, T. Zhang, G. Xiong, Z. Lu, and K. Xie, ‘‘A novel steganalysis
framework of heterogeneous images based on GMM clustering,’’ Signal
Process., Image Commun., vol. 29, no. 3, pp. 385–399, Mar. 2014.

[36] J. Zhang, Z. Yin, and R. Wang, ‘‘Pattern classification of instantaneous
cognitive task-load through GMM clustering, Laplacian eigenmap, and
ensemble SVMs,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 14, no. 4,
pp. 947–965, Jul./Aug. 2017.

[37] S.-D. Oh, Y.-J. Kim, and J.-S. Hong, ‘‘Urban traffic flow prediction system
using a multifactor pattern recognition model,’’ IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 5, pp. 2744–2755, Oct. 2015.

[38] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, ‘‘An
extensive comparative study of cluster validity indices,’’ Pattern Recognit.,
vol. 46, no. 1, pp. 243–256, Jan. 2013.

[39] Y. Wang, Y. Si, B. Huang, and Z. Lou, ‘‘Survey on the theoretical
research and engineering applications of multivariate statistics process
monitoring algorithms: 2008–2017,’’ Can. J. Chem. Eng., vol. 96, no. 10,
pp. 2073–2085, Oct. 2018.

[40] H. Li, J. Sun, D. Meng, and Q. Zhang, ‘‘A multiobjective approach based
on Gaussian mixture clustering for sparse reconstruction,’’ IEEE Access,
vol. 7, pp. 22684–22697, 2019.

[41] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, andM. G. Quiles,
‘‘Clus-DTI: Improving decision-tree classification with a clustering-based
decision-tree induction algorithm,’’ J. Brazilian Comput. Soc., vol. 18,
no. 4, pp. 351–362, Apr. 2012.

[42] Y. Cui, J. Shi, and Z. Wang, ‘‘Analog circuit test point selection incor-
porating discretization-based fuzzification and extended fault dictionary
to handle component tolerances,’’ J. Electron. Test., vol. 32, no. 6,
pp. 661–679, Dec. 2016.

JUNYOU SHI received the Ph.D. degree from
the School of Reliability and Systems Engineer-
ing, Beihang University, Beijing, China, in 2004,
where he is currently an Associate Professor. His
main research interests include system testability,
system reliability, and prognostics and health man-
agement (PHM).

QINGJIE HE received the B.E. degree from
the School of Reliability and Systems Engineer-
ing, Beihang University, Beijing, China, in 2010,
where he is currently pursuing the Ph.D. degree.
His main research interests include system testa-
bility, fault diagnosis, and prognostics and health
management (PHM).

ZILI WANG received the M.S. degree from
the School of Reliability and Systems Engineer-
ing, Beihang University, Beijing, China, in 1988,
where he is currently a Professor. His research
interests include reliability theory and practices,
system engineering, and prognostics and health
management (PHM).

140650 VOLUME 7, 2019


