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ABSTRACT Multi-attribute group decision making (MAGDM) is one of the most important research
hotspots in the field of decision sciences. Many practical problems are often characterized byMAGDM. The
aim of this paper is to develop a new approach for MAGDM problems, in which the attribute values take the
form of picture fuzzy information, and the information about the weights of attributes and decision makers is
unknown. Firstly, some picture fuzzy interaction operators are presented, such as the picture fuzzy weighted
interaction averaging (PFWIA) operator, picture fuzzy ordered weighted interaction averaging (PFOWIA)
operator and picture fuzzy hybrid ordered weighted interaction averaging (PFHOWIA) operator. In the
meantime, some desirable properties of these operators are discussed in detail. Secondly, to get reasonable
decision result, we propose a method to determine the weights of decision makers under picture fuzzy setting
based on the idea of the Dice similarity measure. Thirdly, for the situations where the information about the
attribute weights is partly known, we establish an optimization model to determine the attribute weights
on the basis of the maximizing deviation method. Fourthly, we propose a new method to solve MAGDM
problems by extending the traditional Evaluation based on Distance from Average Solution (EDAS) method.
Finally, an illustrative example is given to demonstrate the calculation process of the proposed method, and
the method is verified by comparing the evaluation result with that of two existing methods.

INDEX TERMS Evaluation based on distance from average solution (EDAS), multi-attribute group
decision making (MAGDM), picture fuzzy numbers (PFNs), picture fuzzy interaction aggregation operators,
maximizing deviation method, dice similarity measure.

I. INTRODUCTION
Multi-attribute group decision making (MAGDM) is an
important branch of decision theory, which has been widely
used in many fields [1]–[17]. In many cases, decision makers
are puzzled when giving a reasonable result, because the
decision process involves identifying multiple criteria and
evaluating multiple alternatives. Moreover, in the practical
decision process, due to the ambiguity as well as intangibility
arising from human qualitative judgments, experts’ opinions
could involve more types of answers: yes, abstain, no and
refusal, which cannot be accurately expressed by crisp values,
and even cannot be described by the fuzzy set theory [18]
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or intuitionistic fuzzy set theory [19]. Recently, Cuong and
Kreinovich [20] proposed the picture fuzzy set (PFS) method
and investigated some basic operations and properties of
PFS. The picture fuzzy set method is characterized by three
functions expressing the degree of positive membership,
the degree of neutral membership and the degree of neg-
ative membership. Since its appearance, picture fuzzy set
has received more and more attention from researchers.
Singh [21] proposed correlation coefficients for picture fuzzy
sets which consider the degree of positive membership,
degree of neutral membership, degree of negative member-
ship and the degree of refusal membership, and applied the
correlation coefficients to clustering analysis under picture
fuzzy environment. Son [22] presented a novel distributed
picture fuzzy clustering method on picture fuzzy sets and
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developed two novel hybrid forecast methods based on pic-
ture fuzzy clustering method. Thong and Son [23] proposed
automatic picture fuzzy clustering method for determining
the most suitable number of clusters through combining
Particle Swarm Optimization (PSO) algorithm and fuzzy
C-means under picture fuzzy environment. Wei [24] defined
the cross entropy of picture fuzzy sets and utilized the picture
fuzzy weighted cross entropy between the feasible alterna-
tives and the ideal alternative to select the most desirable
alternative(s). Wei et al. [25] established the projection model
with picture fuzzy information to measure the similarity
degrees between the feasible alternatives and the ideal one.
Son [26] defined a generalized picture distance measure and
integrated it to a novel hierarchical picture fuzzy clustering
method. Wei [27] developed some picture fuzzy aggregation
operators and applied these operators to solve multi-attribute
decision making problems. Thong and Son [28] presented an
effective hybrid model between picture fuzzy clustering and
intuitionistic fuzzy recommender systems and applied this
model to deal with medical diagnosis problem. Nie et al. [29]
advanced a shareholder voting method for proxy advisory
firm selection based on 2-tuple linguistic picture preference
relation. Wang et al. [30] introduced some new operational
rules for picture fuzzy numbers (PFNs) and proposed geo-
metric aggregation operators based on the operational laws
and applied these operators to deal with MAGDM problems.
Ashraf et al. [31] proposed some aggregation operators for
PFNs and applied these operators to solveMAGDMproblem.

Information aggregation operators have attracted wide
attention of researchers and have become an important
research topic in the research fields of MAGDM problem.
Over the past few years, to aggregate the individual prefer-
ence information into a collective one or obtain the overall
evaluation value of each alternative on all attributes, various
aggregation operators have been proposed, such as ordered
weighted averaging (OWA) operator [32], generalized OWA
aggregation operators [33], generalized hybrid aggregation
operators [34], and so on. For picture fuzzy information,
some aggregation operators have been proposed by some
researchers, such as fuzzy logic operators [35], picture fuzzy
aggregation operators and picture 2-tuple linguistic aggre-
gation operators [27], [36]. However, there is still short of
appropriate aggregation operators to integrate picture fuzzy
information. Therefore, an important objective of this paper
is to develop some new aggregation operators to integrate
picture fuzzy information and then to provide an effective tool
to deal with MAGDM problem.

For the traditional multi-attribute decision making
(MADM) methods, such as TOPSIS and VIKOR [37],
the best alternative is got by computing the distance from
ideal and nadir solutions. The desirable alternative has lower
distance from ideal solution and higher distance from nadir
solution in these MADM methods. Evaluation based on
Distance fromAverage Solution (EDAS), originally proposed
by Ghorabaee et al. [38], is a novel MADM method. It is
very useful for us to deal with MAGDM problem with

conflict parameters. Ghorabaee et al. [39] extended the EDAS
method to supplier selection. Peng and Liu [40] proposed an
algorithm to solve single-valued neutrosophic soft decision
making problem by EDAS. Ecer [41] used fuzzy AHP to
calculate the priority weights of each criteria and employed
the EDAS to achieve the final ranking of third-party logistics
providers. As far as we know, however, the study of the
MAGDM problem based on EDAS method have not been
applied under picture fuzzy environment in the existing
academic literature. Hence, it is an interesting research topic
to extend the traditional EDAS method to solve MAGDM
problem under picture fuzzy environment.

Motivated by the advantages of EADS method and pic-
ture fuzzy set, this paper extends the traditional EDAS
method to solve MAGDM problem with unknown weights of
attributes and decision makers under picture fuzzy environ-
ment. First, we develop some operators to aggregate picture
fuzzy information. Then, a method is proposed to deter-
mine the weights of decision makers and an optimization
model is established to determine the weights of attributes.
Finally, a novel approach is developed to solve MAGDM
problem under picture fuzzy environment based on the idea
of the EADS method. To do so, the remainder of the paper
is organized as follows. Section II briefly reviews some
related basic concepts. Section III proposes some aggrega-
tion operators, including picture fuzzy weighted interaction
averaging (PFWIA) operator, picture fuzzy ordered weighted
interaction averaging (PFOWIA) operator and picture fuzzy
hybrid ordered weighted interaction averaging (PFHOWIA)
operator. In Section IV, a new method is given to determine
the weights of decision makers based on the idea of the
Dice similarity measure, an optimization model is established
to determine the weights of attributes on the basis of the
maximizing deviation method, and further the EDAS method
is extended to rank alternatives. Section V provides a numer-
ical example and comparison analysis between the proposed
method in this paper and other existing methods. The paper
is concluded in Section VI.

II. PRELIMINARIES
A. PICTURE FUZZY SETS
Cuong and Kreinovich [20] introduced the concept of picture
fuzzy set, which is a generalization of the intuitionistic fuzzy
set.
Definition 1 [20]: A picture fuzzy set (PFS) A on the

universe X is an object of the form

A = {< x, µA(x), ηA(x), vA(x) > |x ∈ X } (1)

where µA(x) ∈ [0, 1] is the degree of positive member-
ship of A, ηA(x) ∈ [0, 1] is the degree of neutral member-
ship of A, vA(x) ∈ [0, 1] is the degree of negative membership
of A, and µA(x), ηA(x), vA(x) satisfy the following condition:
0 ≤ µA(x) + ηA(x) + vA(x) ≤ 1, ∀x ∈ X . For x ∈ X ,
πA(x) = 1 − µA(x) − ηA(x) − vA(x) is called the degree
of refusal membership of x in A. For convenience, we call
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aa =< µa, ηa, va > a picture fuzzy number (PFN), where
µa ∈ [0, 1], ηa ∈ [0, 1], va ∈ [0, 1], 0 ≤ µa + ηa + va ≤ 1.
Definition 2 [20]: Suppose that A and B be two PFSs on

universeX , the inclusion, union, intersection and complement
operations are defined as follows:

(1)A ⊆ B, if µA(x) ≤ µB(x), ηA(x) ≤ ηB(x) and νA(x)

≤ νB(x),∀x ∈ X;

(2)A ∪ B = {(x,max(µA(x), µB(x)),

min(ηA(x), ηB(x)),min(νA(x), νB(x))) |x ∈ X };

(3)A ∩ B = {(x,min(µA(x), µB(x)),

max(ηA(x), ηB(x)),max(νA(x), νB(x))) |x ∈ X };

(4)Ã = {(x, µA(x), ηA(x), νA(x)) |x ∈ X }.

Definition 3 [20]: Let a =< ua, ηa, va > be a picture
fuzzy number, and then the score function S(a) and accuracy
function H (a) of the PFN are defined as follows:

S(a) = (µa + 1− ηa + 1− νa)/3 (2)

H (a) = µa − νa (3)

The larger the score value of S(a), the greater the PFN a.
And the larger the score value ofH (a), the greater the PFN a.
Definition 4 [20]: Let ai =< µai , ηai , νai > and bi =<

µbi , ηbi , νbi >, (i = 1, 2, . . . , n) are two picture fuzzy sets,
then the distance between the two picture fuzzy sets a and b
is defined as follows:

d(a, b)=

(
1
n

n∑
i=1

((µai−µbi )
p
+(ηai−ηbi )

p
+(νai−νbi )

p)

)1/p
(4)

In this paper, we take p = 2 to calculate the distance
between picture fuzzy sets.

B. THE EDAS METHOD
Evaluation based onDistance fromAverage Solution (EDAS)
is a novel MADM method, which is suitable for solving
MADM problem with conflicting parameters. Let A =

{A1,A2, . . . ,Am}(m ≥ 2) be a finite set of alternatives, C =
{C1,C2, . . . ,Cn}(n ≥ 2) be a finite set of attributes, and
w = (w1,w2, . . . ,wn)T be the weight vector of the attributes,
where wj > 0 and

∑n
j=1 wj = 1. The detailed steps of the

traditional EDAS method are given as follows [38]:
Step 1: Select suitable attributes that describe alternatives.
Step 2: Construct the decision making matrix X, shown as

follows:

X = (xij)m×n

where xij is the evaluation information of the alternative Ai
with respect the attribute Cj.
Step 3:Determine the average solution with respect to each

attribute, which is shown as follows:

AVj =
1
n

∑n

i=1
xij, j = 1, 2, . . . n

Step 4: Construct the positive distance matrix PDA =
(PDAij)m×n from the average solution and the negative dis-
tance matrix NDA = (NDAij)m×n from the average solu-
tion according to the type of attribute. If the jth attribute is
beneficial,

PDAij =
max(0, (xij − AVj))

AVj
, NDAij =

max(0, (AVj − xij))
AVj

,

and if the jth attribute is cost,

PDAij =
max(0, (AVj − xij))

AVj
, NDAij =

max(0, (xij − AVj))
AVj

,

where PDAij and NDAij denote the positive and negative
distance of the ith alternative from average solution in terms
of the jth attribute, respectively.
Step 5:Determine the weight sum of PDA and NDA for all

alternatives, which is shown as follows:

SPi =
n∑
j=1

wjPDAij, SNi =
n∑
j=1

wjNDAij, i = 1, 2, . . . ,m,

where wj is the weight of the jth attribute.
Step 6: Normalize the values of SPi and SNi for all

alternatives.

NSPi =
SPi

max
1≤i≤m

{SPi}
, NSNi = 1−

SNi
max
1≤i≤m

{SNi}
,

i = 1, 2, . . . ,m.

Step 7: Calculate the appraisal score for all alternatives.

ASi =
1
2
(NSPi + NSNi) , i = 1, 2, . . . ,m. (5)

Step 8: Rank all the alternatives according to the decreas-
ing values of appraisal score, and select the most desirable
alternative(s).

III. THE INTERACTION OPERATIONAL LAWS
AND PICTURE FUZZY INTERACTION
AGGREGATION OPERATORS
A. THE INTERACTION OPERATIONAL LAWS OF
PICTURE FUZZY NUMBERS
In this section, we use some novel operational laws on pic-
ture fuzzy numbers to develop aggregation operators. The
existing operational laws of picture fuzzy information and
aggregation operators in [27] suffer from serious drawbacks.
The aggregation results usually conflicts with the constraint
that the sum of the three degree must not exceed 1. At the
same time, it is found that the operational laws and geometric
aggregation operators on picture fuzzy sets in [27] are not
suitable to be used in the special circumstances. For example,
if ai =< µi, ηi, νi >, (i = 1, 2, . . . , n) are a collection of
picture fuzzy numbers, where ak =< µk , ηk , νk > is one
the element of ai(i = 1, 2, . . . , n) with µk = 0. Then we
have uPFGA(a1, a2, . . . , an) = 0 by using the operation laws
in [27]. It is obvious that the elements ai(i 6= k) have no
effects on the aggregation result.
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Inspired by the interaction operational laws in [42], [43]
and the view of probability, we adopt the operational laws
of picture fuzzy numbers in [44], [45]. The feature of the
operational laws in [44], [45] is that the interactions are
taken into consideration among positive membership, neutral
membership, negative membership and refusal membership
values of picture fuzzy numbers.
Definition 5 [44], [45]: Let a =< ua, ηa, va > and b =<

ub, ηb, vb > be two PFNs, and λ > 0, then

(1)a⊕ b =< 1− (1− ua)(1− ub),

(1− ua)(1− ub)− (1− ua − ηa)(1− ub − ηb),

(1− ua − ηa)(1− ub − ηb)− (1− ua − ηa − va)

(1− ub − ηb − vb) > .

(2)a⊗ b

= < (1− va − ηa)(1− vb − ηb)− (1− va − ηa − ua)

(1− vb − ηb − ub),

(1− va)(1− vb)− (1− va − ηa)(1− vb − ηb),

1− (1− va)(1− vb) > .

(3)λa =< 1− (1− µa)λ,

(1− µa)λ − (1− µa − ηa)λ,

(1− µa − ηa)λ − (1− µa − ηa − νa)λ > .

(4)(a)λ =< (1− νa − ηa)λ − (1− νa − ηa − µa)λ,

(1− νa)λ − (1− νa − ηa)λ,

1− (1− νa)λ > .

Example 1: Let a =< 0.3, 0.2, 0.4 > and b =<
0.4, 0.2, 0.3 > be two PFNs and λ = 0.5. Now we cal-
culate the picture numbers by using the operational laws in
Definition 5, then we obtain as follows:

(1)a⊕ b =< 1− (1− 0.3)(1− 0.4),

(1− 0.3)(1− 0.4)− (1− 0.3− 0.2)(1− 0.4− 0.2),

(1− 0.3− 0.2)(1− 0.4− 0.2)− (1− 0.3− 0.2− 0.4)

(1− 0.4− 0.2− 0.3) >

= < 0.58, 0.22, 0.19 > .

(2)a⊗ b =

< (1− 0.4− 0.2)(1−0.3−0.2)− (1− 0.4− 0.2− 0.3)

(1− 0.3− 0.2− 0.4),

(1− 0.4)(1− 0.3)− (1− 0.4− 0.2)(1− 0.3− 0.2),

1− (1− 0.4)(1− 0.3) >

= < 0.19, 0.22, 0.58 > .

(3)λa =< 1−(1−0.3)0.5, (1− 0.3)0.5−(1− 0.3− 0.2)0.5,

(1− 0.3− 0.2)0.5 − (1− 0.3− 0.2− 0.4)0.5 >

= < 0.16, 0.13, 0.39 > .

(4)(a)λ =< (1− 0.4− 0.2)0.5 − (1− 0.4− 0.2− 0.3)0.5,

(1− 0.4)0.5 − (1− 0.4− 0.2)0.5,

1− (1− 0.4)0.5 >

= < 0.32, 0.14, 0.23 > .

Theorem 1: Let a =< ua, ηa, va >, b =< ub, ηb, vb > and
c =< uc, ηc, vc > be three PFNs, then
(1)a⊕ b = b⊕ a;
(2) (a⊕ b)⊕ c = a⊕ (b⊕ c);
(3) λ1a⊕ λ2a = (λ1 + λ2)a;
(4) λ(a⊕ b) = λa⊕ λb.
Proof: According to Definition 5, we can easily get (1),

so the proof of (1) is omitted here. In what follows, we just
give the proofs of (2), (3) and (4).

(2) According to the operational laws in Definition 5,
we obtain

a⊕ (b⊕ c) =< 1− (1− ua)(1− ub⊕c),

(1− ua)(1− ub⊕c)− (1− ua − ηb⊕c)(1− ub − ηb⊕c),

(1− ua − ηa)(1− ub⊕c − ηb⊕c)−

(1− ua − ηa − va)(1− ub⊕c − ηb⊕c − vb⊕c) >,

where ub⊕c = 1 − (1 − ua)(1 − ub), ηb⊕c = (1 − ua)(1 −
ub)− (1− ua − ηa)(1− ub − ηb), vb⊕c = (1− ua − ηa)(1−
ub − ηb)− (1− ua − ηa − va)(1− ub − ηb − vb).
Then, we have

a⊕ (b⊕ c) =< 1− (1− ua)(1− ub)(1− uc),

(1− ua)(1− ub)(1− uc)− (1− ua − ηa)(1− ub − ηb)

(1− uc − ηc), (1− ua − ηa)(1− ub − ηb)(1− uc − ηc)−

(1− ua − ηa − va)(1− ub − ηb − vb)(1− uc−ηc−vc)>.

Similarly, we have

(a⊕ b)⊕ c =< 1− (1− ua)(1− ub)(1− uc),

(1− ua)(1− ub)(1− uc)− (1− ua − ηa)

(1− ub − ηb)(1− uc − ηc),

(1− ua − ηa)(1− ub − ηb)(1− uc − ηc)−

(1− ua − ηa − va)(1− ub−ηb − vb)(1− uc−ηc − vc)>.

Therefore, the expression (a⊕ b)⊕ c = a⊕ (b⊕ c) holds.
(3) According to the operational laws in Definition 5,

we obtain

λ1a = < 1− (1− µa)λ1 , (1− µa)λ1 − (1− µa − ηa)λ1 ,

(1− µa − ηa)λ1 − (1− µa − ηa − νa)λ1 >,

λ2a = < 1− (1− µa)λ2 , (1− µa)λ2 − (1− µa − ηa)λ2 ,

(1− µa − ηa)λ2 − (1− µa − ηa − νa)λ2 >

and

(λ1 + λ2)a = < 1− (1− µa)(λ1+λ2),

(1− µa)(λ1+λ2) − (1− µa − ηa)(λ1+λ2),

(1−µa−ηa)(λ1+λ2)−(1−µa−ηa−νa)(λ1+λ2)>.

Further, we have the following expression:

λ1a⊕ λ2a = < 1− (1− µa)(λ1+λ2),

(1− µa)(λ1+λ2) − (1− µa − ηa)(λ1+λ2),

(1−µa−ηa)(λ1+λ2)−(1−µa−ηa−νa)(λ1+λ2)>.

Therefore, the expression λ1a⊕ λ2a = (λ1 + λ2)a holds.

141182 VOLUME 7, 2019



X. Li et al.: MAGDM Method Based on EDAS Under Picture Fuzzy Environment

(4) According to the operational laws in Definition 5,
we obtain we obtain

λa = < 1− (1− µa)λ, (1− µa)λ − (1− µa − ηa)λ,

(1− µa − ηa)λ − (1− µa − ηa − νa)λ >,

λb = < 1− (1− µb)λ, (1− µb)λ − (1− µb − ηb)λ,

(1− µb − ηb)λ − (1− µb − ηb − νb)λ >,

and

a⊕ b =< 1− (1− ua)(1− ub),

(1− ua)(1− ub)− (1− ua − ηa)(1− ub − ηb),

(1− ua − ηa)(1− ub − ηb)− (1− ua − ηa − va)

(1− ub − ηb − vb) > .

Further, we can get the following aggregation result
according the operational laws in Definition 5:

λ(a⊕ b) =

< 1− (1− ua)λ(1− ub)λ,

(1− ua)λ(1− ub)λ − (1− ua − ηa)λ(1− ub − ηb)λ,

(1− ua − ηa)λ(1− ub − ηb)λ −

(1− ua − ηa − va)λ(1− ub − ηb − vb)λ >

= λa⊕ λb.

B. PICTURE FUZZY WEIGHTED INTERACTION
AVERAGING OPERATOR
Definition 7 : Let ai =< µai , ηai , νai > (i = 1, 2, . . . , n)

be a collection of PFNs, and w = (w1,w2, . . . ,wn)T be the

weight vector of them with wi ∈ [0, 1] and
n∑
i=1

wi = 1, then

the picture fuzzy weighted interaction averaging (PFWIA)
operator is defined as:

PFWIA(a1, a2, . . . , an) =
n
⊕
i=1

(wiai). (6)

According to the operational laws of PFNs described in
Definition 5, we can derive the following theorem:
Theorem 2: Let ai =< µai , ηai , νai > (i = 1, 2, . . . , n) be

a collection of PFNs, w = (w1,w2, . . . ,wn)T is the weight

vector of ai(i = 1, 2, . . . , n), such that wi ≥ 0 and
n∑
i=1

wi = 1.

Then the aggregated result by usingPFWIA operator is shown
as follows:

PFWIA(a1, a2, . . . , an)

=
n
⊕
i=1

(wiai)

= < 1−
n∏
i=1

(1− µai )
wi ,

n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi ,

n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi > .

(7)

Proof: In what follows, we prove that Equation (7) holds
by using mathematical induction on n.
When n = 1, we have

w1a1=< 1−(1−µa1 )
w1 , (1−µa1 )

w1−(1−µa1−ηa1 )
w1 ,

(1− µa1 − ηa1 )
w1 − (1− µa1 − ηa1 − νa1 )

w1 > .

Thus, Equation (7) holds for n = 1. If Equation (7) holds
for n = k . Then, when n = k + 1, by inductive assumption
and the operational laws of PFNs in Definition 5, we have

k+1
⊕
i=1

(wiai)

=
k
⊕
i=1

(wiai)⊕ (wk+1ak+1)

= < 1−
k∏
i=1

(1−µa1 )
wi ,

k∏
i=1

(1−µa1 )
wi−

k∏
i=1

(1−µa1−ηa1 )
wi ,

k∏
i=1

(1− µa1 − ηa1 )
wi−

k∏
i=1

(1− µa1 − ηa1 − νa1 )
wi>⊕

<1−(1−µak+1 )
wk+1 , (1−µak+1 )

wk+1−(1−µak+1−ηak+1)
wk+1,

(1−µak+1−ηak+1 )
wk+1−(1−µak+1−ηak+1−νak+1)

wk+1>

=<1−
k+1∏
i=1

(1−µai )
wi ,

k+1∏
i=1

(1−µai )
wi−

k+1∏
i=1

(1−µai−ηai )
wi ,

k+1∏
i=1

(1− µai − ηai )
wi −

k+1∏
i=1

(1− µai − ηai − νai )
wi >

Then, Equation (7) holds for n = k + 1.
Therefore, by using mathematical induction on n, Equa-

tion (7) holds for all positive natural numbers n.
Theorem 3: Let ai =< µai , ηai , νai > (i = 1, 2, . . . , n)

be a collection of PFNs, then the aggregated result by using
PFWIA operator is also a picture fuzzy number, that is
PFWIA(a1, a2, . . . , an) is also a PFN.

Proof: Since ai =< µai , ηai , νai >∈ PFNs, we have
0 ≤ µai , ηai , νai ≤ 1 and 0 ≤ µai + ηai + νai ≤ 1, then by
Definition 5, we know that the following expressions hold:

0 ≤ 1−
n∏
i=1

(1− µai )
wi ≤1,

0 ≤
n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi ≤ 1,

0 ≤
n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi ≤ 1,

and(
1−

n∏
i=1

(1−µai )
wi

)
+

(
n∏
i=1

(1−µai )
wi−

n∏
i=1

(1−µai−ηai )
wi

)

+

(
n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi

)

= 1−
n∏
i=1

(1− µai − ηai − νai )
wi ∈ [0, 1].
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Thus, we know that the aggregated result PFWIA(a1, a2,
. . . , an) of the PFWIA operator is also a PFN.
Especially, if w = (1/n, 1/n, . . . , 1/n)T , then the PFWIA

operator reduces to the picture fuzzy interaction arithmetic
averaging (PFIAA) operator:

PFIAA(a1, a2, . . . , an)

= < 1−
n∏
i=1

(1− µai )
1/n,

n∏
i=1

(1− µai )
1/n
−

n∏
i=1

(1− µai − ηai )
1/n,

n∏
i=1

(1− µai − ηai )
1/n
−

n∏
i=1

(1− µai − ηai − νai )
1/n > .

(8)

Based on above analysis, we can further discuss some
important properties of the PFWIA operator.
Theorem 4 (Idempotency): Let ai = (µai , ηai , νai )(i =

1, 2, . . . , n) be a set of picture fuzzy numbers, w =

(w1,w2, . . . ,wn)T be theweight vector of ai(i = 1, 2, . . . , n),

such that wi ≥ 0 and
n∑
i=1

wi = 1. If all ai(i = 1, 2, . . . , n) are

equal and ai = (µa0 , ηa0 , νa0 ) = a0 for all i = 1, 2, . . . , n,
then

PFWIA(a1, a2, . . . , an) = a0 (9)

Proof: Since ai = a0 =< µa0 , ηa0 , νa0 > for all i =

1, 2, . . . , n, wi ≥ 0 and
n∑
i=1

wi = 1, according to Theorem 2,

we have

PFWIA(a1, a2, . . . , an)

=
n
⊕
i=1

(wiai)

= < 1−
n∏
i=1

(1− µa0 )
wi ,

n∏
i=1

(1− µa0 )
wi

−

n∏
i=1

(1− µa0 − ηa0 )
wi ,

n∏
i=1

(1− µa0 − ηa0 )
wi −

n∏
i=1

(1− µa0 − ηa0 − νa0 )
wi >

= < 1− (1− µa0 )
∑n

i=1 wi , (1− µa0 )
∑n

i=1 wi

− (1− µa0 − ηa0 )
∑n

i=1 wi ,

(1− µa0 − ηa0 )
∑n

i=1 wi − (1− µa0 − ηa0 − νa0 )
∑n

i=1 wi >

= < µa0 , ηa0 , νa0 >

= a0

Theorem 5 (Boundary): Let ai = (µai , ηai , νai )(i =
1, 2, . . . , n) be a set of picture fuzzy numbers, if

a+=< max
1≤i≤m

(µai ),max{0, ( min
1≤i≤m

(µai+ηai )− max
1≤i≤m

(µai ))},

max{0, ( min
1≤i≤m

(µai + ηai + νai )− max
1≤i≤m

(µai+ηai ))}>

and

a− = < min
1≤i≤m

(µai ), max
1≤i≤m

(µai + ηai )− min
1≤i≤m

(µai ),

max
1≤i≤m

(µai + ηai + νai )− min
1≤i≤m

(µai + ηai ) > .

Then we have

a− ≤ PFWIA(a1, a2, . . . , an) ≤ a+ (10)

Proof: According to the given condition, we can get the
following two inequalities:

max
1≤i≤m

(µai )=1−(1− max
1≤i≤m

(µai ))
∑n

i=1 wi ≥ 1−
n∏
i=1

(1−µai )
wi

and

1−
n∏
i=1

(1−µai )
wi ≥ 1−(1− min

1≤i≤m
(µai ))

∑n
i=1 wi= min

1≤i≤m
(µai ).

Similarly, we can get the following two inequalities:

max
1≤i≤m

(µai + ηai )− min
1≤i≤m

(µai )

= (1− min
1≤i≤m

(µai ))
∑n

i=1 wi − (1− max
1≤i≤m

(µai + ηai ))
∑n

i=1 wi

≥

n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi

and
n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi

≥ (1− max
1≤i≤m

(µai ))
∑n

i=1 wi − (1− min
1≤i≤m

(µai + ηai ))
∑n

i=1 wi

= min
1≤i≤m

(µai + ηai )− max
1≤i≤m

(µai ).

Further, we know that the following two inequalities hold:

max
1≤i≤m

(µai + ηai + νai )− min
1≤i≤m

(µai + ηai )

= (1− min
1≤i≤m

(µai + ηai ))
∑n

i=1 wi

− (1− max
1≤i≤m

(µai + ηai + νai ))
∑n

i=1 wi

≥

n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi

and
n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi

≥ (1− max
1≤i≤m

(µai + ηai ))
∑n

i=1 wi

− (1− min
1≤i≤m

(µai + ηai + νai ))
∑n

i=1 wi

= min
1≤i≤m

(µai + ηai + νai )− max
1≤i≤m

(µai + ηai ).
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According to Theorem 3, we know that the aggregated
result of the PFWIA operator is also PFN. Thus, we know
the following expressions hold:

n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi ≥ 0,

n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi ≥ 0.

Therefore, we can get:

n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi

≥ max
{
0, min

1≤i≤m
(µai + ηai )− max

1≤i≤m
(µai )

}
and
n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi

≥ max
{
0, min

1≤i≤m
(µai + ηai + νai )− max

1≤i≤m
(µai + ηai )

}
.

According to Definition 3, we can prove the conclusion:
a− ≤ PFWIA(a1, a2, . . . , an) ≤ a+.
Theorem 6 (Monotonicity): If ai =< uai , ηai , vai >

(i = 1, 2, . . . , n) and bi =< ubi , ηbi , vbi > (i = 1, 2, . . . , n)
be two sets of picture fuzzy numbers, and µai ≤ µbi , µai +
ηai ≤ µbi + ηbi , µai + ηai + νai ≤ µbi + ηbi + νbi for all
i = 1, 2, . . . , n, then we have

PFWIA(a1, a2, . . . , an) ≤ PFWIA(b1, b2, . . . , bn) (11)

Proof: Since µai ≤ µbi , we have the following inequal-

ity: 1−
n∏
i=1

(1− µai )
wi ≤ 1−

n∏
i=1

(1− µbi )
wi .

Similarly, sinceµai ≤ µbi andµai+ηai ≤ µbi+ηbi , we can
get the following inequality:

n∏
i=1

(1− µai )
wi −

n∏
i=1

(1− µai − ηai )
wi

≥

n∏
i=1

(1− µbi )
wi −

n∏
i=1

(1− µbi − ηbi )
wi .

Further, since µai + ηai ≤ µbi + ηbi and µai + ηai + νai ≤
µbi + ηbi + νbi , we have the following inequality:

n∏
i=1

(1− µai − ηai )
wi −

n∏
i=1

(1− µai − ηai − νai )
wi

≥

n∏
i=1

(1− µbi − ηbi )
wi −

n∏
i=1

(1− µbi − ηbi − νbi )
wi .

Therefore, according to Definition 3, we know that the
following inequality holds.

PFWIA(a1, a2, . . . , an) ≤ PFWIA(b1, b2, . . . , bn).

C. A PICTURE FUZZY ORDERED WEIGHTED
INTERACTION AVERAGING OPERATOR
Definition 7: Let ai =< µai , ηai , νai > (i = 1, 2, . . . , n)

be a collection of picture fuzzy numbers, aσ (i) be the
ith largest of them, and ω = (ω1, ω2, . . . , ωn)T be the

aggregation-associated vector with ωi ∈ [0, 1] and
n∑
i=1

ωi = 1, then the picture fuzzy ordered weighted interaction
averaging (PFOWIA) operator is defined as:

PFOWIA(a1, a2, . . . , an) =
n
⊕
i=1

(ωiaσ (i)). (12)

Theorem 7: Let ai(i = 1, 2, . . . , n) be a collection of
picture fuzzy numbers, aσ (i) be the ith largest of them, and
ω = (ω1, ω2, . . . , ωn)T be the aggregation-associated vector

with ωi ∈ [0, 1] and
n∑
i=1
ωi = 1, then the aggregated result by

using PFOWIA operator is shown as follows:

PFOWIA(a1, a2, . . . , an)

=
n
⊕
i=1

(ωiaσ (i))

=

〈
1−

n∏
i=1

(1− µaσ (i) )
ωi ,

n∏
i=1

(1− µaσ (i) )
ωi −

n∏
i=1

(1− µaσ (i) − ηaσ (i) )
ωi ,

n∏
i=1

(1−µaσ (i)−ηaσ (i) )
ωi−

n∏
i=1

(1−µaσ (i)−ηaσ (i)−νaσ (i) )
ωi

〉
(13)

The proof of this theorem is similar to Theorem 2.
Theorem 8: Let ai =< µai , ηai , νai > (i = 1, 2, . . . , n) be

a collection of picture fuzzy numbers, aσ (i) be the ith largest
of them, and ω = (ω1, ω2, . . . , ωn)T be the aggregation-

associated vector with ωi ∈ [0, 1] and
n∑
i=1
ωi = 1, then the

aggregated result by using PFOWIA operator is also a picture
fuzzy number.

The proof of this theorem is similar to Theorem 3.
Theorem 9 (Idempotency): Let ai =< µai , ηai , νai > (i =

1, 2, . . . , n) be a collection of picture fuzzy numbers, if all
ai(i = 1, 2, . . . , n) are equal and ai = (µa0 , ηa0 , νa0 ) = a0
for all i = 1, 2, . . . , n, then

PFOWIA(a1, a2, . . . , an) = a0 (14)

The proof of this theorem is similar to that of Theorem 4.
Theorem 10 (Boundary): Let ai =< µai , ηai , νai > (i =

1, 2, . . . , n) be a collection of picture fuzzy numbers, and a+

are a− denoted as

a+ = < max
1≤i≤m

(µai ),max{0, ( min
1≤i≤m

(µai+ηai )− max
1≤i≤m

(µai ))},

max
1≤i≤m

{0, ( min
1≤i≤m

(µai+ηai+νai )− max
1≤i≤m

(µai+ηai ))}>,

a− = < min
1≤i≤m

(µai ), max
1≤i≤m

(µai + ηai )− min
1≤i≤m

(µai ),

max
1≤i≤m

(µai + ηai + νai )− min
1≤i≤m

(µai + ηai ) > .
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Then, we have

a+ ≤ PFOIWA(a1, a2, . . . , an) ≤ a− (15)

The proof of this theorem is similar to that of Theorem 5.

D. PICTURE FUZZY HYBRID ORDERED WEIGHTED
INTERACTION AVERAGING OPERATOR
Definition 8: Let ai =< µai , ηai , νai > (i = 1, 2,

. . . , n) be a collection of picture fuzzy numbers, and w =
(w1,w2, . . . ,wn)T be the weight vector of them with wi ∈

[0, 1], i = 1, 2, . . . , n and
n∑
i=1

wi = 1, and n be the balancing

coefficient which plays a role of balance, then based on
the aggregation-associated vector ω = (ω1, ω2, . . . , ωn)T

such that ωi ∈ [0, 1], i = 1, 2, . . . , n and
∑n

i=1 ωi = 1,
the picture fuzzy hybrid ordered weighted interaction aver-
aging (PFHOWIA) operator is defined as follows:

PFHOWIA(a1, a2, . . . , an) =
n
⊕
i=1

(ωibσ (i)) (16)

where bσ (i) is the ith largest of the picture fuzzy weighted
arguments bi = nwiai(i = 1, 2, . . . , n).
Theorem 11: Let ai =< µai , ηai , νai > (i = 1, 2,

. . . , n) be a collection of picture fuzzy numbers, w =

(w1,w2, . . . ,wn)T be the weight vector of them with wi ∈

[0, 1], i = 1, 2, . . . , n and
n∑
i=1

wi = 1, n be the balanc-

ing coefficient which plays a role of balance and ω =
(ω1, ω2, . . . , ωn)T be the aggregation-associated vector such
that ωi ∈ [0, 1], i = 1, 2, . . . , n and

∑n
i=1 ωi = 1, then the

aggregated result by using PFHOWIA operator is shown as
follows:

PFHOWIA(a1, a2, . . . , an)

=
n
⊕
i=1

(ωibσ (i))

= < 1−
n∏
i=1

(1− µ̃bσ (i) )
ωi ,

n∏
i=1

(1− µ̃bσ (i) )
ωi

−

n∏
i=1

(1− µ̃bσ (i) − η̃bσ (i) )
ωi ,

n∏
i=1

(1−µ̃bσ (i)−η̃bσ (i) )
ωi−

n∏
i=1

(1−µ̃bσ (i)−η̃bσ (i)−ν̃bσ (i) )
ωi>

where bσ (i) is the ith largest of the picture fuzzy weighted
arguments bi = nwiai(i = 1, 2, . . . , n).
The proof is similar to that of Theorem 2.
Theorem 12: Let ai =< µai , ηai , νai > (i = 1, 2,

. . . , n) be a collection of picture fuzzy numbers, w =

(w1,w2, . . . ,wn)T be the weight vector of them with wi ∈

[0, 1], i = 1, 2, . . . , n and
n∑
i=1

wi = 1, n be the balanc-

ing coefficient which plays a role of balance and ω =
(ω1, ω2, . . . , ωn)T be the aggregation-associated vector such
that ωi ∈ [0, 1], i = 1, 2, . . . , n and

∑n
i=1 ωi = 1, then

the aggregated result PFHOWIA(a1, a2, . . . , an) by using
the PFHOWIA operator is also a picture fuzzy number.
The proof of this theorem is similar to Theorem 3.

IV. AN EXTENDED EDAS METHOD FOR MAGDM
PROMLEM UNDER PICTURE
FUZZY ENVIRONMENT
A. DESCRIPTION OF THE MAGDM PROMLEM UNDER
PICTURE FUZZY ENVIRONMENT
For MAGDM problem, let A = {A1,A2, . . . ,Am}(m ≥ 2)
be a finite set of feasible alternatives among which experts
have to select, C = {C1,C2, . . . ,Cn}(n ≥ 2) be a finite set
of attributes with which alternative performance is assessed,
and DM = {DM1,DM2, . . . ,DMt }(t ≥ 2) be a set of deci-
sion makers. Suppose that Rk = (rkij )m×n is a picture fuzzy
decision matrix provided by the kth decision maker, in which
rkij is the assessment on alternative Ai ∈ A with respect to
the attribute Ci ∈ C determined by the kth decision maker.
Subsequently, we will develop a new method for solving the
MAGDM problem with picture fuzzy information, in which
the information about decision makers’ weight vector λ =
(λ1, λ2, . . . , λt )T is completely unknown and the information
about attribute weight vector w = (w1,w2, . . . ,wn)T is
incompletely known.

B. DETERMINE THE WEIGHTS OF DECISION MAKERS
In real life, decision maker often come from different depart-
ments, and each decision maker has his unique characteristics
with regard to knowledge, skills and experience. The process
of determining decision makers’ weight plays an important
role in obtaining the reasonable result for the MAGDM prob-
lem [14]. In the following, we develop a newmethod to deter-
mine the objective weights of decision makers under picture
fuzzy environment based on the idea of Dice similarity mea-
sure. Dice similarity measure, initially proposed byDice [46],
is a similarity measure between two vectors. The basic prin-
ciple of Dice similarity measure is that the more similar their
geometrical shape is, the larger the Dice similarity measure
of the comparing data is. Since its appearance, it has attracted
more and more attention from researchers. Based on the basic
principle of Dice similaritymeasure in [46],Wei andGao [47]
proposed the following concept of generalizedDice similarity
measures for picture fuzzy sets.
Definition 9 [47]: Let aj =< µaj , ηaj , νaj > and bj =<

µbj , ηbj , νbj > be two PFNs. then the Dice similarity measure
between aj and bj is defined as:

DPFS (aj, bj)

=
2(aj · bj)∣∣aj∣∣2 + ∣∣bj∣∣2

=
2
∑n

j=1 (µajµbj+ηajηbj+νajνbj+πajπbj)∑n
j=1 (µ

2
aj+η

2
aj+ν

2
aj+π

2
aj)+

∑n
j=1 (µ

2
bj+η

2
bj+ν

2
bj+π

2
bj)

(17)

141186 VOLUME 7, 2019



X. Li et al.: MAGDM Method Based on EDAS Under Picture Fuzzy Environment

In the following, we adopt the generalized Dice similarity
measures for picture fuzzy sets to determine the weights of
decision makers:
Step 1: Obtain the individual picture fuzzy decision matrix

Rk = (rkij )m×n.

Step 2: Compute the relative Dice similarity measure
matrices Ekl = (eklij )m×n, (k = 1, 2, . . . , t, l =

1, 2, . . . , t, k 6= l),
where eklij = DPFS (rkij , r

l
ij) can be calculated by

Equation (17).
Step 3 : Determine the comprehensive similarity measure

matrix of the decision makers:

Ek = (ekij)m×n =
∑t

l=1,l 6=k
Ekl, k = 1, 2, . . . , t

.
Step 4 : Calculate the weight of decision makers

λk =

m∑
i=1

n∑
j=1

ekij/
t∑

k=1

m∑
i=1

n∑
j=1

ekij, k = 1, 2, . . . , t. (18)

Obviously, 0 ≤ λk ≤ 1 and
∑t

k=1 λk = 1.

C. DETERMINE THE WEIGHTS OF ATTRIBUTES
For the situations where the information about the attribute
weights is partly known, we establish a linear programming
model to determine the attribute weights according to the
maximizing deviation method. Let wj be the weight of the
attributeCj ∈ C , which satisfies the normalization conditions
wj ∈ [0, 1], (j = 1, 2, . . . , n) and

∑n
j=1 wj = 1. Let00 denote

the set of all the weight vectors, and

00=
{
(w1,w2, . . .wn)

∣∣wj≥0, j=1, 2, . . . , n,∑n

j=1
wj=1

}
.

(19)

The incomplete information on the attribute weights pro-
vided by the decision-maker can usually be constructed using
several basic ranking forms. For a decision making problem
that contains incomplete weight information, we consider the
five basic ranking forms for the incomplete information on
the attribute weights [48].
• A weak ranking:

01=
{
(w1,w2,. . .wn∈00

∣∣wj1≥wj2 , for all j1∈r1 and j2∈31
}
.

(20)

where r1 and 31 are two disjoint subsets of the subscript
index set N = {1, 2, . . . , n} for all attributes.
• A strict ranking:

02 =
{
(w1,w2, . . .wn) ∈ 00

∣∣wj1 − wj2 ≥ δj1j2 ,
for all j1 ∈ r2 and j2 ∈ 32} . (21)

where δj1j2 is a constant that satisfies the condition δj1j2 > 0,
r2 and 32 are two disjoint subsets of the subscript index set
N = {1, 2, . . . , n} for all attributes.

• A ranking of difference:

03 =
{
(w1,w2, . . .wn) ∈ 00

∣∣wj1 − wj2 ≥ wj2 − wj3,

for allj1 ∈ r3, j2 ∈ 33andj3 ∈ �3} .

where r3,33 and�3 are three disjoint subsets of the subscript
index set N = {1, 2, . . . , n} for all attributes.

• A interval bound:

04=
{
(w1,w2, . . .wn)∈00

∣∣δj1+εj1≥wj1≥δj1 , for all j1∈r4}.
(22)

where δj1 ≥ 0 and εj1 ≥ 0 are constants that satisfy the
condition 0 ≤ δj1 ≤ δj1 + εj1 ≤ 1, and r4 is the subset of
the subscript index set N = {1, 2, . . . , n}.

• A ratio bound

05 =
{
(w1,w2, . . .wn) ∈ 00

∣∣wj1 ≥ δj2wj2 ,
for all j1 ∈ r5 and j2 ∈ 35} . (23)

where δj2 is a constant that satisfies the condition 0 ≤ δlj2 ≤ 1,
and r5 and 35 are two disjoint subsets of the subscript index
set N = {1, 2, . . . , n} for all attributes.
Let0 denote a set of the known information on the attribute

weights, and

0 = 01 ∪ 02 ∪ 03 ∪ 04 ∪ 05. (24)

The maximizing deviation method, initially proposed by
Wang [49], is a useful tool to determine the objective weights
of attributes in solvingMADM problems. The basic principle
of this method is given as follows: if the assessment values of
each alternative have little differences under a given attribute,
it shows that the attribute plays a small important role in the
priority procedure, so it should be assigned a small weight;
Otherwise, if an attribute makes the assessment values among
all the alternatives have obvious differences, then the attribute
should be assigned a big weight [49]. Based on the above
analysis, a linear programming model to determine the objec-
tive weights of attributes is constructed as follows.

For the given attribute Cj ∈ C , the deviation of alternative
Ai to all the other alternatives can be defined as:

Gij(w) =
m∑
k=1

d(rij, rkj)wj (25)

where d(rij, rkj) can be calculated by Equation (4).
Since each alternative is non-inferior and there exists no

preference relation on all alternatives, then we construct the
following expression:

Gj(w) =
m∑
i=1

m∑
k=1

d(rij, rkj)wj (26)

where Gj(w) represents the deviation value of all alternatives
to other alternatives with regard to the given attribute Cj ∈ C .
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Further, based on the idea of the maximizing deviation
method, we construct the following linear programming
model (M-1) to calculate the weight vector of the attributes:

maxG =
n∑
j=1

m∑
i=1

m∑
k=1

d(rij, rkj)wj

(M − 1) s.t.


wj ∈ 0,
n∑
j=1

wj = 1,

wj ≥ 0, j = 1, 2, . . . , n

(27)

Solving the linear programming model (M -1), we can
obtain the optimal solution w = (w1,w2, . . . ,wn)T , which
can be used as the objective weight vector of attributes.

D. PROPOSED METHOD FOR MAGDM PROBLEM
BASED ON THE IDEA OF EDAS
In the following, a new method is proposed to solve multi-
attribute group decision making problems in which the
weights of decision makers and attributes are unknown based
the traditional idea of EDAS method. The procedure of the
extended EDAS method for MAGDM problem is described
as follows.
Step 1 : Obtain the picture fuzzy decision matrix

Rk = (rkij )m×n, (k = 1, 2, . . . , t) given by the decision
makers, rkij is the evaluation information of the ith alternative
with respect to the jth attribute given by kth decision maker.
Step 2 :Determine the weight vector λ = (λ1, λ2, . . . , λt )T

of decision makers by Equation (18).
Step 3 : Calculate the overall picture fuzzy decision matrix

R = (rij)m×n by the PFIWA operator in Equation (7), where

rij =
t
⊕
k=1

(λkrkij ), i = 1, 2, . . . ,m, j = 1, 2, . . . , n (28)

Step 4:Determine theweight vectorw = (w1,w2, . . . ,wn)T

of attributes by solving the programmingM − 1 based on the
overall picture fuzzy decision matrix R = (rij)m×n.
Step 5: According to the traditional EDAS method, the

average picture fuzzy evaluation ãj =< µãj , ηãj , νãj > of
jth attribute can be determined by the PFIAA operator in
Equation (8), which is shown as follows:

r̃j =
m
⊕
i=1

(
1
m
rij), j = 1, 2, . . . , n (29)

Step 6 : Construct the positive distance matrix PDA =
(PDAij)m×n and the negative distance matrix NDA =

(NDAij)m×n. To simplify the calculation process, in what
follows, we adopt Equations (30) and (31) to determine the
positive distance PDAij from average solution and the nega-
tive distance NDAij from average solution.

PDAij =


s(rij)− s(r̃j), if rij ≥ r̃j,
i = 1, 2, . . . ,m, j = 1, 2, . . . , n

0, if rij< r̃j, i=1, 2, . . . ,m, j=1, 2, . . . , n
(30)

NDAij =


s(r̃j)− s(rij), if rij < r̃j, i = 1, 2, . . . ,m,
j = 1, 2, . . . , n

0, if rij≥ r̃j, i=1, 2, . . . ,m, j=1, 2, . . . , n
(31)

where s(rij) and s(r̃j) can be calculated by Equation (2).
Step 7 : Obtain weighted summation of the positive and

negative distances from average matrix

SPi =
∑n

j=1
wjPDAij, i = 1, 2, . . . ,m (32)

SNi =
∑n

j=1
wjNDAij, i = 1, 2, . . . ,m (33)

Step 8 : Calculate the normalized values of SPi and SNi for
all alternatives.

NSPi =
SPi

max
1≤i≤m

(SPi)
, i = 1, 2, . . . ,m (34)

NSNi = 1−
SNi

max
1≤i≤m

(SNi)
, i = 1, 2, . . . ,m (35)

Step 9 : Determine the appraisal scores of all feasible
alternatives, which are shown as follows:

ASi =
1
2
(NSPi + NSNi), i = 1, 2, . . . ,m (36)

Obviously, we have 0 ≤ ASi ≤ 1.
Step 10: Rank all feasible alternatives according to the

decreasing values of appraisal score ASi and select the most
desirable alternative(s) with the highest ASi.

V. NUMERICAL EXAMPLE AND COMPARISON ANALYSIS
A. NUMERICAL EXAMPLE
This example is adopted from reference [14]. It is described
as follows: an emergency management center (EMC) wants
to select an optimal emergency alternative from four feasible
emergency alternatives Ai(i = 1, 2, , 3, 4). A committee of
three experts, DMk (k = 1, 2, 3), are invited to evaluate
the four feasible alternatives and select the most suitable
emergency alternative. The weights of the three experts are
completely unknown. The attributes for the evaluation of
emergency alternative are as follows: (1) C1 is the emergency
forecasting capability; (2) C2 is the emergency process capa-
bility; (3)C3 is the emergency support capability; (4)C4 is the
after-disaster process capability. The weights of the attribute
are partially known, which are described as follows:

3 = {(w1,w2,w3,w4) ∈ 00 |, 0.1 ≤ w1 ≤ 0.2 ,

0.2 ≤ w2 ≤ 0.3, 0.3 ≤ w3 ≤ 0.4, 0.1 ≤ w4 ≤ 0.2} .

In the following, we utilize the proposed approach in
Section IV to solve the emergency alternative selection
problem.
Step 1: Obtain the picture fuzzy decision matrix Rk =

(rkij )4×4(k = 1, 2, 3) given by the decision makers, rkij is the
evaluation information of ith alternative with respect to the
jth attribute given by kth decision maker. The picture fuzzy
decision matrices are shown in Tables 1-3.
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TABLE 1. Picture fuzzy decision matrix R1 given by DM1.

TABLE 2. Picture fuzzy decision matrix R2 given by DM2.

TABLE 3. Picture fuzzy decision matrix given by DM3.

TABLE 4. The collective decision matrix R.

Step 2: Determine the optimal weight vector λ =

(λ1, λ2, λ3)T of decision makers by Equation (18).

λ = (0.34, 0.33, 0.33)T .

Step 3: Calculate the collective picture fuzzy decision
matrix R = (rij)4×4 by the PFWIA operator in Equation (7),
which is shown in Table 4.
Step 4: Determine the weights of attributes. For the collec-

tive picture fuzzy decision matrix R = (rij)4×4 in Table 4,
we utilize the model (M-1) in Section IV to establish the
following single objective linear programming model:

maxG = 0.2899w1 + 0.2324w2 + 0.4285w3 + 0.3631w4

s.t.



0.1 ≤ w1 ≤ 0.2,
0.2 ≤ w2 ≤ 0.3,
0.3 ≤ w3 ≤ 0.4,
0.1 ≤ w4 ≤ 0.2,∑4

j=1
wj = 1,

wj ≥ 0, j = 1, 2, 3, 4.

Solving this model using software Lingo 9.0, we obtain the
weight vector of attributes:

W = (0.2, 0.2, 0.4, 0.2)T .

Step 5 : Calculate the average picture fuzzy evaluation
r̃j =< µr̃j , ηr̃j , νr̃j > of jth attribute according to the PFIAA
operator in Equation (8), which is shown as follows:

r̃1 = < 0.33, 0.22, 0.31 >, r̃2 =< 0.30, 0.24, 0.34 >,

r̃3 = < 0.31, 0.26, 0.31 >, r̃4 =< 0.31, 0.25, 0.31 > .

Step 6 : Calculate the positive distance from aver-
age and the negative distance from average matrices by
Equations (30) and (31).

PDA =


0 0 0 0.0344
0.0368 0 0.0128 0
0.0012 0.0154 0.0564 0.0164
0 0 0 0



NDA =


0.0110 0.0038 0.0378 0
0 0.0038 0 0.0317
0 0 0 0
0.0279 0.0045 0.0382 0.0204


Step 7 :Determine the weighted summation of the positive

and negative distances of all alternatives by Equations (32)
and (33).

SP1 = 0.0069, SP2 = 0.0125, SP3 = 0.0291, SP4 = 0;

SN1 = 0.0181, SN2 = 0.0071, SN3 = 0, SN4 = 0.0258.

Step 8 : Calculate the normalized values of SPi and SNi for
all alternatives.

NSP1 = 0.2361, NSP2 = 0.4283, NSP3 = 1, NSP4 = 0;

NSN1 = 0.2944, NSN2 = 0.7251, NSN3 = 1, NSN4 = 0.

Step 9: Calculated the appraisal scores of all feasible alter-
natives, which are shown as follows:

AS1 = 0.2678,AS2 = 0.5767,AS3 = 1,AS4 = 0.

Step 10: Rank all feasible alternatives according to the
decreasing values of appraisal score:A3 � A2 � A1 � A4.
Then, A3 is the best alternative.

B. COMPARISON ANALYSIS
In this section, to illustrate the practicality and effectiveness
of the proposed method, we compare the proposed extended
EDAS method with the projection method in [25] and picture
fuzzy aggregation operators in [50] for the collective picture
fuzzy data in Table 4.Wei et al. [25] established the projection
model of picture fuzzy information to measure the similarity
degrees between each alternative and the ideal one in order to
select the most desirable one(s). The weighted cosine of the
included angle between the feasible alternative and the ideal
one is defined as:
Definition 9: Suppose there are m feasible alternative

Ai = (ri1, ri2, . . . , rin)(i = 1, 2, . . . ,m) among which experts
have to choose. The positive ideal alternative is denoted as
A+ = (r+1 , r

+

2 , . . . , r
+
n ), then the projection of each alterna-

tive on the positive ideal alternative is defined as follows:

PrjA+ (Ai) =
1∣∣A+∣∣

n∑
j=1

w2
j (µijµ

+

j + ηijη
+

j + νijν
+

j + πijπ
+

j )

(37)
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where

r+j = (µ+j , η
+

j , ν
+

j , π
+

j ), j = 1, 2, . . . , n,

µ+j = max
1≤i≤m

(uij), η
+

j = min
1≤i≤m

(ηij),

ν+j = min
1≤i≤m

(νij), π
+

j = 1− µ+j − η
+

j − ν
+

j ,

and∣∣A+∣∣ = √∑n
j=1 ((µ

+

j )
2 + (η+j )

2 + (ν+j )
2 + (π+j )2).

For the collective the picture fuzzy decision matrix R
in Table 4, we can obtain the positive ideal alternative A+,
which is shown as follows:

A+ = {< 0.39, 0.19, 0.13 >,< 0.31, 0.20, 0.20 >,

< 0.41, 0.23, 0.12 >,< 0.38, 0.19, 0.16 >}

Further, we can calculate the projection of all alternatives
Ai(i = 1, 2, 3, 4) on the positive ideal evaluation A+ by using
Equation (37), the results is shown as follows:

PrjA+ (A1) = 0.5289, PrjA+ (A2) = 0.5320,

PrjA+ (A3) = 0.5329, PrjA+ (A4) = 0.5226.

Rank all the feasible alternatives according the values
PrjA+ (Ai), (i = 1, 2, 3, 4):A3 � A2 � A1 � A4. Then,
A3 is the best alternative. Obviously, the ranks of the four
emergency alternatives by the projection method and the
proposed method are exactly the same.

To illustrate the validity of the proposedmethod, we further
compare the ranking result of the proposed method in this
paper with that of another existing method.

To aggregate picture fuzzy information, Grag [50] pro-
posed some picture aggregation operators, namely picture
fuzzy weighted averaging (PFWA) operator, picture fuzzy
ordered weighted averaging (PFOWA) operator and picture
fuzzy hybrid ordered weighted averaging (PFHOWA) oper-
ator. For the collective the picture fuzzy decision matrix R
in Table 4, we can calculate the overall evaluation value of
all alternatives by using the following picture fuzzy weighted
averaging (PFWA) operator in [50]:

PFWA(a1, a2, . . . , an)

=
n
⊕
j=1

wjaj

=< h−1(
n∑
j=1

wjh(uj)), g−1(
n∑
j=1

wjg(uj)), g−1(
n∑
j=1

wjg(uj))>

(38)

The overall results of alternative Ai(i = 1, 2, 3, 4) are shown
as follows:

rA1 = < 0.30, 0.22, 0.34 >, rA2 =< 0.32, 0.23, 0.33 >,

rA3 = < 0.35, 0.24, 0.28 >, rA4 =< 0.27, 0.26, 0.32 > .

The score values of alternatives are given as follows:

S(A1) = 0.5776, S(A2) = 0.5886,

S(A3) = 0.6099, S(A4) = 0.5615.

TABLE 5. The results of different methods.

Then we have A3 � A2 � A1 � A4, and A3 is
the best alternative. The score values S(Ai) of alternatives
Ai(i = 1, 2, 3, 4) and ranking results are shown in Table 5.
As we can see from Table 5, the ranks of the four emer-

gency alternatives by the existing two methods and the pro-
posed method are exactly the same, and the evaluation results
show that A3 is the best emergency alternative, and A4 is the
worst. The comparison results demonstrate the effectiveness
and reliability of the proposed approach. Moreover, by con-
sidering both the positive distance from the average solution
and negative distance from the average solution at the same
time under picture fuzzy environment, the method proposed
in this paper can accurately reflect the reality.

VI. CONCLUSION
Many practical problems are often characterized by
MAGDM. Because of lack of knowledge or data, and the
decisionmakers’ limited expertise about the problem domain,
the attribute values provided by decision makers often take
the form of picture fuzzy information. In this paper, a new
method is proposed to solve MAGDM under picture fuzzy
environment, in which the information about the weights of
attributes is partly known and the weights of decision makers
is completely unknown. The proposed method involves four
main steps: (1) Some picture fuzzy interaction operators
are presented, such as the PFWIA operator, the PFOWIA
operator and the PFHOWIA operator. Simultaneously, some
desirable properties of these operators are discussed in detail.
(2) Determine the weights of decision makers under picture
fuzzy setting based on the idea of the Dice similarity measure.
(3) Establish an optimization model to determine the attribute
weights on the basis of the maximizing deviation method.
(4) Extend the traditional EDAS method to picture fuzzy
environment and rank all alternatives. At the end of this paper,
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we give an example of practical application of the developed
method to select the most desirable emergency alternative,
and compare the proposedmethodwith two existingmethods.
The comparison results demonstrate the effectiveness and
practicality of the proposed approach.

The prominent characteristics of the developed method
are that it can provide more reasonable and robust ranking
results. Above all, it is simpler and more convenient to use in
practical applications and it can be performed on computer
easily. In future research, we will focus on the applications of
the proposed method and extend it to picture fuzzy linguistic
environment.

REFERENCES
[1] S.-M. Chen and J.-A. Hong, ‘‘Fuzzy multiple attributes group decision-

making based on ranking interval type-2 fuzzy sets and the TOP-
SIS method,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 12,
pp. 1665–1673, Dec. 2014.

[2] P. Liu, J. Liu, and S.-M. Chen, ‘‘Some intuitionistic fuzzy Dombi Bonfer-
roni mean operators and their application to multi-attribute group decision
making,’’ J. Oper. Res. Soc., vol. 69, no. 1, pp. 1–24, Jan. 2018.

[3] F.-Y. Meng, Q.-X. An, C.-Q. Tan, and X.-H. Chen, ‘‘An approach for group
decision making with interval fuzzy preference relations based on additive
consistency and consensus analysis,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 8, pp. 2069–2082, Aug. 2017.

[4] Y. Xing, R. Zhang, M. Xia, and J. Wang, ‘‘Generalized point aggrega-
tion operators for dual hesitant fuzzy information,’’ J. Intell. Fuzzy Syst.,
vol. 33, no. 1, pp. 515–527, Jun. 2017.

[5] Z. Xu, ‘‘Approaches to multiple attribute group decision making based
on intuitionistic fuzzy power aggregation operators,’’ Knowl.-Based Syst.,
vol. 24, no. 6, pp. 749–760, 2011.

[6] Z. Zhang, C. Guo, and L. Martínez, ‘‘Managing multigranular lin-
guistic distribution assessments in large-scale multiattribute group deci-
sion making,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 11,
pp. 3063–3076, Nov. 2017.

[7] Y. Ju and S. Yang, ‘‘Approaches for multi-attribute group decision mak-
ing based on intuitionistic trapezoid fuzzy linguistic power aggrega-
tion operators,’’ J. Intell. Fuzzy Syst., vol. 27, no. 2, pp. 987–1000,
Jan. 2014.

[8] Y. Ju, X. Liu, and D. Ju, ‘‘Some new intuitionistic linguistic aggregation
operators based on Maclaurin symmetric mean and their applications to
multiple attribute group decision making,’’ Soft Comput., vol. 20, no. 11,
pp. 4521–4548, 2016.

[9] P. Liu, S.-M. Chen, and P. Wang, ‘‘Multiple-attribute group decision-
making based on q-rung orthopair fuzzy power maclaurin symmetric
mean operators,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published.
doi: 10.1109/TSMC.2018.2852948.

[10] P. Liu and J. Liu, ‘‘Some q-rung orthopai fuzzy Bonferroni mean opera-
tors and their application to multi-attribute group decision making,’’ Int.
J. Intell. Syst., vol. 33, no. 2, pp. 315–347, 2018.

[11] W. Yang and Y. Pang, ‘‘New pythagorean fuzzy interaction Maclaurin
symmetric mean operators and their application in multiple
attribute decision making,’’ IEEE Access, vol. 6, pp. 39241–39260,
2018.

[12] P. Liu, Q. Khan, T. Mahmood, and N. Hassan, ‘‘T-spherical fuzzy power
Muirhead mean operator based on novel operational laws and their appli-
cation in multi-attribute group decision making,’’ IEEE Access, vol. 7,
pp. 22613–22632, 2019.

[13] G. Wei, H. Garg, H. Gao, and C. Wei, ‘‘Interval-valued pythagorean
fuzzy maclaurin symmetric mean operators in multiple attribute decision
making,’’ IEEE Access, vol. 6, pp. 67866–67884, 2018.

[14] Y. Ju, ‘‘A new method for multiple criteria group decision making with
incomplete weight information under linguistic environment,’’ Appl. Math.
Model., vol. 38, nos. 21–22, pp. 5256–5268, Nov. 2014.

[15] P.Wu, J. Zhu, L. Zhou, and H. Chen, ‘‘Local feedbackmechanism based on
consistency-derived for consensus building in group decision making with
hesitant fuzzy linguistic preference relations,’’Comput. Ind. Eng., vol. 137,
Nov. 2019, Art. no. 106001. doi: 10.1016/j.cie.2019.106001.

[16] P. Wu, L. Zhou, H. Chen, and Z. Tao, ‘‘Additive consistency of hesitant
fuzzy linguistic preference relation with a new expansion principle for
hesitant fuzzy linguistic term sets,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 4,
pp. 716–730, Apr. 2019.

[17] H. Gao, Y. Ju, W. Zhang, and D. Ju, ‘‘Multi-attribute decision-making
method based on interval-valued q-rung orthopair fuzzy archimedeanmuir-
head mean operators,’’ IEEE Access, vol. 7, pp. 74300–74315, 2019.

[18] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[19] K. T. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ Fuzzy Sets Syst., vol. 20,
pp. 87–96, Aug. 1986.

[20] B. C. Cuong and V. Kreinovich, ‘‘Picture fuzzy sets—A new concept
for computational intelligence problems,’’ in Proc. 3rd World Congr. Inf.
Commun. Technol. (WICT), Dec. 2013, pp. 1–6.

[21] P. Singh, ‘‘Correlation coefficients for picture fuzzy sets,’’ J. Intell. Fuzzy
Syst., vol. 28, no. 2, pp. 591–604, 2015.

[22] L. H. Son, ‘‘DPFCM: A novel distributed picture fuzzy clustering method
on picture fuzzy sets,’’ Expert Syst. Appl., vol. 42, no. 1, pp. 51–66, 2015.

[23] P. H. Thong and L. H. Son, ‘‘A novel automatic picture fuzzy clustering
method based on particle swarm optimization and picture composite car-
dinality,’’ Knowl.-Based Syst., vol. 109, pp. 48–60, Oct. 2016.

[24] G. Wei, ‘‘Picture fuzzy cross-entropy for multiple attribute decision mak-
ing problems,’’ J. Bus. Econ. Manage., vol. 17, no. 4, pp. 491–502, 2016.

[25] G. Wei, F. E. Alsaadi, T. Hayat, and A. Alsaedi, ‘‘Projection models for
multiple attribute decision making with picture fuzzy information,’’ Int. J.
Mach. Learn. Cybern., vol. 9, no. 4, pp. 713–719, 2018.

[26] L. H. Son, ‘‘Generalized picture distance measure and applications to pic-
ture fuzzy clustering,’’Appl. Soft Comput., vol. 46, pp. 284–295, Sep. 2016.

[27] G. Wei, ‘‘Picture fuzzy aggregation operators and their application to
multiple attribute decision making,’’ J. Intell. Fuzzy Syst., vol. 33, no. 2,
pp. 713–724, 2017.

[28] N. T. Thong and L. H. Son, ‘‘HIFCF: An effective hybrid model between
picture fuzzy clustering and intuitionistic fuzzy recommender systems for
medical diagnosis,’’Expert Syst. Appl., vol. 42, no. 7, pp. 3682–3701, 2015.

[29] R.-X. Nie, J.-Q. Wang, and L. Li, ‘‘A shareholder voting method for
proxy advisory firm selection based on 2-tuple linguistic picture preference
relation,’’ Appl. Soft Comput., vol. 60, pp. 520–539, Nov. 2017.

[30] C. Wang, X. Zhou, H. Tu, and S. Tao, ‘‘Some geometric aggregation
operators based on picture fuzzy sets and their application in multi-
ple attribute decision making,’’ Italian J. Pure Appl. Math., vol. 37,
pp. 477–492, Jan. 2017.

[31] S. Ashraf, T. Mahmood, S. Abdullah, and Q. Khan, ‘‘Different approaches
tomulti-criteria group decisionmaking problems for picture fuzzy environ-
ment,’’ Bull. Brazilian Math. Soc., New Ser., vol. 50, no. 2, pp. 373–397,
2019. doi: 10.1007/s00574-018-0103-y.

[32] R. R. Yager, ‘‘On ordered weighted averaging aggregation operators in
multicriteria decisionmaking,’’ IEEE Trans. Syst., Man, Cybern., vol. 18,
no. 1, pp. 183–190, Jan./Feb. 1988.

[33] R. R. Yager, ‘‘Generalized OWA aggregation operators,’’ Fuzzy Optim.
Decision Making, vol. 3, no. 1, pp. 93–107, Mar. 2004.

[34] J. M. Merigo and M. Casanovas, ‘‘Fuzzy generalized hybrid aggregation
operators and its application in fuzzy decision making,’’ Int. J. Fuzzy Syst.,
vol. 12, no. 1, pp. 15–24, Mar. 2010.

[35] B. C. Cuong and P. Van Hai, ‘‘Some fuzzy logic operators for picture
fuzzy sets,’’ in Proc. 7th Int. Conf. Knowl. Syst. Eng. (KSE), Oct. 2015,
pp. 132–137.

[36] G. Wei, F. E. Alsaadi, T. Hayat, and A. Alsaedi, ‘‘Picture 2-tuple linguistic
aggregation operators in multiple attribute decision making,’’ Soft Com-
put., vol. 22, no. 2, pp. 989–1002, 2018.

[37] S. Opricovic and G.-H. Tzeng, ‘‘Compromise solution by MCDM meth-
ods: A comparative analysis of VIKOR and TOPSIS,’’ Eur. J. Oper. Res.,
vol. 156, pp. 445–455, Jul. 2004.

[38] M.K. Ghorabaee, E. K. Zavadskas, L. Olfat, and Z. Turskis, ‘‘Multi-criteria
inventory classification using a newmethod of evaluation based on distance
from average solution (EDAS),’’ Informatica, vol. 26, no. 3, pp. 435–451,
Mar. 2015.

[39] M. K. Ghorabaee, E. K. Zavadskas, M. Amiri, and Z. Turskis, ‘‘Extended
EDAS method for fuzzy multi-criteria decision-making: An application to
supplier selection,’’ Int. J. Comput. Commun., vol. 11, no. 3, pp. 358–371,
2016.

[40] X. Peng and L. Chong, ‘‘Algorithms for neutrosophic soft decision making
based on EDAS, new similarity measure and level soft set,’’ J. Intell. Fuzzy
Syst., vol. 32, no. 1, pp. 955–968, 2017.

VOLUME 7, 2019 141191

http://dx.doi.org/10.1109/TSMC.2018.2852948
http://dx.doi.org/10.1016/j.cie.2019.106001
http://dx.doi.org/10.1007/s00574-018-0103-y


X. Li et al.: MAGDM Method Based on EDAS Under Picture Fuzzy Environment

[41] F. Ecer, ‘‘Third-party logistics (3PLs) provider selection via Fuzzy AHP
and EDAS integrated model,’’ Technol. Econ. Develop. Economy, vol. 24,
no. 2, pp. 615–634, 2018.

[42] Y. He, H. Chen, L. Zhou, J. Liu, and Z. Tao, ‘‘Intuitionistic fuzzy geomet-
ric interaction averaging operators and their application to multi-criteria
decision making,’’ Inf. Sci., vol. 259, pp. 142–159, Feb. 2014.

[43] Y. He, H. Chen, L. Zhou, B. Han, Q. Zhao, and J. Liu, ‘‘Generalized
intuitionistic fuzzy geometric interaction operators and their application
to decision making,’’ Expert Syst. Appl., vol. 41, no. 5, pp. 2484–2495,
Apr. 2014.

[44] Y. Ju, D. Ju, and A. Wang, ‘‘A note on ‘picture 2-tuple linguistic aggre-
gation operators in multiple attribute decision making,’’’ Soft. Comput.,
pp. 1–5, Jun. 2019. doi: 10.1007/s00500-019-04162-5.

[45] Y. Ju, D. Ju, E. D. R. S. Gonzalez, M. Giannakis, and A. Wang, ‘‘Study of
site selection of electric vehicle charging station based on extended GRP
method under picture fuzzy environment,’’ Comput. Ind. Eng., vol. 135,
pp. 1271–1285, Sep. 2019.

[46] L. R. Dice, ‘‘Measures of the amount of ecologic association between
species,’’ Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[47] G. Wei and H. Gao, ‘‘The generalized Dice similarity measures for picture
fuzzy sets and their applications,’’ Information, vol. 29, pp. 107–124,
Sep. 2018.

[48] K. S. Park, S. H. Kim, and W. C. Yoon, ‘‘Establishing strict dominance
between alternatives with special type of incomplete information,’’ Eur. J.
Oper. Res., vol. 96, no. 2, pp. 398–406, Jan. 1997.

[49] Y.Wang, ‘‘Using the method of maximizing deviation to make decision for
multiindices,’’ J. Syst. Eng. Electron., vol. 8, no. 3, pp. 21–26, Sep. 1997.

[50] H. Garg, ‘‘Some picture fuzzy aggregation operators and their applications
to multicriteria decision-making,’’ Arabian J. Sci. Eng., vol. 42, no. 12,
pp. 5275–5290, 2017.

XIA LI received the B.S. andM.S. degrees in trans-
portation planning and management from Jilin
University, Changchun, China, in 2001 and 2004,
respectively, and the Ph.D. degree in urban trans-
port planning and management from Beijing Jiao-
tong University, Beijing, China, in 2010. In 2008,
she was a Research Assistant with the Trans-
port Research Center of Technical University of
Madrid. From 2010 to 2013, she was a Postdoc-
toral Fellow with the School of Mechanical Engi-

neering, Beijing Institute of Technology. Since 2013, she has been an Assis-
tant Professor with the Department of Management Science and Logistics,
School of Management and Economics, Beijing Institute of Technology. Her
research interests include urban transport planning andmanagement, discrete
system modeling and simulation, and urban transport environment.

YANBING JU received the Ph.D. degree in
management science and engineering from the
Beijing University of Aeronautics and Astronau-
tics (Beihang University), China, in 2003. He is
currently a Professor in management science and
engineering with the Beijing Institute of Tech-
nology. He has published more than 80 articles
in journals and conference proceeding, includ-
ing journals, such as Applied Mathematical Mod-
elling,Computers and Industrial Engineering, Soft

Computing, Expert Systems with Applications, the International Journal
of Intelligent Systems, the Journal of Intelligent and Fuzzy Systems, and
Natural Hazards. His current research interests include decision making
under uncertainty, discrete event system simulation and optimization, and
emergency management.

DAWEI JU received the B.A. degree in commu-
nication science from the South China University
of Technology, in 2009, and the M.B.A. and Ph.D.
degrees in management science and engineering
from the Beijing Institute of Technology, in 2014
and 2018, respectively. He is currently an Engi-
neer with Postal Scientific Research and Planning
Academy. He is the author of several articles in
SCI journals, such as Computers and Industrial
Engineering, Soft Computing, and the Journal of

Intelligent and Fuzzy Systems. His research interests include fuzzy multi-
criteria group decision making, system evaluation method, and emergency
management.

WENKAI ZHANG received the B.S. degree in
management from the ShandongUniversity of Sci-
ence and Technology, Qingdao, China, in 2012,
and the Ph.D. degree in management science and
engineering from the Beijing Institute of Tech-
nology, Beijing, China, in 2018. He is currently
a Lecturer with the School of Economics and
Management, China University of Geosciences
(Beijing), Beijing. His current research interests
include preference modeling, decision analysis,
and group decision making.

PEIWU DONG received the Ph.D. degree from
the Department of Management, Harbin Institute
of Technology, China, in 2001. He is currently a
Professor and an Assistant Dean with the School
of Management and Economics, Beijing Institute
of Technology, and the Deputy Director Mem-
ber of Business Administration Teaching Guid-
ance Committee for the Ministry of Education,
China. He has published more than 60 articles in
journals and conference proceeding. His current

research interests include decision theory and method, complex system
modeling, management system engineering, investment financing, and risk
management.

AIHUA WANG received the B.S. degree in math-
ematics and applied mathematics from Northwest
University, Xi’an, China, in 1991, the M.S. degree
in computer science and technology from Harbin
Engineering University, Harbin, China, in 1998,
and the Ph.D. degree in computer science and tech-
nology from Peking University, Beijing, China,
in 2002, where she is currently an Associate Pro-
fessor in education technology. She has published
more than 60 articles in journals and conference

proceeding, including journals, such as Applied Mathematical Modelling,
Computers and Industrial Engineering, Soft Computing,Expert Systems with
Applications, the International Journal of Intelligent Systems, the Journal of
Intelligent and Fuzzy Systems, and Natural Hazards. Her current research
interests include education technology theory and method, decision making
theory and method, and discrete event system simulation and modeling.

141192 VOLUME 7, 2019

http://dx.doi.org/10.1007/s00500-019-04162-5

	INTRODUCTION
	PRELIMINARIES
	PICTURE FUZZY SETS
	THE EDAS METHOD

	THE INTERACTION OPERATIONAL LAWS AND PICTURE FUZZY INTERACTION AGGREGATION OPERATORS
	THE INTERACTION OPERATIONAL LAWS OF PICTURE FUZZY NUMBERS
	PICTURE FUZZY WEIGHTED INTERACTION AVERAGING OPERATOR
	A PICTURE FUZZY ORDERED WEIGHTED INTERACTION AVERAGING OPERATOR
	PICTURE FUZZY HYBRID ORDERED WEIGHTED INTERACTION AVERAGING OPERATOR

	AN EXTENDED EDAS METHOD FOR MAGDM PROMLEM UNDER PICTURE FUZZY ENVIRONMENT
	DESCRIPTION OF THE MAGDM PROMLEM UNDER PICTURE FUZZY ENVIRONMENT
	DETERMINE THE WEIGHTS OF DECISION MAKERS
	DETERMINE THE WEIGHTS OF ATTRIBUTES
	PROPOSED METHOD FOR MAGDM PROBLEM BASED ON THE IDEA OF EDAS

	NUMERICAL EXAMPLE AND COMPARISON ANALYSIS
	NUMERICAL EXAMPLE
	COMPARISON ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	XIA LI
	YANBING JU
	DAWEI JU
	WENKAI ZHANG
	PEIWU DONG
	AIHUA WANG


