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ABSTRACT The alignment accuracy and stability of shipborne electro-optical system are affected by
external attitude disturbance and internal non-linear disturbance. Therefore, this study examined a new digital
sliding mode control based on a novel reaching law with an n-order disturbance compensator to solve this
problem. Specially, the proposed novel reaching law was a chatter-free method, in which, as the switching
gain was replaced by an adaptive function, chattering on the sliding surface tended to zero. For perturbed
systems, the new sliding mode controller was able to guarantee a narrow quasi-sliding-mode domain and the
ultimate width was the order of O(T 3), such that the narrower the quasi-sliding-mode domain width was,
the more robust toward nonlinear disturbances. Both mathematical calculations and simulations verified the
convergence and stability of the new controller. Finally, based on a compound control strategy that combined
feedforward control with a sliding mode control position loop and proportional-integral velocity loop control
structure, shipborne equivalent dynamic target tracking experiments were performed. The results, compared
with existing controllers, showed that the robustness of the new controller to nonlinear disturbances was
stronger and the tracking system accuracy clearly improved, while the influence of sliding mode chattering
on the system was avoided.

INDEX TERMS Shipborne electro-optical system, nonlinear disturbance, digital sliding mode control,
chattering, reaching law, disturbance compensator, chattering-free, quasi-sliding-mode domain.

I. INTRODUCTION
Electro-optical systems have been widely used in naval ves-
sels for detection and surveillance, aiming and fire con-
trol, precision guidance, navigation and guidance, range
measurement, optical communication, and optoelectronic
countermeasures [1], [2]. Optical axis stability is a nec-
essary condition for high-precision tracking of shipborne
electro-optical systems. However, in real environments, ship-
borne electro-optical systems are affected by movements
caused by ocean waves, causing the optical axis to devi-
ate from the origin of target surface. At the same time,
a servo turntable is selected as the actuator in a shipborne
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electro-optical system, and its nonlinear factors, such as
unbalanced internal torque, friction, torque ripple, model
identification error of control system, and parameter changes,
will lead to unstable system operation, which is the main
factor affecting control accuracy of system. Therefore, an
effective control method is of great practical significance
for suppressing nonlinear disturbances in shipborne electro-
optical systems.

In existing studies [3]–[5], a feedforward compensator
based on inertial sensors has been applied to shipborne
electro-optical systems, with the attitude disturbance of the
carrier measured and isolated in real time. And meanwhile,
proportional-integral-derivative (PID) controllers have been
widely used in industrial control systems because of its sim-
ple structure and easily set parameters. However, the PID
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controller, consisting of proportional, integral, and differen-
tial linear components of the error, cannot guarantee high
control accuracy when the electro-optical system is affected
by external ocean waves and internal nonlinear disturbances.
Sliding mode control (SMC), as an effective approach to
a robust control algorithm, is a good solution for nonlin-
ear systems [7]–[10]. Hence, it is noted that the computer
implementation of control algorithms has presented great
conveniences recently, and has necessitated the application
for the SMC strategy to sampled digital systems. However,
if applying continuous-time SMC algorithms to discrete-time
systems directly that will lead to many problems, such as
large chattering amplitude, sample/hold affects, discretiza-
tion errors, or even instability [12], [13], and [28]. In order to
avoid those problems, the digital sliding mode control algo-
rithm was studied here. In addition, the advantage of DSMC
was that once the system trajectories arrive at the sliding
surface, DSMCwas invariable to system parameter variations
and external nonlinear disturbances. System trajectories were
stabilized at the quasi-sliding-mode domain (QSMD), and
the narrower the QSMD width was, the stronger the sys-
tem robustness to disturbances. Meanwhile, a control system
composed of DSMC and feedforward compensation control
was able to effectively isolate wave motion, compensate for
nonlinear disturbance in the system, and ensure optical axis
stability [11].

However, it has been difficult to directly apply DSMC
to shipborne electro-optical stabilization systems. Large and
high frequency chattering of the controller is caused by high
frequency disturbance of sample/hold effects and discretiza-
tion errors [12]–[15], which affect control accuracy and dam-
age experimental equipment. Therefore, it is necessary to
improve the traditional DSMC to suppress chattering and
reduce QSMD width to ensure robustness. Until now, a great
number of studies regarding DSMC have been performed to
solve this problem, have proposed new digital terminal SMC
schemes in which chattering is suppressed by designing non-
linear sliding surfaces [16]–[18]. New adaptive time-delay
algorithms have been proposed that combined time-delay
estimation, injected dynamics and adaptive laws, which is
an effective method for suppressing nonlinear disturbances
in the system, the time-delay, and chattering on the slid-
ing mode [19]. A novel adaptive fractional-order nonsingu-
lar terminal sliding mode has been proposed that combines
reaching law (RL) with adaptive technique to obtain fast
convergence and high precision and chatter reduction [20].
An adaptive super-twisting fractional-order nonsingular ter-
minal sliding mode control has been proposed, which ensures
an algorithm with fast dynamic response and high control
accuracy [22]. A roust adaptive second-order SMC with a
PID sliding surface has been presented for uncertain lin-
ear systems. The discontinuous sign function is used for
the time-derivative of the control signal and the chattering
reduced [23]. A self-tuning integral sliding mode controller
combined with a composite nonlinear feedback law has
been designed, which suggested a varying boundary layer

width and a variable control gain that successfully elimi-
nates chattering [24]. A novel global sliding mode stabilizer
algorithm has been proposed in which chattering on the
sliding mode is effectively reduced [25]. High-order sliding
mode extends the idea of the traditional sliding mode and
the discontinuous control quantity has been applied to the
high-order derivative of the sliding mode. This method is
able to eliminate chattering while having the advantages
of simple structure and strong robustness of the traditional
sliding mode algorithm [4], [26]. Among of these studies,
the RL is the most direct and effective algorithm to elimi-
nating chattering of sliding mode. The chatter-free method
has been discussed, with the signum function canceled or
replaced by a continuous function, with chattering in the slid-
ingmode tending to 0 and, for the perturbed system, nonlinear
disturbance is suppressed and the difference function also
adopted to further narrow the QSMD width, on the order
O(T 3) [6], [14], [27], [34], and [35]. The chatter-reduced RL
with a disturbance compensator has been applied to uncer-
tain systems, with signum function coefficients replaced by
exponential terms that dynamically adapt to variations in
switching gain, to ensure less chattering [13], [28]–[31].
For a perturbed system, the QSMD width is the order of
O(T 2) and O(T 3) in different studies ([13] and [28], [29]
respectively). It is clear that such methods cannot completely
eliminate sliding mode chattering, as high frequency chat-
tering still exists in the output. Also, QSMD width meth-
ods in other studies are larger than O(T 3), such that the
wider QSMDmeans less robustness to disturbances [6], [14],
and [27].

Above all, sliding mode chattering and robustness are the
two main problems of sliding mode control systems. There-
fore, the main contributions of this study were described
below.

1) This paper proposed a novel RL designed by an adap-
tive function, which was related to state errors, and
compared with existing algorithms, such as the ref. [6]
and the ref. [13] algorithms. This proposed algorithm
solved the chattering problem existing in classical slid-
ing mode control, offering a chatter-free algorithm.
Meanwhile, the QSMD width of the proposed algo-
rithm was the order of O(T 3) such that the robust of
system was guaranteed. Both mathematical deductions
and simulations showed the effectiveness of the pro-
posed algorithm.

2) Shipborne equivalent dynamic target tracking experi-
ments based on sliding mode control were performed
and the digital control combined feed-forward control
with a SMC position and PI velocity loop control struc-
tures were adopted. The results, compared with the
PID controller and other existing representational slid-
ing mode controllers such as references [6] and [13],
showed that both the sliding mode and PID controllers
isolated attitude disturbance, but the tracking error of
the proposed method was the least of these approaches.
In addition, compared with Ref. [13], the proposed
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method avoided the influence of sliding mode chatter-
ing on the system.

II. PLANT MODEL AND DESIGNED OF SLIDING MODE
In this chapter, the basic content of the DSMCwas discussed,
including the shipborne electro-optical system, the discrete-
time system model, sliding mode surface, and QSMD width.

A. THE DISCRETE-TIME SYSTEM MODE
Shipborne electro-optical systems are susceptible to nonlin-
ear factors, such as waves, being model uncertainties and,
thus, it is difficult to describe a shipborne electro-optical sys-
temwith an accurate mathematical model. Indeed, the nonlin-
earmodel of the control systemwas expressed by the equation
of state, equation (1) [6], [10], and [15], as was the shipborne
control system.

x(k + 1) = (A+1A(k))x(k)+ (B+1B(k))u(k)+ Bf ρ(k),

(1)

where x(k)εRn×1 is the system state, u(k)εR the control
input, A and B system model parameters with approximate
estimation, thematrixA, B controllable,1A(k) and1B(k) the
model uncertainties, and ρ(k)εR the nonlinear disturbance in
the system, such as nonlinear disturbances caused by ocean
waves and unbalanced system torque.
Assumption 1: According to reference [37], if the uncer-

tainties 1A(k), 1B(k), and ρ(k) are bounded and satisfy the
‘‘matching’’ condition, then it must be satisfied that

ς (k) = 1A(k)x(k)+1B(k)u(k)+ Bf ρ(k), (2)

where ς (k)εRn×1 represents all uncertainties in the system
and its upper bound ς . Thus, the discrete-state equation was
expressed as

x(k + 1) = Ax(k)+ Bu(k)+ ς (k), (3)

Assumption 2: The change rate of the generalized uncer-
tainty is bounded, which means uncertainty is slowly varying
with time [6].

B. THE SLIDING SURFACE
In this study, the typical switching function S was adopted,
defined as [8]

s(k) = Cee(k) = Ce (x(k)− Rn(k)), (4)

where Ce = [Ce1,Ce2, . . . , 1] is the sliding mode coefficient
matrix and e(k) the actual error between the ideal state Rn(k)
and real state x(k). Thus, the sliding surface was expressed as

S = {e(k)|Cee(k) = 0}. (5)

The stability of the sliding mode and the asymptotic rate
of approaching movement were in direct with the value of
Ce [10].
Lemma 1: The sliding mode coefficient max, Ce =

[C1,C2, . . . ,Cn−1, 1]εRn with C1,C2, . . . ,Cn−1, 1, being
the positive sliding function gains satisfying the polynomials

ψ(p) = pn−1 + Cn−1pn2 + . . . + C2p + C1, and must be
Hurwitz polynomials. Further details of sliding function gain
selection can be found in references [35], and [38].

C. THE QSMD
Definition 1: System (3) would be in a QSM in the 1

(defined below) vicinity of the sliding surface (5), if the states
satisfies {e(k)|Cee(k) = 0} for all k > n (n is a constant
integer). This specified domain where the QSM occurs is
called the QSMD and the positive constant 1 the QSMD
width [10], [13], [28], and [33].

Definition 2: The conditions that system (3) satisfies in
reaching QSM in the 1 vicinity of the sliding surface (5) are

if s(k) > 1, −1 < s(k + 1) < s(k)
if s(k) < −1, s(k) < s(k + 1) < 1

if |s(k)| < 1, |s(k + 1)| < 1.

(6)

III. THE NEW REACHING LAW
In this chapter, a DSMC controller, based on the new RL
with a disturbance compensator, was proposed and its sta-
bility demonstrated by analyzing approaching movement and
sliding mode in sections B and C.

A. THE NEW RL WITH A DISTURBANCE COMPENSATOR
Chattering is the main problem of the DSMC, which leads
to high frequency disturbances in the system. A new RL,
based on an exponential RL, was proposed in this section,
which was able to solve the chattering problem by adapting
to changes in system trajectories and state errors.

This new RL was given by

s(k + 1) = (1− λT ) · 01(k) · s(k)− κT · 02(k) · sgn[s(k)],

(7)

where the exponential coefficient was 0 < λT < 1, the
switching gain κ > 0, and T the sampling time for discrete
systems. The adaptive functions in (7) were expressed as

01(k) = ε + (1− ε)e−2η·|s(k)|
γ1

02(k) =
|e1(k)|α

ε + (1+ |e1(k)|α
1
− ε)e−η·|s(k)|

γ2
,

(8)

where 0 < ε < 1, 0 < γ1 < 1, η > 0, γ2 ≥ 1, (η,
γ2εN+), the parameter e1(k) represented the first element of
the error matrix e1(k) between the measured value x(k) and
target value Rn(k) and, if |e1(k)| ≥ 1, then 0 < α < 1;
otherwise if 0 ≤ |e1(k)| ≤ 1, then α > 1.
Remark 1: These parameters were discussed in simulation

4.1 case II below.
Solving (8) based on (3) and (4), the DSMC controller was:

u(k) = (CeB)−1[Ce(Rn(k + 1)− Ax(k))+ (1− λT )

·01(k)s(k)− κT · 02(k)sgn[s(k)]− Ceς (k)], (9)

in which ς (k) respects the system uncertainties. In view of
previous studies [13], [28], and [29], the disturbance was
estimated by the delay estimate method, with ς̂ (k) in respect
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to the estimation, as [29]: ς̂ (k) = ς (k−1), and [13], [28]
ς̂ (k) = ς (k − 1)+ ς (k − 1)− ς (k − 2), where ς (k − 1) =
x(k)− Ax(k)− Bu(k − 1).
Based on the above, a new n-order disturbance compen-

sator was proposed here as:

ς̂ (k) = ς (k − 1)+
n∑
i=1

αi · [ς (k − i)− ς (k − 1− i)]. (10)

where α was the error weighting factor, with α0 + α1 +

. . . αn = 1, in periodically disturbed signals and the mag-
nitude of the disturbance approximately equal to that of the
adjacent time, α1 > α2 > 3 . . . > αn. Its convergence was
discussed in Appendix A.

Usually, n was selected to be 2, with the disturbance esti-
mate related to two past disturbance differences. Therefore,
the 2nd-order disturbance compensator was

ς̂ (k) = ς (k − 1)+ α · [ς (k − 1)− ς (k − 2)]

+(1− α) · [ς (k − 2)− ς (k − 3)]

= (1+ α)ς (k − 1)

+(1− 2α)ς (k − 2)− (1− α)ς (k − 3). (11)

The final DSMC controller was then inferred as:

u(k) = (CeB)−1[Ce(Rn(k + 1)− Ax(k))+ (1− λT )

·01(k)s(k)− κT · 02(k)sgn[s(k)]− Ceς̂ (k)], (12)

and the RL with a disturbance compensator expressed as:

s(k + 1) = (1− λT )01(k)s(k)− κT02(k)sgn[s(k)]+ ϕ(k),

(13)

where the error of estimation was

ϕ(k) = Ce[ς (k)− ς̂ (k)]. (14)

Lemma 2: ς (k) = O(T ), ς (k) − ς (k − 1) = O(T 2), and
ς (k)− 2ς (k − 1)+ ς (k − 2) = O(T 3) [13].
According to (11), the estimation error was

(1+ α)ς (k − 1)+ (1− 2α)ς (k − 2)− (1− α)ς (k − 3)

= 2ς (k − 1)− ς (k − 2)− (1− α)

· {[ς (k − 1)− ς (k − 2)]− [ς (k − 2)− ς (k − 3)]} ,

(15)

and because of Assumption 2, if the uncertainty was slowly
varying with time, it was obtained that

(1− α){[ς (k − 1)− ς (k − 2)]

− [ς (k − 2)− ς (k − 3)]} ≈ 0, (16)

Therefore, in view of Lemma 2, it was derived that

ϕ(k) = Ce[ς (k)− ς̂ (k)]

≈ Ce[ς (k)− 2ς (k − 1)+ ς (k − 2)]

= CeO(T 3) = O(T 3). (17)

Lemma 2 was needed in the proof of Theorem 2 (3).

In view of previous studies [7], [8], [12], 02(k) is related
to the state error, which can adjust the coefficient of sgn[s(k)]
adaptively to guarantee the fast speed of the reaching move-
ment as well as small chattering. Actually, if the state error is
large, |s(k)| will be large and the approaching movement will
do. In this movement, the exponential coefficient tends to be
(1−λT ) ·ε, which is smaller than (1−λT ) and the switching
gain tends to be (κT · |e1|α)/ε, which is far greater than κT
and a fast speed of the approaching movement can be guar-
anteed. If the system is in the stage of sliding mode, the state
error tends to 0, |s(k)| ≈ 0, and meanwhile, the switching
gain tends to be (κT · |e1|α)/(1 + κT · |e1|1/α), which was
much smaller than κT , such that the chattering on the sliding
surface was reduced [6].
Remark 2: Analyzing similarly, in view of the algorithmic

structure of the chatter-reduced algorithm [13], when the
system state was near the sliding surface, the coefficient of
the switching function sgn[s(k)] tended to κT , with chattering
on the sliding mode still active. Therefore, the proposed
algorithm was advanced that chattering on the sliding mode
of the proposed algorithm tended to be free.

B. THE APPROACHING MOVEMENT
Theorem 1: Consider that the compensation is bounded,

such that the upper bound is ϕ and ς is the disturbance
maximum. If the controller (12) is implemented, then the
trajectories of the system from any initial state will first cross
the sliding surface (5) within at most m∗ + 1steps.

Proof: there is an initial state that causes the switching
function (4), as s(0), s(1), s(2),. . . and s(n) do not change sign,
with n a positive integer. Actually, two cases needed to be
considered, for positive and negative values of s(k).
1) If S(K ) ≥ 0 (K = 0, 1, 2 . . .N ) and the system

trajectories did not cross the sliding surface in number of steps
N , IT was concluded from (4) and (7) that

s(1) = (1− λT )01(0) · s(0)− κT · 02(0)+ ϕ(0) (18)

s(2) = (1− λT )01(1) · s(1)− κT · 02(1)+ ϕ(1)

= (1− λT )201(0)01(1) · s(0)− (1− λT )01(1)

· (κT02(0)− ϕ(0))− (κT · 02(1)− ϕ(1)) (19)
...

s(n) = (1− λT )n
n−1
5
i=0

01(i)s(0)−
n−2∑
j=0

(1− λT )n−1−j

· [01(n− 1) · ·01(j+ 1)] · [κT02(j)− ϕ(j)]

− [κT02(n− 1)− ϕ(n− 1)]

= (1− λT )nχ1s(0)−
n−2∑
j=0

(1− λT )n−1−j

·[01(n− 1) · ·01(j+ 1)] · [κT02(j)− ϕ(j)]

− [κT02(n− 1)− ϕ(n− 1)], (20)

assuming that

χ1 =
n−1
5
i=0

01(i). (21)
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Moreover, in view of (7), it was obtained that ε <1 (k) < 1,
such that χ2 was effectively defined as:

χ2 = min{01(n-1) · ·01(j+1)} ≤ 1,j ∈ N+. (22)

According to equations (20), (21), and (22):

s(n) < (1− λT )nχ1 · s(0)− χ2
n−2∑
j=0

(1− λT )n−1−j

· [κT02(j)− ϕ]− [κT02(n− 1)− ϕ]

< (1− λT )nχ1s(0)

−χ2

n−1∑
j=0

(1− λT )n−1−j[κT02(j)− ϕ] (23)

And theremust be a positive number to satisfy formula (24)
as
n−1∑
j=0

(1− λT )n−1−j[κT02(j)−ϕ(j)] =
n−1∑
j=0

(1−λT )n−1−jχ3,

(24)

It was easy to reach the conclusion that

χ3 =

n−1∑
j=1

(1− λT )n−1−j · [κT02(j)− ϕ(j)]

n−1∑
j=1

(1− λT )n−1−j
. (25)

Therefore, combining (23) with (25), it was able to be
implanted that:

s(n) < (1− λT )nχ1s(0)− χ2χ3
n−1∑
j=0

(1− λT )n−1−j. (26)

As this point, supposing that system trajectories arrived at
the sliding surface at m, then s(m) = 0 and the conclusion
followed according to (26)

s(m) = (1− λT )mχ1s(0)− χ2χ3
m−1∑
j=0

(1− λT )m−1−j

= (1− λT )mχ1s(0)− χ2χ3
1− (1− λT )m

λT
, (27)

and therefore, the system reaching time was expressed as

m = log1−λT
1

χ1λT · s(0)
/
χ2χ3 + 1

. (28)

where coefficient values are as shown by (21), (22), and (25).
Here, m∗ was assumed to be the maximal integer bounded
below the real number m, such that, when s(k) ≥ 0, system
trajectories crossed the sliding mode surface at steps m∗ + 1.
2) If S(K ) ≤ 0 (K = 0, 1, 2 . . . n), for all conditions as

well as case (a), system trajectories were assumed to arrive at
the sliding surface at m and the integer below m is m∗, it can
be concluded that

m = log1−λT
1

−χ1λT · s(0)
/
χ2χ3 + 1

. (29)

Thus, when s(k) ≤ 0, system trajectories crossed the
sliding surface at steps m∗ + 1.

In the two above cases, system trajectories reached the
sliding surface in limited time m (shown as (30)) no matter
where the initial state was and the reaching steps werem∗+1.
After this, it was entered into the QSMD.

m = log1−λT
1

χ1λT · |s(0)|
/
χ2χ3 + 1

. (30)

Theorem 1: Has been proved.

C. STABILITY ANALYSIS OF THE SLIDING MODE
The following results were derived from the analysis of sys-
tem stability in a discrete-time system (3) in the1 vicinity of
the sliding surface.
Theorem 2: Three conclusions were derived to hold the

closed-loop system (3) with controller (12):
1) The system trajectories from any initial state entered

into the QSMD, defined by

8 = {s(k)| |s(k)| ≤ 18 = κT02 + ϕ} . (31)

where ϕ/κT ≤ 02 < 1, and there must be a posi-
tive root satisfying equation ϕ/κT ≤ 02(k) (proof in
Appendix B).

2) Once the system trajectories entered into the QSMD,
they could not escape it.

3) Compared to previous algorithms, the proposedRLwas
able to guarantee a smaller QSMD width.
Proof: there were two cases that needed to be considered

as well as the proof of Theorem 2, with positive and negative
values of s(k).
1) If s(k) > 0, it was clear that

s(k + 1) = (1− λT )01(k)s(k)

− κT02(k)sgn[s(k)]+ ϕ(k)

< s(k)− κT02 + ϕ < s(k). (32)

It was concluded that s(k) was monotonically decreas-
ing with respect to k as long as s(k), such that there
must be a positive integer n∗ that satisfied:

0 < s(n∗) < κT · 02 + ϕ. (33)

If s(k) < 0, it was obtained that

s(k + 1) = (1− λT )01(k)s(k)

−κT02(k)sgn[s(k)]+ ϕ(k)

> s(k)+ κT · 02 + ϕ > s(k), (34)

where s(k) was monotonically increasing with respect
to k as long as s(k) < 0, such that there also must have
a positive integer n∗ that satisfied

−(κT · 02 + ϕ) < s(n∗) < 0. (35)

Therefore, on the basis of (33) and (35), the following
conclusion was:∣∣s(n∗)∣∣ < κT · 02 + ϕ. (36)
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Of the above, system trajectories from any initial state
must enter into the QSMD, defined by (31).
Theorem 2 (1): Has been proven.

2) Assume system trajectories have entered into the
QSMD, such that, if 0 < s(k) < κT ·02+ϕ,01(k) ∼ 1,
02(k) ≤ 02, and ϕ(k) ≤ ϕ, then

s(k + 1) = (1− λT )01(k)s(k)

− κT02(k)sgn[s(k)]+ ϕ(k)

< s(k)− κT02 + ϕ < s(k) < κT · 02 + ϕ,

(37)

when−κT ·02−ϕ < s(k) < 0,01(k) ∼ 1,02(k) ≤ 02,
and ϕ(k) ≤ ϕ, it was obtained that:

s(k + 1) = (1− λT )01(k)s(k)

− κT02(k)sgn[s(k)]+ ϕ(k)

> s(k)+ κT02(k)+ ϕ(k)

> s(k) > −κT · 02 − ϕ. (38)

The conclusion from (36) and (37) was that if system
trajectories s(k) have been in the QSMD, the next step s(k+1)
must belong to it or, in other words, once the system trajecto-
ries entered into the QSMD, they could not escape it.
Theorem 2 (2): Has been proven.
Proof: According to (30), the width of QSMD 18 was

related to the upper bound of the disturbance estimation
error ϕ(k). In view of Lemma 2 and (17), it was derived that

18 = κT02 + ϕ = O(T 3)+ O(T 3) = O(T 3). (39)

In view of [6], [29], the width was the order of magnitude
O(T 2), and therefore, the QSMDwidth based on the proposed
method were smaller, having the magnitude order of O(T 3).
Theorem 2 (3): Has been proven.
Remark 3: in view of algorithmic structure of the chatter-

free algorithm Ref. [6], the width of QSMD tended to the
order of O(T 2), which was much wider than that of the pro-
posed algorithm; the wider the QSMD width was, the worse
the system robustness. Therefore, the proposed algorithm
possessed advantages.
Remark 4: the parameters of the RL (13) were general

to the different models, and meanwhile, they did not affect
the width 18, which only affected the chattering of the
transition stage of approaching motion and sliding mode only
(simulation 4.1 case II).

D. SUMMARY
From theorem 1 and 2, it was obvious that the DSMC con-
troller (12), based on the RL (13) was convergent and stable.
System trajectories must arrive at the sliding surface in a
limited time no matter where the initial state was. Here, the
sliding mode chattering was effectively suppressed and the
QSMDwidth perforce smaller than the method [13]. For both
the approaching movement and the sliding mode, the system
trajectories based on the RL are shown in Figure.1.

FIGURE 1. System trajectories of the proposed RL.

IV. SIMULATIONS RESULTS AND ANALYSIS
According to equation (1) and supposing the discrete time
digital system with nonlinear disturbance was expressed as

x(k + 1) = (A+1A(k))x(k)+ (B+1B(k))u(k)+ Bf ρ(k)

A =
[
1 0.0088
0 0.7788

]
, B =

[
0.0061
1.1768

]
,

Bf ρ(k) =
[

0
f (k)

]
1A(k) = β ·

[
0 0
0 0.5 sin(πk)

]
,

1B(k) = β ·
[

0
0.5 sin(πk)

]
f (k) = β · [0.5+ 2.5 sin(2πk)+ 0.5 cos(0.5πk)], (40)

where the initial state was assumed that [−0.8; −0.5].
According to Lemma 1, the order of system was 2 and,

therefore, the slidingmode coefficient matrix of the switching
function (4) was [C1, 1], which satisfied the Hurwitz polyno-
mials, with the eigenvalues of the polynomials p + C1 = 0
negative, with C1 > 0. The switching function (4) parameter
chosen as Ce = [5, 1].
In the next sections, two simulations were compared with

existing studies. First, no disturbance was supposed in the
system and analyzed chattering on the sliding mode. And
second, assuming the nonlinear disturbance in the system,
the performance of sliding mode controller analyzed, and the
QSMD width discussed.

Matlab, as an effective simulation tool, was used to analyze
the performance of the proposed algorithm, Ref. [6] and [13]
algorithms.

A. CHATTERING ANALYSIS
Case I: Assuming no disturbance in system (41) and with
the adjustable parameter β = 0, the exponential coefficient
was selected as λ = 5, the big switching gain κ = 5,
the coefficients of nonlinear function selected as ε = 0.15,
η = 20, γ1 = 0.5, γ2 = 10, when |e1| ≥ 1, a = 2.
These parameters were selected to guarantee an implemented
system. Coefficients of [13] were same as the above and
system trajectories shown in Figure 2.
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FIGURE 2. System trajectories based on the RL.

FIGURE 3. Phase trajectories of sliding mode movement.

In view of the Figures 3 and 4, initially, some conclusions
were drawn:

1) In the initial stage, system states of both methods were
far away from the sliding surface, |e1| ≈ ∞, with
the trajectories of both systems in the approaching
movement. Once trajectories were close to the sliding
surface, they were stabilized at the QSMD;

2) system trajectories in the proposed RL first crossed the
sliding surface in k1 = 4 and its convergence rate was
three steps faster than the method [13], k1 = 7;

3) chattering on the sliding surface of the proposed RL
was close to 0, which was far smaller than that of
method [13], almost 5.12× 10−2;

4) because of no disturbance, the QSMD width was equal
to chattering on the sliding surface.

Therefore, the proposed method was able to solve the chat-
tering problem of the sliding mode
Case II: In equations (7) and (8), many parameters affected

the system. How those parameters affected trajectories was
discussed necessary, however, it is difficult to calculate the
exact interval of parameter selection because the approximate
equalities (21), (22), and (25). Therefore, range of parameters
found for minimum chattering and a fast rate of approaching
movement examined in the following simulation.

From comparisons of system trajectories with different
values of ε, γ1, λ, and α respectively, it was obvious that
parameters were related to the approaching movement and
the chattering on the surface tended to 0 whatever those

FIGURE 4. System trajectories with different values of ε, γ1, λ, and α.

parameters (ε, γ1, λ, and α) were selected (Fig. 4). The bigger
ε, γ1, λ, and α were and the smaller ε was, the faster the
approaching rate as well as the smaller the chattering of the
transition stage from approachingmotion to the slidingmode.
Meanwhile, η and γ2, as coefficients of the exponential |s(k)|,
did not affect the chattering. As usual, those parameters were
selected, such that ε = 0.15, γ1 = 0.1, λ = 5, α = 2, η = 20
and γ2 = 10. The switching gain κT related to the maximum
disturbance estimation error, which was selected in the next
section.

B. QSMD ANALYSIS
For comparison, three kinds of methods were employed.
Case I: Supposing the system (41) with nonlinear dis-

turbance, the adjustable parameter β = 1 and, in view of
(11) and (14), the error of disturbance estimation is shown
in Figure 5, where the error weighting factor was α = 0.95.
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FIGURE 5. Disturbance estimate error.

TABLE 1. Parameters of the three algorithms.

The error of the proposed, method [13] was O(T 3) and the
error of method [6] O(T 2).
The maximum error of the proposed ϕ was 1.268× 10−2,

maximum error of method [13] ϕ[13] 1.272 × 10−2, and
maximum error of method [6] ϕ[6] 1.676 × 10−2 (Fig. 5).
Therefore, it was concluded that ϕ ≈ ϕ[13] < ϕ[6]. At the
same time, it should be pointed out that there was chattering
on the disturbance estimation error curve of method [13].
Case II: To obtain the minimum QSMD width 18,

the adjustable switching gain of the three methods was
selected to be the minimum. In view of (24) and Figure 5,
settings were determined, with κT = 0.014, λ[13] = 0.014,
and q2T[6] = 0.017, where λ[13] was the switching gain
of method [13], the q2T[6] respecting the switching gain of
method [6]. In addition, according to [6], in which the sliding
mode coefficient matrixCe of method [6] should be [0.5, 0.5],
large chattering was caused by a large Ce, and meanwhile,
matrix Ce of the proposed method and method [13] was
selected to be [5, 1]; the exponential coefficient of the three
methods were the same λ = 5 and the others the same as the
above. Generally, three controller parameters were selected
as shown in Table 1.

Simulations of the sliding mode are shown
in Figures 6 and 7, simulations of the controller shown in
Figures 8 and 9, and simulations of system states shown
in Figures 10 and 11.

a) System trajectories of method [6] lagged behind the
proposed method and method [13] because of the
smaller coefficient matrix Ce. Also, if this matrix was

FIGURE 6. System trajectories based on the RL.

FIGURE 7. Partial enlarged drawing of Figure 6.

FIGURE 8. DSMC controller.

set to [5, 1], the switching function of method [6] that
was related to the s(k) caused a wider QSMD;

b) for the proposed and method [6], there was no chatter-
ing on the surface, while for method [13], themaximum
value of chattering was ∼0.0208;

c) the QSMD width 18 of the proposed method was
0.0123, which was ∼0.0085 smaller than method [13],
with 1[13] ≈ 0.0208 and method [6] leading to the
maximum width, 1[6] ≈ 0.126;

d) the width of QSMD18 was related to the upper bound
of the disturbance estimation error ϕ(k), such that the
width 18 of the proposed method was smaller than
method [6], and Theorem 2(c) has also proven here.
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FIGURE 9. Partial enlarged drawing of the Figure 8.

FIGURE 10. State x1 trajectory.

FIGURE 11. State x2 trajectory.

In view of Figures 8–11, the following conclusions were
drawn:

a) There was a high frequency vibration (∼0.0216) in
the output of method [13] controller and the max-
imum amplitude u[13] was 0.0186, with both con-
trollers of the proposed method and method [6] with-
out high frequency vibration, |up| < 7.3 × 10−3,
|u[6]| < 1.7× 10−2;

b) as the state x1 stability error of method [6] was
|ex1[6]| < 3.39×10−3, the method [13] was |ex1[13]| <
5.2 × 10−4, and the proposed method was |ex1[p]| <

TABLE 2. Simulation results.

4.8 × 10−4, the comparison of the state stability error
was |ex1[6]| > |ex1[13]| > |ex1[p]|;

c) as the state x2 stability error of method [6] was
|ex2[6]| ≤ 0.2003, method [13] was |ex2[13]| ≤
1.8 × 10−2, and the proposed method was |ex2[p]| ≤
1.01× 10−2, the comparison of the state stability error
was |ex2[6]| > |ex2[13]| > |ex2[p]|, and there was
high frequency vibration on the state x2 trajectory of
method [13];

d) the high frequency vibration on the controller output or
the state x2 trajectory were reasons for chattering on the
sliding surface, which affected system performance.
The proposed method was able to eliminate chattering,
thus improving control system accuracy.

C. SUMMARY
Compared to method [6], the proposed method was able to
produce a narrower QSMD width, smaller stability error, and
improve the robustness with respect to external disturbances.
And, compared to method [13], the proposed method was
able to eliminate the chattering on the sliding surface, which
caused high frequency vibrations of the controller. The sim-
ulation data is summarized in Table 2.

V. EXPERIMENTAL STUDIES
A. THE SHIPBORNE ELECTRO-OPTICAL SYSTEM
As a nonlinear system, the shipborne electro-optical control
system is affected in practice by many factors. Changes in
ship posture caused by ocean waves are main factors. When
sailing on the sea, the platform is subjected to six-degrees-
of-freedom (six-DOF) periodic motion resulting from inter-
actions with ocean waves (Fig.12). Such ocean-generated
motion contains translation (surge, sway, and heave) and
rotation (roll, pitch, and yaw) [36]. And the six-DOF motion
causes the optical axis to deviate from the target surface ori-
gin, with the pitch motor compensating for longitudinal axis
deviation and azimuth motor for horizontal axis deviation of
the target surface. Model uncertainties and torque ripple, and
other nonlinear disturbances are also other interfering factors.
SMC, as an effective approach to a robust control algorithm,
was able to suppress the system parameter variations and
the external nonlinear disturbances [18], with the specific
contents described below.
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FIGURE 12. The shipborne electro-optical control system.

FIGURE 13. Experimental setup.

B. EXPERIMENTAL SETUP
The experimental setup is shown in Figures 13 and 14. During
this experiment, the electro-optical plant was placed on a
6-DOF parallel driven platform (RX/YBT-6-500, Ruixin
Technology Co., Ltd., HongKong, China) that could simulate
the swaying motion of waves. Based on the real data obtained
here, the shaking amplitude of optical axis did not exceed 5◦

and the frequency was less than 1 Hz under the conditions of
level-five sea and large ships as carriers. Meanwhile, there
was a laser facula on the target surface, which simulated
the tracked target. The image processing system calculated
the displacement after collecting this facula and fed it back
to the digital control system driven by the controller signal.
Attitude and other nonlinear disturbances were isolated by
rotating the azimuth and pitch motors of the electro-optical
system and optical axis stability was thus guaranteed. The
physical of the experiment, as in Figure 14 described
below.

System device selection and settings were as follows: the
digital controller was composed of a DSP (TMS320F2812)
and FPGA (Altera EP1C12Q240), with the DSP used to
store the control algorithm, which calculated the control and
attitude signals; the FPGA was used to receive and transmit
command signals to achieve circuit logic control. Meanwhile,
Code Composer Studio (CCS) software was used to develop
the digital controller DSP, with control algorithms stored
in the DSP to realize closed-loop control of the actuator. For
the image system, the focal length of the camera (EoSens CL
MC1362, MIKROTRON GmbH, Unterschleissheim, Ger-
many) lens was set to 200 mm, the data acquisition frequency

FIGURE 14. Photograph of the experimental platform a) Target facula
(a.1), electro-optical system (a.2), and 6-DOF Parallel Driven Platform
(a.3); b) Image acquisition system (b.1), and c) light source (c.1) and
image display interface of the host computer (c.2).

FIGURE 15. Structure of control algorithm for shipborne electro-optical
platform.

to 0.1 kHz, and pixel size at 14×14 µm, which could be
divided into 100 segments. The angle value of azimuth motor
or pitchmotor was obtained by encoder (RA26BEA115B05F,
Renishaw Co., Inc, Gloucestershire, UK).

The structure of the control algorithm for the shipborne
electro-optical platform is shown in Figure 15. There were
two control algorithms used to accomplish the digital con-
trol system. One was a feedforward compensator, which
received the attitude data of the inertial sensor; the distur-
bance components of the azimuth axis or pitch axis was
calculated and compensated by the feedforward controller;
and the attitude disturbance was isolated. The other was a
nonlinear disturbance compensator composed of a velocity
loop PID controller and position loop DSMC controller,
such that the proposed DSMC with a disturbance compen-
sator was able to suppress nonlinear disturbance and atti-
tude disturbance residuals to ensure stability of the optical
axis.

According to the structural diagram of the control system
(Fig. 15), the closed-loop model was composed of the veloc-
ity loop controller, and the system model was the equivalent
model of the position loop controller, in which the velocity
loop controller was the PI controller, with P = 1.8, and
I = 0.5. Therefore, the closed loop model of the velocity
loop (41) was obtained by classical frequency domain model
measurement method, and the model identification error was
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FIGURE 16. Optical axis deviation measurement.

a part of the system’s nonlinear disturbance.

x(k + 1) = (A+1A)x(k)+ (B+1B)u(k)+ Bf ρ(k)

A =


0.996 −0.17 −0.12 −0.031
0.0098 0.9992 −0.0006 −0.0002

0 0.01 1 0
0 0 0.01 1

,
B =

[
0.0098 0 0 0

]T (41)

The controller parameters were selected as follows: ε =
0.15, γ1 = 0.1, λ = 5, α = 2, η = 20, and γ2 =
10, the switching gain κT was selected to be 1.5; and the
DSMC was the 4-order controller, such that the sliding mode
coefficient matrix was set to [1, 3, 3, 1], which satisfied the
Hurwitz polynomials Lemma 1). Therefore, taking azimuth
motor control system as an example, experimental results
were as follows below

C. EXPERIMENTAL CONCLUSION AND ANALYSIS
In the case of the 6-DOF parallel driven platform with 1 Hz
shaking, the control system only retained the attitude distur-
bance feedforward compensator, and the remaining attitude
disturbance showed that the comparison between the image
acquisition optical axis deviation and estimation deviation
curve (Fig. 16). It was obvious that the optical axis oscil-
lated periodically around the coordinate origin at a frequency
of 1 Hz with a maximum of∼20 mrad affected by the attitude
disturbance.

The amplitude spectrum of optical axis deviation is shown
in Figure 17, which allowed conclusions to be obtained that
the attitude perturbation at 1 Hz frequency was the main fac-
tor affecting optical axis stability and that its amplitude was
∼18.12 mrad. Also, there were other nonlinear disturbances
at 2 and 3 Hz in the system, with the maximum amplitudes
of 2.03 mrad.

To verify the effectiveness of the proposed DSMC con-
troller (12), a laser beam pointing experiment was performed.
Four control strategies, including the feedforward compen-
sator plus PID controller, the feedforward compensator plus
the DSMC controller that was method [6], method [13], or the
proposed method, were adopted for comparative analysis in
this experiment. The experimental results showed that the

FIGURE 17. Amplitude spectrum of optical axis deviation.

FIGURE 18. Laser beam pointing experiment state error.

FIGURE 19. Partial enlarged drawing of Figure 18.

remaining attitude disturbance was suppressed by all four
control strategies (Figs. 18 and 19). In view of these results,
the maximum state error of the PID method was 1.38 mrad,
which was greater than DSMC controller of method [6],
at ∼0.68 mrad. The maximum error of the proposed method
was the smallest, at ∼0.34 mrad, which was smaller than
method [13], at∼0.42mrad. The disturbance isolation degree
of method PID for uncompensated attitude disturbance was
∼23.2 dB, which was smaller than method [6], at ∼29.4 dB,
while the disturbance isolation degree of method [13] and the
proposed method was ∼34 dB.
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FIGURE 20. Amplitude spectrum of optical axis deviation.

FIGURE 21. Facula tracking results at 2.5 Hz.

Figure 20 shows the amplitude frequency curve of
Figure 18, indicating that the attitude disturbance of 1 Hz and
the multiplication frequency disturbances caused by it were
the main factors affecting system accuracy. The 1 Hz attitude
disturbance amplitude of the proposedmethod ormethod [13]
DSMC was ∼0.23 mrad, which was smaller than that of
method [6], at ∼0.23 mrad, and the amplitude of the PID
method at∼0.79 mrad, which was the largest among the four
methods. Meanwhile, it should be pointed out that there was
a high frequency component in the state error of method [13],
which was caused by sliding mode chattering and would have
a serious impact on system stability. Therefore, compared
with method [13], the proposed method was more reliable for
the control system.

In the dynamic target equivalent tracking experiment,
the laser transmitter was shaken by a 6-DOF parallel driven
platform, which made the facula move sinusoidally at a fre-
quency of 2.5 Hz with amplitude of 20 mrad on the tar-
get surface. The attitude disturbance of the level-five sea
conditions was applied to the electro-optical system by the
other 6-DOF parallel driven platform. The results showed that
the remaining attitude disturbance and dynamic error were
suppressed by all four control strategies (Figs. 21 and 22).
In view of these results, the maximum state error of the PID
method was ∼2.37 mrad, which was greater than the DSMC
controller of method [6], at∼1.20 mrad. The maximum state

FIGURE 22. Partial enlarged drawing of the Figure. 21.

FIGURE 23. Amplitude spectrum of tracking error.

error of the proposedmethodwas the smallest, at∼0.76mrad,
which was smaller than method [13], at ∼0.82 mrad.
The amplitude frequency response curve clearly showed

that the attitude disturbance of 1 Hz and the sinusoidal track-
ing error of 2.5 Hz were the twomain factors affecting system
accuracy (Fig. 23). From numerical analysis, the 1 Hz attitude
disturbance amplitude and disturbance isolation degree were
similar to the Figure 20 results. The amplitude of the PID
method for the 2.5 Hz tracking error was ∼1.12 mrad, which
was greater than that of method [6], at ∼0.74 mrad, and
the amplitude of the proposed method or method [13] was
∼0.39mrad. However, it should be pointed out that therewere
high frequency components in the state error of method [13],
which was caused by sliding mode chattering and had nega-
tive influence on the control accuracy.

D. SUMMARY
Compared with the classical PID control algorithm, the three
sliding mode controllers based on the RL achieved higher
control accuracy and isolated the influence of attitude distur-
bance or dynamic error on the system. However, method [13]
did not avoid the disadvantage of chattering in traditional
sliding mode controllers, which can lead to a high fre-
quency component in the state error. The proposed method
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TABLE 3. Experimental results 1.

TABLE 4. Experimental results 2.

and method [6] were chatter-free methods, which were able
to suppress chattering, and the QSMD width of the pro-
posed method was O(T 3), which was narrower than that of
method [6], O(T 2). Static target experimental data showed
that the control accuracy of the proposed method was 19%
higher than that of method [13] and 50% higher than that
of method [6]. Dynamic target experimental data showed
that the control accuracy of the proposed method was 7.3%
higher than that of method [13] and 37% higher than that
of method [6]. Experiment results are summarized in the
Tables 3 and 4.

VI. CONCLUSION
In this paper, a new digital sliding mode controller based
on a novel RL and n-order disturbance compensator was
proposed for shipborne electro-optical systems. Mathemati-
cal calculations verified the convergence and stability of the
proposed algorithm.Meanwhile, simulations showed that this
proposed controller was able to suppress chattering on the
sliding surface to avoid its influence on system stability and
was robust to nonlinear disturbances, which also guaranteed a
narrow QSMD. Finally, shipborne equivalent dynamic target
tracking experiments were performed and the digital control-
combined feedforward control with a SMC position loop and
PID velocity loop control structure was adopted. The results,
compared with the PID controller and other existing sliding
mode controllers, showed that both the sliding mode and PID
controllers isolated attitude disturbance, but the tracking error
of the proposed method was the least of these approaches.
Also, compared with existing method [13], the proposed
method avoided the influence of sliding mode chattering on
the system.

The research of a new reaching law algorithm with a
simple structure and a narrower width to improve the present
algorithm QSMD is the future work.

APPENDIX
a) This section was to prove the convergence of the n-order
disturbance compensator shown in formula (10).

Proof: To prove the convergence of the disturbance
compensator, the disturbance estimation error need only be
proven to converge to a certain numerical range.

According to (10), the estimation error of disturbance com-
pensator was expressed as

ς (k)− ς̂ (k) = ς (k)− ς (k − 1)

−

n∑
i=1

αi · [ς (k − i)− ς (k − 1− i)],

(a.1)

where it was obtained that
n∑
i=1

αi · [ς (k − i)− ς (k − 1− i)]

= α1 [ς (k − 1)− ς (k − 2)]+ α2 [ς (k − 2)− ς (k − 3)]

+ · · · + αn [ς (k − n)− ς (k − n− 1)] (a.2)

In view of Assumption 2, if the change rate of the generalized
uncertainty was bounded, there must be a small number δ that
satisfies

−δ ≤ ς (m)− ς (m− 1) ≤ δ m = 2, 3, 4 · · ·, (a.3)

and because of
n∑
i=1
αi = 1, equation (a.2) was expressed as

−δ ≤

n∑
i=1

αi · [ς (k − i)− ς (k − 1− i)] ≤ δ. (a.4)

According to (a.3) and (a.4), it was obtained that

−2δ ≤ ς (k)− ς̂ (k) = ς (k)− ς (k − 1)

−

n∑
i=1

αi · [ς (k − i)− ς (k − 1− i)] ≤ 2δ. (a.5)

Above all, the estimation error (a.1) must converge in the
[−2δ, 2δ], therefore, the n-order disturbance compensator
shown in formula (10) was converged.

b) This section was to prove that the inequality ϕ/κT ≤
02 < 1 was well founded, where ϕ represents the upper
bound of disturbance estimation error (14) and κT the switch-
ing gain of the proposed RL, and 02 the state value of the
functional equation 02(k) at a given time when the system
entered into the QSMD.

Proof: At first, 02 < 1 was proven.
As the system trajectories on the sliding surface, |s(k)| ≈ 0

and |e1(k)| < 1, then, 02(k) was expressed as

02(k) ≈
|e1(k)|2α

|e1(k)|α + 1
, (b.1)
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and thus, no matter the time, the equality 02 < 1 was well
founded. Next, the equality ϕ/κT ≤ 02 was proven to be
valid at k = n. According to (b.1), the equation ϕ/κT ≤
02(k) was rewritten as

κT · |e1(k)|2α − ϕ · |e1(k)|α + ϕ ≥ 0, (b.2)

with the formula (b.2) a quadratic inequality of one variable.
Meanwhile, it was obtained that

ϕ2 + 4κT · ϕ > 0. (b.3)

There was a positive root |e1| satisfying the equation
ϕ
/
κT = 02(k) as

|e1| =
ϕ +

√
ϕ2 + 4κT · ϕ
2 · κT

. (b.4)

The opening direction of inequality (b.3) was upward and,
therefore, there must be a moment n in which the inequality
ϕ/κT ≤ 02 was valid.

Above all, the inequality ϕ/κT ≤ 02 < 1 was well
founded.
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