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ABSTRACT Accurate segmentation of choroidal neovascularization (CNV) patterns is vital for precise
lesion size quantification in age-related macular degeneration. In this paper, we develop a method for
unsupervised and parallel segmentation of CNV in optical coherence tomography based on a grid tissue-
like membrane (GTM) system. A GTM system incorporates a modified Clustering In QUEst (CLIQUE)
algorithm into tissue-like membrane systems. Exploiting CLIQUE’s aptitude for unsupervised clustering,
GTM systems can detect CNV of different shapes, positions and density without the need of a training stage.
The average dice ratio is 0.8440.04, outperforms both baseline and the state-of-the-art methods. Besides,
being a parallel computational paradigm, GTM systems can handle all scans under analysis simultaneously

and therefore they are less time consuming, completing CNV detection on 48 scans in 0.56 seconds.

INDEX TERMS GTM systems, unsupervised segmentation, choroidal neovascularization, OCTA.

I. INTRODUCTION

Age-related macular degeneration (AMD) is the main
cause of blindness for the elderly population in developed
countries [1]. One of its manifestations is the neovascular-
ization that breaks through the Bruch’s membrane into the
outer retina, a process known as choroidal neovascularization
(CNV) [2]-[4]. In the past, fluorescein angiography (FA)
or indocyanine green angiography (ICGA) have been used
to detect CNV in the clinical practice. These techniques
are invasive, involving intravenous dye injections [5], and
cannot provide depth-resolved visualization of vasculature.
Alternatively, optical coherence tomography (OCT) is a nat-
urally three-dimensional imaging technique and the recent
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functional addition of OCT angiography (OCTA) can detect
flow with high sensitivity at different retinal depths [6], [7],
including flow in CNV [8], [9]. Although OCTA computes
volumetric flow datasets, artifacts caused by projections cast
by superficial flow onto deeper layers are observed in the
outer retina, confounding interpretation of CNV. Therefore,
automated discrimination of the pixels belonging to CNV
vasculature from noise without manual intervention is a chal-
lenging task for the sake of accurate assessment of lesion
size. Only few works [10], [11] focused on the automatic
segmentation of CNV. Liu et al. [10] proposed a saliency-
based algorithm to recognize CNV in OCTA outer retinal
en face angiograms. This method could detect the CNV area
with an accuracy of 83% on 7 subjects. We have previously
proposed density cell-like P systems with active membranes
to improve the accuracy of recognition of CNV area to 87%
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on 22 subjects [11]. However, both of the above two methods
could not distinguish between distinct vessels forming the
CNV vascular pattern or detect the CNV boundaries with
precision. Moreover, they must employ methods in [12] to
remove artifacts, which increased the computational com-
plexity of the algorithms.

In order to design an algorithm with the ability to find
arbitrary groups and discriminate noise pixels with high flow
signal from the pixels in the CNV vascular pattern, clustering
method can be used. Clustering is an unsupervised machine
learning paradigm designed for classification of pixels with
similar characteristics without any prior knowledge of the
dataset nor need for a training stage [13]. Clustering algo-
rithms can be based on the connectivity of points (hierar-
chical clustering), the distance from cluster centroids (e.g.
k-means or fuzzy c-means), distribution models or density of
points (e.g. DBSCAN). Clustering In QUEst (CLIQUE) is an
example of a grid-density based clustering algorithm, which
has both the advantages of grid and density clustering [14].
CLIQUE reduces the time consumption in density clustering
by searching data based on grids [15]. Unlike partitioned clus-
tering algorithms and hierarchical algorithms, which need
to either input the number of clusters before computing or
select the expected shapes of groups, CLIQUE has the ability
to discover groups with arbitrary shapes and, therefore, it
is suitable for detecting individual CNV vessels in OCTA.
However, clustering algorithms such as CLIQUE are time
consuming. They need to read the dataset in each dimension,
do self-joining of every unit, and require trial and error to
determine the appropriate length and sensitivity of units.

To alleviate these problems and improve the effective-
ness of CLIQUE, it can be implemented in a parallel com-
putation scheme that can scan all dimensions in different
membranes simultaneously. Membrane computing, initiated
by Paun [16], is a computational model that encapsulates
the data in arrangements of ‘“‘membranes” that communi-
cate under certain rules with a given computational purpose.
Membrane computing has been applied on the segmenta-
tion of digital images [17]-[19] as well as in various fields
such as language generation, electricity fault diagnosis, and
combination optimization [1], [20]-[24]. Clustering based on
membrane systems has shown good convergence, robustness,
and parallelism [25]-[29]. In image processing applications,
membranes can operate in parallel in different local areas
independently of the image size [30]. In particular, the tissue-
like membrane system (TMS) is a particularly flexible net-
work membrane structure that is adaptable to various network
topologies [31], [32]. TMSs have a network membrane struc-
ture consisting of several one-membrane cells in a common
environment and a certain number of channels connecting the
cells. These features become very useful in organizing the
CLIQUE algorithm for detection of CNV architectures with
different characteristics of vascular pixel distribution.

Based on the above considerations, we formulate here a
grid tissue-like membrane (GTM) system, which consists of
a modified CLIQUE clustering algorithm implemented in a
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tissue-like membrane system, and apply it to the detection
of CNV vascular patterns in OCTA images. Specifically, we
use the GTM system to find a cluster of pixels contained in
the largest number of grid units, representing the location
of CNV vasculature. The proposed method can distinguish
CNV vasculature from surrounding noise better than previ-
ous methods, has the ability to discover clusters with arbitrary
shapes. The average dice ratio of our method for CNV is 0.84,
which is the best result to date.

The contributions of our work can be summarized as
follows:

(1) GTM systems integrate clustering algorithm into tissue-
like membrane systems, with the goal of making full use
of the excellent convergence, robustness and parallelism of
membrane systems as well as the good performance of clus-
tering algorithm for CNV segmentation. New types of rules
are also designed to solve complex real applications.

(2) A modified CLIQUE algorithm is proposed to be
implemented in GTM system for more accurate clustering.
In particular, effective data points and new search path are
defined in the identification and grouping of dense units to
deal with the abundant noise around CNV vascular pattern.

(3) Compared to detection of CNV area based on removing
artifacts by other methods, our approach yields CNV vascular
pattern segmentation directly. Detailed lesion identification
may significantly help doctors achieve early and accurate
diagnosis.

Il. PROBLEM STATEMENT
Clustering is to divide a set of objects, where objects in
the same group are more similar to each other than them
to objects in different groups. The segmentation of CNV
vascular pattern in OCTA can be viewed as a clustering prob-
lem, where one cluster is the target lesion and the others are
backgrounds. The combination of clustering and membrane
systems showed good performance [25]-[29]. TMS [31], [32]
is a classic type of membrane system, which associates a
graph structure consisting of nodes corresponding to cells and
the environment and edges that represent channels linking
various components.

A TMS (Fig. 1) with symport/antiport rules is formally
defined as a tuple:

[[=(0.wi.....owg. Ri, ... Ry i) . (1

where O is a finite set of objects; wi, ..., w, are initial mul-
tisets of objects; ip € {0, 1, ..., g} indicates the output cells
of the system. R; are finite sets of symport/antiport rules in
celli; and 1 <i < g. A symport rule has the form (7, u/A, j),
which means that the multiset of objects u goes from cell i to
cell j. An antiport rule has the form (i, u/v, j), indicating that
the multiset of objects u in cell i and the multiset of objects v
in cell j are interchanged.

The tissue-like P system starts with the initial multisets
Wi, ..., wg. Then, in each step, the symport and antiport rules
are applied in the maximally parallel manner (a maximal
multiset of applicable rules is non-deterministically chosen
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FIGURE 1. Membrane structure of tissue-like membrane system. S1 is the
environment, which has no membranes outside. 1...q are q numbers of
computing membranes.

and applied). This process is repeated until a termination con-
dition is satisfied. When it terminates, final result is embodied
by the output cells.

Ill. CNV VASCULAR PATTERN RECOGNITION

BY GTM SYSTEMS

Inspired by CLIQUE algorithm and TMS, we propose GTM

systems to detect CN'V vessels. The flowchart of the proposed

method is shown in Fig. 2. The purpose of GTM systems is to

find the set with the maximum number of adjacent dense units

(defined below), which represents a cluster of CNV pixels.
Since OCTA are 2-dimensional images, we implemented

the modified CLIQUE algorithm in a space of 2-dimensional

points. The input consists of a set of 2-dimensional set of
non-zero pixels V = {vy, va, ..., v}, where v; = {v;1, vip},
1 <i < n and v;1, vjp are coordinates of point v;. Because
noise is abundant and CNV pixels are closer to each other than
noise pixels, we applied an additional filtering step based on
the Euclidean distance information between pixels to reduce
the number of noise pixels in the computation of GTM.

The Euclidean distance between two pixels v, and vg,
o, B € {1,2,...,n},i # jis computed by Eq.(2) and the
set S = {dis(vy, vg)} corresponding to the set of distances
between any two pixels is saved.

dis(vy, vg) = \/ ite — vi2a)? + (Vitg — viop)? ()

Rather than using all non-zero pixels in the identification
of dense units, we define effective data points, which are all
pixels v, whose Euclidean distance to the closest non-zero
pixel vg is less than an input parameter 7.

Then, each dimension of OCTA is partitioned into ¢
intervals of equal length, forming non-overlapping units.
A 2-dimensional unit o has the form {01, 02}, where o; =
[lj, hj), 1 < j < 2is aright-open interval in the partition.
A pixel v; is contained in a unit o if its location in both
J dimensions is within the interval [; < v; < h;. A unit
o is considered to be dense if it contains a number Q of
effective points with Q@ > 6, where 6 is defined before
computation according to the distribution of CNV pixels.
After all dense units have been recognized, the unit o with
the maximal number of adjacent dense units is selected.
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FIGURE 2. Description of the proposed method. In block (A), the OCTA image is acquired. In Block (B), a threshold is set first to remove low flow
signal pixels and a median filtering is used to smooth the OCTA image. 8 x 8 units are used to partition the filtered angiogram. The rightmost image
in block (B) represents the positions of all non-zero pixels and the grid units where they are located. In Block (C), a GTM-systems-based algorithm
is used to segment CNV vascular patterns. The densest unit is first detected (highlighted in yellow) and assigned to a membrane in a membrane
structure formed by a skin membrane containing as many inner membranes as units in the grid. Adjacent membranes within the structure can
communicate with each other. The last figure of Block (C) depicts the search path method. Each unit is considered to be dense if the amount of
effective data points in it is larger than a certain threshold. After all dense units have been recognized, the unit with the maximal number of
adjacent dense units is selected, which is highlighted in yellow. This unit and its adjacent dense units are chosen as the first members of cluster C.
Then, each unit in C is set as a start unit to search whether its outer neighbors are also dense, in order to be added to C. When the search ends, the
clusters are extracted and the vascular pattern is found in the cluster with the largest number of units.
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Two 2-dimensional dense units are adjacent if they have a
common face or if there exists another 2-dimensional dense
unit adjacent to both. Then, o and its adjacent dense units
are chosen as the first members of cluster C. Then, each unit
in C is set as a start unit to search whether its outer neighbors
are dense. If they are dense, they will be added to C (Fig. 2,
search path). The algorithm terminates when no more units
are searched and the cluster with the maximal set of adjacent
dense units is output as the collection of units containing the
CNV pixels.

Next, we propose a GTM system as a parallel implementa-
tion of CLIQUE for the detection of the CNV pixels. A GTM
system is a kind of tissue-like P system (TMS) [23]. TMS
has graph based membrane structures, which is a flexible net-
work topology with several one-membrane cells in a common
environment and a certain number of channels connecting
the cells. Each cell contains multisets of objects and commu-
nicates with each other through the communication rules in
parallel.

The structures and ways of communication of TMS is
suitable for finding adjacent dense units and implementing
the search path in the detection of CNV architectures.

A GTM system for the detection of the CNV pixels is a
construct of the form:

[[=10.%.q.0,00, 0, R} 3)

The finite non-empty alphabet is O = {V, S, ¢, 7,0} ; A
denotes an empty object; ¢ is the initial number of cells, o =
{o1,02, ..., 04} is the set of cells, excluding o¢, which is the
environment. The membrane structure is shown in Block (C)
of Fig. 2. w = {i, V;, §;, 7, 0} are initial multisets of objects
in every cell o; ; Any two cells o; and o; representing units o;
and o; contain objects, can communicate with each other and
are subjected to rules R; defined below:

(01, {i, Vi, Si, ©,0}/0i, L), Si > 7 4
(i, {i, Vi, Si, T, 8} /o), {i, Vi, Si, 7, 0}) Q)
(or, {g™™, F,Vp,SF, 1,0})/0oF, C) (6)

(01, {i, Vi, Si,7,0,C} — 00, {i, Vi, S;, 7,6, C}H)  (7)
(01, {i, Vi, $i,7,0,C} — 00, {i, Vi, Si, 7,6, C})  (8)

Rule Eq. (4) removes objects from cell o; if they are
non-effective data points in unit p; considering the distance
threshold 7. Eq. (5) communicates dense units with their
adjacent dense units. Eq. (5) sends {i, Vi, S;, T, 0} to another
cell oj connected with o; within 0. Eq. (6) obtains cell o
.Variable g™ counts the number of units adjacent to of .
Eq. (6) also produces a new object C, which means unit or
belongs to cluster C. If units outside C are dense and adjacent
to dense units within C, they are incorporated to C by Eq. (7).
‘out’ means multiset {i, V;, S;, 7, 6, C} will be sent to oy from
cell ;. Eq. (8) outputs all cells that have object C.

The process halts when there are no rules being activated.
When the system halts, all the objects in the output cell og are
regarded as the final solution of the GTM system.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. DATA ACQUISITION

OCTA data was acquired from 48 patients with neovascular
AMD recruited at the Shandong Eye Hospital, Shandong
Eye Institute. The image size is 465x465, acquired on
SPECTRALIS HRA+OCT Multicolor with OCT2 Module
(Heidelberg Engineering GmbH, Germany). Manual segmen-
tation of CNV vascular pattern by two experienced graders
are deemed as ground-truth.

B. PRE-PROCESSING

First, a threshold at 0.3 is imposed to reduce noise while pre-
serving the CNV structure and a median filter with 3 x 3-pixel
kernel is applied in order to smooth images. Then, we extract
the position of all remaining non-zero pixels v; = (v, vi2),
I <i<465.

C. PARAMETERS SETTING

There are three initialization parameters: { = 58 is the
interval size of units, T = 5 is the maximum distance
between effective points and 6 = 25 is the minimum number
of effective data points necessary to consider o dense. 48
scans from subjects with neovascular AMD were processed
in MATLAB 2017a (MathWorks, Natick, MA) on an Intel
Xeon(R) CPU (3.30GHzx4) simultaneously due to the par-
allelism of GTM systems. The time invested to process all
subjects was only 0.56 s.

D. EVALUATION METRICS

Results obtained from GTM systems were compared with
manual results by computing the dice ratio, accuracy, false
negative rate (FNR) and false positive rate (FPR). Dice ratio
is defined between GTM (G) and manual (M) images as:

. 2x |GNM ||
dice = —————— )
IGNM |

Accuracy was calculated by Eq. (10) from the number of
true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) pixels.

Accuracy = TP+ TN (10)
YT TPYFPYIN 1 FN

FNR and FPR measure the fractions of relevant segmented
pixels. The definitions of these metrics are given below:

) FN
False negative rate = ——— (11)
TP + FN
. FP
False positive rate = —— (12)
FP + TN

The true positive (TP) score reflects the number of vas-
cular pixels correctly identified as vascular pixels. The false
positive (FP) score reflects the number of non-vascular pixels
incorrectly identified as vascular pixels. The true negative
(TN) score reflects the number of background pixels correctly
identified as background pixels. Finally, the false negative
(FN) score reflects the number of non-background pixels
incorrectly identified as background pixels.
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E. COMPARISON WITH THE STATE-OF-THE-ART METHODS
In this subsection, we compare the performance of our pro-
posed method for the segmentation of CNV vascular pat-
tern with the two state-of-the-art methods briefly introduced
below.

Liu et al. [10] proposed a saliency-based algorithm to rec-
ognize CNV area in OCTA outer retinal en face angiograms.

Xue et al. [11] employed DBScan algorithm in cell-like
P system with active membranes to improve the accuracy of
recognition of CNV area.

Table 1 compares the segmentation performance of our
proposed method with two state-of-the-art methods, using
mean dice ratio, accuracy, FNR and FPR (with standard
deviation).

Dice ratio and accuracy over 48 samples increase from
0.65 to 0.84 and 0.91 to 0.96. FNR and FPR decrease

dice ratio=0.91 dice ratio=0.86

TABLE 1. Quantitative comparisons of Dice, Accuracy, FNR, and FPR for
CNV vascular pattern segmentation on the OCTA images of 48 subjects.
(The best results are indicated in bold, mean =+ std).

Method No. Dice Accuracy FNR FPR

Liu et al.[10] 48  0.26+0. 0.86+0.06 0.69+0.  0.09+0.
21 04 02

Xue.etal[11] 48  0.65+0. 0.91+0.06 0.25+0.  0.14=0.
04 06 03

Our proposed 48 0.84+0.  0.96+0.02 0.23£0.  0.03=0.

method 04 08 02

from 0.25 to 0.23, and 0.14 to 0.03, compared to the
state-of-the-art methods. Four examples of the ground-
truth and our segmentations are shown in Fig. 3. As
can be observed from Fig. 3, the similarity with manual

dice ratio=0.81

dice ratio=0.87

FIGURE 3. CNV vascular pattern segmentation results for four examples (S1, S2, S3 and S4). The first row shows the OCTA, and
the second row shows the final segmentation results, the third row shows the ground-truth segmentations and the last row
shows the compared results between our segmentation results and the ground-truth segmentations. Pink results show the
under-segmentation of GTM system compared with the ground-truth Segmentations. And Green results show the
over-segmentation of GTM system compared with the ground-truth segmentations.
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dice=0.55

dice=0.83
=15

OCTA

dice=0.60

&

dice=0.88
6 =25

dice=0.83
8 =35

FIGURE 4. Qualitative comparison of the results of GTM system with different parameters to manual grading on three cases (S5, S6, S7). Pink
results show the under-segmentation of GTM system compared with the manual grading. And Green results show the over-segmentation of

GTM system compared with the manual grading.

grading is higher by our proposed method, in spite of
diverse shapes and locations of CNV vessels in OCTA
images.

Moreover, although manual grading was used as reference
for performance evaluation, the grader cannot remove noise
contained within the CNV membrane area. Since the GTM
system removes noise pixels by elimination of non-effective
points from membranes and hence, never promoting them to
a cluster C, manual grading and GTM system would differ
at these points. For this reason, the false negative rate was
significantly higher than the false positive rate, indicating that
there is a limitation in the accuracy of manual grading for
performance assessment.

To further evaluate the contribution of the modified
CLIQUE algorithm in GTM system, we also compared it with
the unmodified version. The four indices over 48 samples are
0.77£0.06, 0.93£0.06, 0.23£0.08, 0.20£0.05. Therefore,
our proposed method with the modified CLIQUE algorithm
improves the segmentation accuracy significantly.
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F. EVALUATION ON THE IMPACT OF THE INTERVAL

SIZE OF UNITS

Since different interval sizes of the units (i.e. the initial num-
ber of membranes) change the effective points in each unit
which contributes to different cluster accuracies, we conduct
experiments using three different interval sizes of the units,
i.e., 48, 58 and 68. As shown in Fig. 4 (S5) and Fig. 5,
our method obtains the best results with ¢ = 58. Due to
the small interval size, the effective points decrease in each
unit, the performance is with high under-segmentation. On
the contrary, large interval size causes redundant noises in
each unit, leading to over-segmentation.

G. EVALUATION ON THE IMPACT OF THE MAXIMUM
DISTANCE BETWEEN EFFECTIVE POINTS

To find a maximum distance that ensures the number of
effective points in their units and minimum the number of
noises, we set the maximum distance as 3, 5, 7 for testing.

143063
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DsC
o

a8 58 8
interval size of the units

FIGURE 5. Changes of values of dice ratio with respect to three different
interval sizes. The first bar, second bar and last bar correspond to the
sizes of 48, 58 and 68, respectively.

DSC
o
°

05

5
the maximum distance between effective points

FIGURE 6. Changes of values of dice ratio with respect to three different
maximum distance. The first bar, second bar and last bar correspond to
the distances of 3, 5 and 7, respectively.

Small distance increases the workload and costs more time.
The performance results are given in Fig. 4 (S6) and Fig. 6.
The maximum distance of 5 obviously perform better than
the others. Therefore, we select T = 5 for experiments.

H. EVALUATION ON THE IMPACT OF THE MINIMUM
NUMBER OF EFFECTIVE DATA

We also compared the proposed method on three different
minimum number of effective data points, i.e., 15, 25, 35.
Similar to maximum distance, the minimum number of effec-
tive data points also contribute to the selection of dense units.
As can be seen in Fig. 4 (S7) and Fig. 7, 6 = 25 are the best
choices for the detection of CNV vessels for all the 48 cases.

I. EVALUATION ON IMAGES WITH LOW QUALITY

Sine the proposed method does not need to employ additional
methods, like [12] to remove artifacts, which decreased the
computational complexity of the algorithms. To further verify
the effectiveness of the proposed method on images with low
quality, we also conduct our experiments on OCTA images
with noise pixels that are bright and found within the vicinity
of vessels. As can be seen in Fig. 8, the proposed method
can also segment CNV vessels accurately. But noise pixels as

143064

DSC

15 35

25
the minimum number of effective data points
FIGURE 7. Changes of values of dice ratio with respect to three different

minimum number of effective data points. The first bar, second bar and
last bar correspond to the number of 15, 25 and 35, respectively.

Dice Index = 0.81189

Comparison result of GTM system with manual result

FIGURE 8. Performance of the GTM systems compared to manual
delineation in the scan that noise pixels are bright and found within the
vicinity of vessels. Yellow arrows direct to noise pixels in yellow circles.

TABLE 2. The p-values of our method compared to the other methods for
the results in Table 1.

Method Pbice PAceuracy PrNR Prer
Liu et al.[10] 1.8%10°° 2.2%107" 1.2%10°7  2.3%10%
Xueetal[11]  1.7¢¥10"° 1.8%10"° 0.08 1.5%1078

high as pixels in CNV and located in the same grid cannot
be removed. After confirmed by clinicians, the segmentation
is significant in helping them diagnose and treat patients
with CNV.

J. STATISTICAL SIGNIFICANCE TEST

We compared our results with those of previous methods
using t-tests. The p-values for the dice ratio, accuracy, FNR,
FPR of CNV were all <0.001 (Table 2) compared with
methods [10]. The p-values for dice ratio, accuracy, FPR
(Table 2) are also p<0.001 compared with methods [11].
Therefore, our proposed method leads to highly significant
improvements (p<0.001) in the ability to correctly detect
CNV vessels compared with the methods in [10], [11].
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TABLE 3. Running time of our method compared to other methods.

Method No. Time
Liu et al.[10] 48 1117.2s
Xue.etal.[11] 48 82.3s
CLIQUE algorithm without 48 4299
membrane systems

Our proposed method 48 0.56 s

K. RUNNING TIME OF GTM SYSTEMS

Table 3 provides the running time of GTM systems, method
in [10], method in [11] and CLIQUE algorithm without mem-
brane systems, which shows that GTM systems can improve
the efficiency of CNV vessels segmentation.

V. CONCLUSION

We have reported an automatic detection algorithm for CNV
in AMD. We treat the vessel segmentation problem as a
clustering problem and implement a modified CLIQUE clus-
tering into a tissue-like membrane computing model, which
we call a GTM system, to identify vascular patterns. Com-
pared with the CLIQUE clustering algorithm, the GTM
system handles all cases synchronously and guarantees con-
vergence. Unconcerned about the size of dataset, the GTM
system can be performed in parallel in different local areas,
which reduces time consumption and improves efficiency.
The GTM model can complete the segmentation task in
a population of 48 subjects in less than a second. Good
accuracy and similarity to the results from human grading
were obtained. The algorithm was characterized by high com-
putational speed, guaranteed convergence and high detec-
tion accuracy, which indicates the effectiveness of proper
hybridization of a tissue membrane system with conven-
tional methods. It also suggests a promising way toward the
improvement and biological realization of several machine
learning methods by using membrane systems. Our future
work will focus on the applications of this hybrid approach
to more problems.
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