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ABSTRACT The super multi-armed and segmented (SMAS) spiral pattern has been observed in nature, such
as sunflower inflorescence, spiral aloe, pine cone, ball cactus and Roman broccoli, which is characterized by
several segmented spiral arms sharing the same spiral tip. The mechanism for the emergency of the SMAS
spiral pattern has not been found. In this article, we observed the emergence of the SMAS spiral pattern by
the simulations of a reaction-diffusion model. Additionally, our theoretical analysis found that the instability
of concentrations in spiral arms leads to the emergence of this pattern. This study provides an alternative
explanation for the formation of this type of pattern in nature and sheds light on the dynamics of pattern
formation.

INDEX TERMS Spiral pattern, reaction-diffusion model, target-like pattern, superstructure.

I. INTRODUCTION
Pattern formation in reaction-diffusion (RD) systems has
been suggested to be an underlying mechanism that gives rise
to complex patterns in biology [1]–[7]. For example, spiral
patterns obtained in modeling simulations, such as a type of
segmented spiral patterns [8], [9] and a type of multi-armed
spiral patterns [10]–[14], are used to explain the observa-
tion of the natural systems both experimentally and theoreti-
cally [8], [15]–[18], e.g., chemical reactions [8], [14]–[16],
populations of microorganisms [11], [19], [20], gas disch-
arge [21], [22], and fluid convection [13], [23]. Modelling
works have found the mechanisms for the generation of these
two types of patterns. Segmented spiral patterns result from
an interaction between front rippling via a transverse instabil-
ity and front symmetry breaking by a fast-diffusing inhibitor
far from the Hopf-Turing bifurcation [9], and multi-armed
spiral patterns are formed due to attraction of single spirals
if these spirals rotate in the same direction and their tips are
less than one wavelength apart [10], [11], [16]–[18], [21].

In addition to these two patterns, other spiral patterns
have also been observed in nature, e.g., sunflower inflo-
rescence, spiral aloe, pine cone, ball cactus and Roman
broccoli [24], [25]. The patterns of pine cone, spiral aloe
and ball cactus are shown in Fig. 1. In particular, there
exist several segmented spiral arms [26], [27] sharing the
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same spiral tip in each pattern. We call these patterns the
super multi-armed and segmented (SMAS) spiral patterns.
Although the SMAS spiral patterns share common features
with segmented spiral and multi-armed spiral patterns, they
are different. For instance, the arms in SMAS spiral pat-
terns are segmented and in multi-armed spiral patterns are
not; SMAS spiral patterns are formed spontaneously and
multi-armed spiral patterns are usually induced artificially;
although the arms of segmented spiral patterns and SMAS
spiral patterns are both segmented, segmented spiral patterns
can only have one arm due to the instability of the medium.
Thus far, the study and understanding of SMAS spiral pat-
terns are very superficial and deficient to date [24]. Under-
standing the formation of these patterns in the spiral bodies
of such living organisms is still a great scientific challenge.

In this article, we desire to rebuild the SMAS spiral pat-
tern and find the mechanisms for the emergence of this
pattern through numerical simulations based on a RD model.
Our numerical findings show that this type of spiral pattern
contains an explicit superstructure and an implicit station-
ary target-like structure, which can correspond to the spiral
patterns found in nature. Our qualitative theoretical analy-
sis reveals that the SMAS spiral pattern results from the
instability of concentrations in spiral arms. The rest of the
article is organized as follows. Section II introduces themodel
and methods; in Section III the numerical simulation results
are presented, including the reconstruction of SMAS spiral
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FIGURE 1. (Color online) Examples of the super multi-armed and segmented (SMAS) spiral patterns in living organisms, (a) a pine cone, (b) an spiral
aloe, and (c) a ball cactus. The spiral arms in each pattern are marked with solid lines in different colors.

pattern, the composition of the superstructure, the discovery
of the stationary target-like structure and so forth; and then,
Section IV shows analytical results; at last, discussion and
conclusion are presented in Section V.

II. MODEL AND METHOD
The dynamics of spatially distributed systems governed by a
modified Decroly-Goldbeter (DG) model [28] are described
as below

∂α

∂t
=

υ

Km1
− σ18+ Dα∇2α,

∂β

∂t
= q1σ18− σ2η + Dβ∇2β,

∂γ

∂t
= q2σ2η − ksγ + Dγ∇2γ, (1)

with

8 =
α(1+ α)(1+ β)2

L1 + (1+ α)2(1+ β)2
,

η =
β(1+ dβ)(1+ γ )2

L2 + (1+ dβ)2(1+ γ )2
, (2)

where α, β and γ denote the concentrations of reactants S,
P1 and P2, respectively. Substrate S is injected or synthesized
with a constant rate υ; its transformation is catalyzed by an
allosteric enzyme, which is activated by its product P1; a sec-
ond allosteric enzyme uses P1 as substrate and is activated
by its product P2; ks is the apparent first-order rate constant
after removal of P2. Dα , Dβ and Dγ denote the diffusion
coefficient of α, β and γ , respectively. Parameters υ, Km1,
σ1, σ2, q1, q2, L1, L2, d , and ks are determined by reaction
conditions. Diffusion coefficients of all the three species are
set to be equal in this study, i.e, Dα = Dβ = Dγ . In the
absence of transportation, the above model can show vari-
ous complex temporal dynamics, including bi-rhythmicity,
hard excitation, and chaos when the control parameter ks
varies [28]. As in earlier studies [28], [29], ks is investigated
as the control parameter in this study. The other parameters

are fixed: υ/Km1 = 0.1s−1, σ1 = σ2 = 10.0s−1, q1 = 50.0,
q2 = 0.02, L1 = 5.0 × 108, L2 = 100.0, d = 1.0 × 10−6,
and Dα,β,γ = 1.00 × 10−6cm2

· s−1. The local oscillations
in the medium are all single-period limit-cycle oscillations
in the investigated range of ks in this article (Movie 1 in the
supplementary files describes the motion of a phase point
in the phase space which shows a single-period relaxation
oscillation).

The solutions for spiral wave pattern in the two-dimensional
medium can be expressed as 0(ρ, θ, t). Here, 0 (a function
of space and time) is the spatial distribution of γρ,θ , where
ρ and θ are polar radius and polar angle in the polar coor-
dinates, respectively (The center of the spiral wave is the
origin of polar coordinates). γρ,θ is the value of γ in the
spatial point (ρ, θ ). The wave peak is a set of points where
∂0(ρ, θ, tx)/∂ρ = 0 and 0(ρ, θ, tx) > 0(ρ, θ, tx), where
0(ρ, θ, tx) is the average of all values of γ in all local points
when t = tx. Consequently, the maximum values of the
system over space and time is defined as following, respec-
tively. Pmax is the location of the maximum γ in 0(ρ, θ, tx)
over space, i.e., the position where ∂0(ρ, θ, tx)/∂ρ =

∂0(ρ, θ, tx)/∂θ = 0, 0(ρ, θ, tx) > 0(ρ, θ, tx). γmax is the
maximum γ of one local point over time, and 0′(ρ, θ) is
the spatial distribution of γmax for all local points. The peak
of the target-like structure (target-peak) is a set of points
where ∂0′(ρ, θ)/∂ρ = 0 and 0′(ρ, θ) > 0′(ρ, θ), and
the valley is a set of points where ∂0′(ρ, θ)/∂ρ = 0 and
0′(ρ, θ) < 0′(ρ, θ), where 0′(ρ, θ) is the average value of
the values of γmax for all local points.

For numerical calculation, the partial differential equa-
tion (PDE) system (Eq. (1)) was first discretized in space
using the 9-point finite differencing [30]–[33], thus it
was reduced to the ordinary differential equation (ODE)
system, i.e.,

dxm,n
dt
= f (xm,n)+

D
h2

m+1∑
i=m−1

n+1∑
j=n−1

Mi,jxi,j, (3)
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with

M =
1
6

 1 4 1
4 −20 4
1 4 1

 , (4)

where x represents the vector of variables α, β and γ ,
D represents the diffusion coefficient, and M represents the
coupling matrix. The subscripts m and n are the coordi-
nates of gird points. The space step (space grid) is equal to
h = 0.001cm. Then, the ODE system was carried out by the
4th-order Runge-Kutta method [30], [34]–[37], which reads

xn+1 = xn +
1t
6
(K1 + 2K2 + 2K3 + K4),

K1 = f (tn, xn),

K2 = f (t
n+

1
2

, xn +
1t
2
K1),

K3 = f (t
n+

1
2

, xn +
1t
2
K2),

K4 = f (tn+1, xn +1tK3),

(5)

with time steps of 1t = 0.02s, where f (tn, xn) denotes
dxn/dt . The simulations were performed on 1000 × 1000
grids with no-flux boundary conditions. The initial values
are selected as α(1 : 1000, 1 : 1000) = 200, β(1 : 500,
1 : 1000) = 1400, β(501 : 1000, 1 : 1000) = 0,
γ (1 : 1000, 1 : 500) = 15, β(1 : 1000, 501 : 1000) = 0.
In order to ensure the reliability of numerical results,

the numerical results were also obtained with smaller space
steps and time steps. Moreover, the model were also calcu-
lated by the Euler method, the 4th-order Adams-Bashforth
method and the 4th-order Adams-Bashforth-Moulton
method. Specifically, the Euler method [30], [34], [38] reads

xn+1 = xn +1tf (tn, xn), (6)

the 4th-order Adams-Bashforth method [30], [34], [39], [40]
reads

xn+1 = xn +
1t
24

[55f (tn, xn)− 59 f (tn−1, xn−1)

+ 37 f (tn−2, xn−2)− 9 f (tn−3, xn−3)], (7)

and the 4th-order Adams-Bashforth-Moulton method [30],
[34], [41] reads

x̄n+1 = xn +
1t
24

[55f (tn, xn)− 59 f (tn−1, xn−1)

+37 f (tn−2, xn−2)− 9 f (tn−3, xn−3)],

xn+1 = xn +
1t
24

[f (tn−2, xn−2)− 5 f (tn−1, xn−1)

+19 f (tn, xn)+ 9 f (tn+1, x̄n+1)].

(8)

In this article, the computing programs were written in
basic Fortran and MATLAB codes, the figures were drawn
by the MATLAB and Origin softwares, the photos in Fig. 1
were taken with a Nikon camera D3200, and the movies were
produced by the MATLAB software. Fortran and MATLAB
codes to generate the Figures and movies are available from
the authors on request.

III. NUMERICAL RESULTS
A. THE RECONSTRUCTION OF SMAS SPIRAL PATTERN
The structure of the spiral wave (snapshot) depends on the
value of ks (Fig. 2). When ks is less than or equal to the
threshold k ′s (k

′
s ≈ 0.118s−1), a simple and stable spiral wave

emerges in the medium (Fig. 2(a)). The concentration in each
local point of the wave peak (the white spiral line in the
lower panel of Fig. 2(a)) is the same. The spiral tip does
not meander, and distances between each two adjacent wave
peaks are the same at each moment. Accordingly, the struc-
ture of the spiral wave is an Archimedean spiral. When ks
is larger than k ′s, the original spiral wave becomes complex
and a superstructure appears upon it (Fig. 2(b)). The area of
the superstructure extends as ks continues to increase, until
the entire medium is occupied (Fig. 2(c)). The superstructure
contains five super arms which are all segmented, and these
super arms share the same spiral tip with the original spiral.
This superstructure is an SMAS spiral pattern, and we call
this type of spiral wave the SMAS spiral wave. Dynamic
process of the spiral wave in Fig. 2(c) is tracked in Movie 2
andMovie 3 in the supplementary files.We find that when the
superstructure appears, the original spiral wave still retains an
Archimedean spiral structure, and the spiral tip still does not
meander in Fig. 2(c). Therefore, the plane structure of wave
peak of the spiral wave can be represented as

ρ(θ ) =
λS(θ − θ0)

2π
, (9)

where λS is the wavelength of the spiral (≈ 58.53×10−3cm),
and ρ (0 < ρ < +∞) and θ (θ0 ≤ θ < +∞) are polar
coordinates. ρ is a function of θ , and θ0 (0 ≤ θ0 < 2π ) is
the initial angle. Note that the center of the spiral wave is the
origin of polar coordinates.

In the next subsections, we will investigate the typical
features for the SMAS spiral wave.

B. THE COMPOSITION OF THE SUPERSTRUCTURE
As shown in Fig. 2(b) and (c), the superstructure is a spacial
ordered structure that is formed by areas of higher concen-
trations in spiral arms, i.e., the maximum concentrations over
space in the spiral wave. The locations of the these maximum
concentrations over space are denoted as Pmax. The points
(Pmax) for the three spiral waves from Fig. 2(a), (b) and (c)
are marked in Fig. 3(a), (b) and (c), respectively. Note that
if we number Pmax from the spiral tip along the original
spiral arm as positive integers, i.e., 5m + k , (m ∈ N ∗, k =
−4,−3,−2,−1, 0), where m denotes the sequence num-
bers of these points Pmax (counted from the spiral tip along
the super-spiral), N ∗ denotes the positive integer, the points
Pmax can constitute a super-spiral structure for each k . For
instance, the points numbered 2, 7, 12, 17, 22, 27, · · · ,
constitute a super-spiral structure (i.e., the red solid line
in Fig. 3(c)). In Fig. 3(c), several selected sequence numbers
Pmax are marked in the form of (m, k). In general, as shown
in Fig. 3(c), all pointsPmax in the spiral arm form a five-armed
super-spiral wave, i.e., the superstructure upon the original
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FIGURE 2. (Color online) The spatial distribution of γρ,θ when t = tx, i.e., 0(ρ, θ, tx), in the medium with selected values of ks: (a) 0.118s−1,
(b) 0.124s−1 and (c) 0.128s−1. The figures in the lower part of (a), (b) and (c) are the corresponding plane figures. The movies of the SMAS
spiral wave in (c) can be enhanced in Movie 3 in the supplementary files. The spiral waves are snapshots when t = tx, i.e., 0(ρ, θ, tx), where tx
represents any moment when spiral waves reach steady states.

FIGURE 3. (Color online) The spatial distribution of the points Pmax (labelled by black solid circles) in the spiral wave (black solid line) with
different values of ks: (a) 0.118s−1, (b) 0.124s−1 and (c) 0.128s−1. The super arms are marked with solid lines in different colors, respectively.
Several selected sequence numbers of Pmax are marked on the right side of the corresponding points in the form of (m, k), respectively. Note that
point Pmax does not exist in (a).

spiral wave shown in Fig. 2(c). The structure of these five
super arms are identical.

C. THE DISCOVERY OF STATIONARY
TARGET-LIKE STRUCTURE
In the three spiral waves in Fig. 2, we recorded maximal
concentrations γmax over time for each local point (Fig. 4).
Results show that the concentrations γmax for each local point
in Fig. 2(a) are the same except the points near the spiral core

(Fig. 4(a)). When the superstructure occurs (Fig. 2(b)), a sta-
tionary target-like structure appears at the center of 0′(ρ, θ)
(Fig. 4(b)). As shown in the appended drawing in Fig. 4(b),
with the increase of ρ, the amplitudes of oscillations of the
wavy line (i.e., the change in concentration in the target-like
pattern along the radial direction) gradually decrease and
subside to a certain value of ρ. The superstructure occupies
the same area as the target-like structure. As ks increases,
the superstructure expands synchronously with the target-like
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FIGURE 4. The spatial distribution of γmax, i.e., 0′(ρ, θ), in the medium with different values of ks: (a) 0.118s−1, (b) 0.124s−1 and (c) 0.128s−1.
The appended drawings below (a), (b) and (c) are the longitudinal sections (along the white solid lines) of the corresponding 0′(ρ, θ), respectively.
(a), (b) and (c) all show a part of the total medium.

structure, finally the target-like structure occupies the whole
medium (Fig. 4(c)). The peak of this target-like structure can
be represented as

ρ(n) = nλT, (n ∈ N ), (10)

where n denotes the sequence numbers (counted from the
center) of the circles, polar coordinate of the spatial points ρ
(0 < ρ < +∞) is a function of n, and N denotes the natural
number.

To explain the formation of the target-like pattern, we have
randomly selected a wave in Fig. 2(c), and studied its
propagation characteristic. Results show that the wave peak
is swinging up and down during the propagation process
(Movie 4 in the supplementary files describes the dynamic
process of the wave peak). Moreover, the trajectory of the
wave peak is the same as the wavy line in the appended
drawing of Fig. 4(c). The trajectories of the wave peaks
having the same propagating direction can overlap with each
other. Thus the trajectories of all wave peaks could form a
surface, i.e., the target-like pattern in Fig. 4(c).

D. NUMERICAL RESULTS OBTAINED WITH
SMALLER SPACE STEPS AND TIME STEPS
In order to ensure the reliability of numerical results,
the model was also calculated by the 4th-order Runge-Kutta
method when the space and time steps are reduced to half of
the original values, i.e., the space step h is equal to 0.0005cm
and the time step 1t is equal to 0.01s. Note that, to keep
the spatial scale of the medium unchanged, the simulations
were performed on 2000×2000 grids. Because what we need
to verify is the reliability of the superstructure of the SMAS
spiral wave, the control parameter ks is fixed at 0.128s−1.

Figure 5 shows corresponding numerical results. By com-
paring Fig. 2(c) and Fig. 5(a), Fig. 4(c) and Fig. 5(b),

we found that the numerical results are the same when the
space and time steps are reduced to half of the original
values. In order to quantify the comparison of these two
numerical results, i.e., the SMAS spiral waves in Fig. 2(c)
and Fig. 5(a), we have found out the locations of all the
maxima in the spiral waves at a certain moment, i.e., the Pmax
points. The spiral arms of the two spiral waves can be per-
fectly overlapped, which are denoted as the black spiral line
in Fig. 5(c). Figure 5(c) shows the Pmax points in Fig. 2(c)
and Fig. 5(a). One can find that the corresponding points are
highly consistent.

E. NUMERICAL RESULTS OBTAINED BY OTHER
NUMERICAL METHODS
To further ensure the correctness and reliability of
the numerical results, we have re-simulated the model
with three other algorithms, i.e., the Euler method, the
4th-order Adams-Bashforth method and the 4th-order
Adams-Bashforth-Moulton method,respectively. The space
steps and time steps used here are 0.001cm and 0.02s, which
are the same as in MODEL AND METHOD section, and
the simulations are also performed on 1000 × 1000 grids.
The control parameter ks is fixed as 0.128s−1 to verify the
reliability of the superstructure of the SMAS spiral wave.

Figure 6 shows the SMAS spiral waves and the corre-
sponding target-like patterns (The drawing below each panel
is the corresponding target-like pattern). The SMAS spiral
waves in (a), (b) and (c) are obtained by the Euler, the
4th-order Adams-Bashforth and the 4th-order Adams-
Bashforth-Moulton methods, respectively. One can find that
the numerical results from different algorithms are all the
SMAS spiral waves.

The SMAS spiral waves from different algorithms are then
compared quantitatively. All the Pmax points of the three
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FIGURE 5. (Color online) The simulation results obtained with smaller space steps and time steps: (a) the SMAS spiral wave (the spatial
distribution of γρ,θ ); (b) the target-like pattern (the spatial distribution of γmax); (c) the comparisons between the corresponding Pmax points
in Fig. 2(c) and Fig. 5(a). The black spiral line indicates the spiral peaks of the spiral waves in Fig. 2(c) and Fig. 5(a). In (c), the solid red circles
represents Pmax points in Fig. 2(c), and the blue stars indicates Pmax points in Fig. 5(a).

FIGURE 6. (Color online) Numerical results obtained by different numerical methods. The simulation results in (a), (b) and (c) are obtained by the
Euler, the 4th-order Adams-Bashforth and the 4th-order Adams-Bashforth-Moulton methods, respectively. The spiral wave (the spatial
distribution of γρ,θ ) is shown as elevation in the upper panel in each figure, and the target-like pattern (the spatial distribution of γmax) is shown
in the lower panel.

SMAS spiral waves in Fig. 6 are found and marked with
different symbols (Fig. 7). The spiral arms of the three spiral
waves can be perfectly overlapped, which are denoted as the
black spiral line in Fig. 7. Consequently, the results in Fig. 7
illustrate the high degree of agreement between the results
obtained by different algorithms. It is also proved that the
superstructure of the SMAS spiral wave is not caused by the
limitation of a certain algorithm.

IV. ANALYTICAL RESULTS
Our simulations show that, when ks increases, the target-like
structure and superstructure appear simultaneously, expand

synchronously and occupy the same area in Fig. 4. These
indicate that the superstructure of SMAS spiral waves may
be due to the emergence of the target-like structure. To prove
the conjecture, by utilizing Eq. (2) and Eq. (3), we calculate
the coordinates of intersection points of the peak of the spiral
wave (described by Eq. (2)) and the peak of the target-like
structure (described by Eq. (3)), i.e., (nλT, 2nπλT/λS +
θ0), n ∈ N . The appropriate situations of these coordinates
are exactly Pmax. The theoretical analysis is consistent with
the simulation result.

By analyzing the relationship between these coordinates,
we find that ζ ≡ λS/λT is the key factor which affects
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FIGURE 7. The comparisons between the corresponding Pmax points
in Fig. 6(a), (b) and (c). The black spiral line indicates the spiral peaks of
the spiral waves in Fig. 6(a), (b) and (c). The black squares, red triangles,
green circles and blue stars represents Pmax points in Fig. 2(c), Fig. 6(a),
(b) and (c), respectively.

the superstructure. We set ζ = j + ξ, j ∈ N ∗, −0.5 <

ξ ≤ 0.5, then (nλT, 2nπλT/λS + θ0) is expressed as
(nλT, 2πn/(j + ξ ) + θ0). As shown in Fig. 3(c), each super
arm is formed by the points Pmax (intersections) of the nearest
polar angle between adjacent intersections. Thus, a group
of intersections having the polar angles 2π[0/(j + x)] +
θ0, 2π [j/(j + ξ )] + θ0, 2π [2j/(j + ξ )] + θ0, 2π [3j/(j +
ξ )] + θ0, · · · , form a super arm. Because the increments of
polar radius and polar angle between adjacent intersections in
this group are both equal, i.e., polar radius is proportional to
polar angle, this super arm is an Archimedean spiral. These
intersections can be divided into j groups whose starting
points’ polar angles are 2π[0/j+ ξ )]+ θ0, 2π [1/(j+ ξ )]+
θ0, 2π [2/(j+ξ )]+θ0, 2π [3/(j+ξ )]+θ0, · · · , 2π [j−1/(j+
ξ )] + θ0, respectively. Moveover, the value of ξ affects the

chirality of the super arm.When ξ is less than 0, the increment
of polar angle between adjacent intersections in one group is
greater than zero, i.e., 2π [j/(j+ ξ )] > 0, thus the chirality of
the super arm is the same to the original spiral wave’s. In the
same way, when ξ is great than 0, the chirality of the super
arm is opposite to the original spiral wave’s. Especially, when
ξ is equal to 0, the super arms are straight, and when ξ is equal
to 0.5, it is difficult to distinguish the super arms. For instance,
in Fig. 2(c), with ζ ≈ 4.71, the superstructure has 5 super
arms, the chirality of the super arm is the same to the original
spiral wave’s. In Fig. 8(a), with ζ ≈ 3.32, the superstructure
has 3 super arms, the chirality of the super arm is opposite
to the original spiral wave’s. Movie 5 in the supplementary
files shows the simulation process of a superposition of an
Archimedean spiral and a target ring. Analytical results are
coherent with simulation results in Movie 5.

In order to explain the formation mechanism of SMAS
spiral waves, we simplify the DG model and study SMAS
spiral waves combining with Fig. 2-4. Because the changes
of α are very small relative to its average level in the reaction
process [28], we let α to be constant, therefore, Eq. (1) can
be simplified as a bivariate model. Moreover, the model was
further simplified, which reads

∂β

∂t
= q1σ18′ − σ2η′ + Dβ∇2β,

∂γ

∂t
= q2σ2η′ − ksγ + Dγ∇2γ, (11)

with

8′ =
Aβ2

L1 + Bβ2
,

η′ =
βγ 2

L2
. (12)

Analyses indicate that this simplified model is an excitable
system, and β is the activator variable. Indeed, in the original

FIGURE 8. (Color online) The simulation results of Eq. 11. (a) the spatial distribution of γρ,θ , i.e., 0(ρ, θ, tx), (b) the corresponding plane figure of
(a), (c) 0′(ρ, θ) in the spiral wave in (a). The parameters are A = 6500.0nM2, B = 8800.0nM2, and ks = 0.128s−1.
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FIGURE 9. (Color online) (a) The phase diagram of Eq. 11 in a homogeneous phase medium. The red solid lines are the graph of equation
dβ/dt = 0, the blue solid lines are the graph of equation dγ/dt = 0, the black solid lines are phase orbits. The black arrows indicate the
directions of trajectories. Point F is the intersection of the red and blue lines, i.e. the fixed points. The starting points of the trajectories are very
close to each other. (b) Two typical phase orbits of the local points in the SMAS spiral wave in Fig. 8.

DGmodel, the homogeneous oscillation is a relaxation oscil-
lation, which is a typical characteristic for excitatable sys-
tems. Accordingly, the DGmodel possesses the characteristic
of excitatable systems.

We also obtain the SMAS spiral wave in this simpli-
fied model (Fig. 8(a,b)). The spatial distribution of γmax,
i.e., 0′(ρ, θ), shows a target-like pattern as well (Fig. 8(c)).

One can find that the number of the super arm in Fig. 2(c) is 5
and in Fig. 8(a) is 3, because the value of ζ in Fig. 2(c) is 4.71
and in Fig. 8(a) is 3.32. Because the characteristics of spiral
waves in RD systems largely depends on reaction terms, and
not on diffusion terms [42]–[46], we study the formation
mechanism of the special mode of propagation of waves by
analyzing the dynamical behavior of a single oscillator.
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Two fixed points of Eq. (11), points N and F , are obtained
(Fig. 9(a)). The analysis of stability shows that point N
(the coordinate origin) is a stable nodal point, stable along the
γ axis, neutral along the β axis. This neutrality leads the exci-
tation threshold to be zero. Point F is an unstable focal point.
The red and blue solid lines are the nullclines of β and γ ,
respectively. Several phase orbits are drawn, with the arrows
denoting the directions of the trajectories (Fig. 9(a)). The
phase points, which are very close to each other at the initial
time, will go away from each other, and the maximum values
of β or γ to be achieved will be quite different. This indicates
that the system is very sensitive to the initial value of γ which
is affected by the excitation condition. An small perturbation
can have a huge effect on the result. Figure 9(b) shows two
typical phase-orbits in the medium supporting spiral waves.
Orbits 1 and 2 are the phase orbits of local points at the
target peak and valley in the target-like structure in Fig. 8(b),
respectively. In fact, there are countless orbits (undrawn)
between these two orbits, which are the phase orbits of points
between the target peak and valley in Fig. 8(b). This feature of
the orbits is consistent with the results of the original model.
The difference between orbits 1 and 2 in Fig. 9(b) is caused
by their excitation conditions.

For convenient analysis, we disperse the spatial excitation
progress (i.e., the propagation process of the wave) to an
iterative process. In this paper, we study the evolution
between two waves of different concentrations in an iterative
way, and use the concentration of wave peak to represent
the concentration of the wave. In Fig. 9(a), we can obtain
that the maximum β of the ith wave (denoted as βmax,i)
to be achieved has a negative correlation with the initial γ
(denoted as γinit,i), i.e.,

βmax,i ∝
1

γinit,i
,

where i means the ith generation. βmax,i has a positive corre-
lation with the maximum γ (denoted as γmax,i), i.e.,

βmax,i ∝ γmax,i.

Moreover, γinit,i is positively correlated with γ in excitation
conditions. Since the excitation is caused by the diffusion
process, and the intensity of the diffusion is related to the
concentration gradient, the peak of the (i − 1)th wave has a
greater contribution to the excitation of the ith wave. There-
fore, we roughly consider γmax,i−1 to be γ in the excitation
condition. We can obtain

γinit,i ∝ γmax,i−1.

Finally, we can derive that

βmax,i ∝
1

βmax,i−1
,

and

γmax,i ∝
1

γmax,i−1
,

i.e., the concentration of the ith wave is negatively related to
the concentration of the last generation wave. Therefore, the
wave peak will be swinging up and down during the propaga-
tion process. This phenomenon is a cyclical change, thus we
can obtain these target-like structures in Fig. 4 and Fig. 8(c).
Finally, we observed the superstructure in Fig. 2(c) and
Fig. 8(a).
We find that the negative correlation between adjacent two

generation waves is due to the structure of the nullclines in
the phase space. In a general excitable medium supporting
spiral waves, such as FitzHugh-Nagumo model, the phase
orbits of local oscillations are the same except those near
the spiral tip. The nullcline of the trigger variable always
has a shape of an ‘inverted N’ or a ‘lain S’ [47]–[49], which
prevents the increase of the trigger variable. Therefore, the
trigger variable has a fixed maximum value. However, in this
simplified model, the nullcline of trigger variable does not
tilt downward, and its slope is not less than zero. There-
fore, the nullcline can not prevent the increase of trigger
variable in time, which leads to the instability of waves.
It is a type of instability that waves oscillate up and down
during the propagation process. In summary, SMAS spiral
waves are caused by the instability of concentrations in spiral
arms.

V. DISCUSSION AND CONCLUSION
In the present article, a type of spiral wave, i.e., SMAS spiral
wave, has been studied, which exists in nature. The SMAS
spiral wave has been rebuilt through our numerical simulation
methods. Moreover, we have found that the SMAS spiral
wave is caused by the instability of concentrations in spiral
arms. The structure and formation mechanism of the SMAS
spiral wave are different from other complex spiral waves. For
other spiral waves, Ref. [50] pointed out that the formations of
complex spiral waves from simple ones are accompanied by
the transition of the local oscillations from simple oscillation
to complex oscillation. However, when the SMAS spiral wave
appears, the local oscillation is still simple. Additionally,
in all spiral waves previously discovered, all the maximum
values for local points are equal except those near the spiral
tip, whereas in the SMAS spiral wave, the maximum val-
ues for local points are not equal and the spatial distribu-
tion of these maximum values has a stationary target-like
structure. At last, the target-like structure in Fig. 4(c) is
a special phenomenon. Our findings not only alternatively
explain the formation mechanism of the SMAS spiral pattern
in nature, but also enrich the theory research of the pattern
formation.
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