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ABSTRACT Considering diverse scenarios in urban traffic, the safety assessment of the decision-making
process in automated driving is of great concern for years. And the difficulties of assessing safety lies in
the computation of massive spatio-temporal data, the classification of scenarios, and the representation of
the uncertainty in the environment with mixed traffic of manned and automated driving. Formal methods
are often advocated as the way of increasing confidence in the safety-critical systems via its rigorous
mathematical logic. Thus, we propose an assessment scheme which involves: i) the abstract model for
decision-making, ii) characterization of composable scenarios, and iii) a corresponding formal verification
method to assess safety. The abstract model captures features from the real-time observation and the
estimation of the feasible driving alternatives of the surrounding vehicles, as the scenario is regarded as the
dynamic evolution of the spatio-temporal data in the static road geometry over time. These features enable
the specification and reasoning of the spatial guard conditions and safety properties, and also contribute to
the connection and composability of the scenarios. Due to our scenario-based model verification method,
we can assess the safety of decisions in scenario transitions by quantitative verification on the probability of
the satisfaction of safety property through mapping from our approach to UPPAAL SMC. For illustration,
case studies in the fundamental scene structures and the multi-lane roundabout are introduced.

INDEX TERMS Assessment scheme, automated driving, decision-making model, formal verification,
scenario.

I. INTRODUCTION
The Automated Driving System (ADS) is with growing
intelligence and the obtained results are likely to ease traf-
fic congestion and enhance driving safety effectively. Back
to the DARPA Urban Challenge (DUC) with the closed
urban course, the autonomous cars Boss from Stanford [1]
and Junior from Carnegie Mellon [2] came out on top by
their advanced techniques. Afterwards, technology compa-
nies like Waymo, traditional automotive manufacturers like
Audi, and internet firms like Baidu have developed their
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own autonomous cars and implemented road testing [3].
As for the vision-based techniques in traffic image process-
ing, the KITTI Vision Benchmark Suite is proposed [4].
However, there is no doubt that the autonomous car does
encounter difficulties to make safe driving decisions in real
driving scenarios. Google confirmed that the vehicle was
rear-ended in 8 collisions and side-swiped in 2 collisions by
another driver among the 12 collisions till 2015 [5]. A driver
was killed in a crash with a tractor-trailer in Tesla autopilot
mode in 2016 since the brake was not applied with the failure
to notice the white side of the tractor-trailer against a brightly
lit sky [5]. These reveal the deficiency in safety assess-
ment scheme with regard to the decision-making process in
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automated driving in the face of the complex urban traffic
environment.

The decision-making process can be divided into three
levels of skills and control: strategical (i.e. route planning),
tactical(manoeuvring such as whether and when to make a
left turn), and operational (steering control) [6]. In this paper,
the decision-making process is considered as a periodic tac-
tical control systemwith guarded conditions. In each control
period, it works with a pattern including i) gathering sensor
information by onboard equipment such as LIDARs etc. and
wayside stations to detect, recognize and track the moving
obstacles, ii) calculating the decision based on the perception
from sensor data and estimation of the possible behaviours of
the other vehicles, and iii) emitting control signals. The prior
probability values of the stochastic behaviours for the sur-
rounding vehicle are calculated from the collected historical
information kept in the knowledge library. For urban traffic
environment with mixed traffic, the surrounding vehicles
consist of manned and autonomous cars at different auto-
matic level [7] in this paper, which may lead to the unavail-
able vehicle-to-vehicle communication and the unmeasurable
driving intentions.

For safety assessment of the driving decisions, the fol-
lowing three main challenges should be considered in the
automated driving.

Challenges:
i) Characterization of the scenarios. Many studies have

shown the decision-making process in various urban
scenarios [8], [9]. While these scenarios are mostly
regarded as the separate fixed road types associated
with vehicle movements such as crossroads, motorways,
platooning etc. There will exist countless scenarios due
to the dynamic evolution of traffic data and the change-
able behaviours of vehicles. To characterize general sce-
narios, but not for a separate case, the structured scenario
features, the connection and composability of scenarios
should also be taken into account in the characterized
scenarios.

ii) Expression of the uncertainty in the driving envi-
ronment. Uncertainty is a dangerous situation which
involves imperfect or unknown information from the
driving environment. It applies to predictions of future
movements of surrounding vehicles, and to physi-
cal measurements that are from the sensor devices
[10], [11]. Representing uncertainty explicitly is a feasi-
ble solution to demonstrate the reasonable estimation of
the driving decisions of other vehicles [12].

iii) Absence in approaches for assessing the safety of
driving decisions. Amajority of the current approaches
for assessing the safety of decision-making in auto-
mated driving is based on testing [13]. A more rigorous
approach is needed for the safety-critical systems such
as verification approach [14].

We propose a scenario-based formal modelling and veri-
fication approach for the safety assessment of the decision-
making process in automated driving.

FIGURE 1. Roadmap for the construction of the safety assessment
scheme.

Contributions:
1) We propose the formal definition of the scenario by con-

sidering it as the dynamic evolution of spatio-temporal
data in the static road geometry over time. And we also
define three fundamental scene structures as the unit
scenarios satisfying corresponding spatial properties.
Thus, the connection and composability of scenarios
are enabled according to the road topological structure
and dynamic features. Then it is possible to compose the
complex scenario and reason the safety properties in a
composite scenario from a simple one.

2) As the basis of making driving decisions, we construct
the abstract model for describing the structured fea-
tures of scenario and stochastic driving behaviours of
vehicles. The abstract model captures the static road
geometry, the dynamic evolution of spatio-temporal
data including the real-time observation and the esti-
mation of probabilities of the feasible driving alter-
natives of the surrounding vehicles. These abstract
structures enable a great reduction in state space and
facilitate the reasoning and formal verification.

3) We propose the safety assessment scheme where
quantitative properties verification and the trade-
off between properties can be achieved. Due to the
abstract model, the corresponding verification method
is constructed considering scenario transitions. By
mapping the abstract model to Stochastic Hybrid
Automaton (SHA) in the automatedmodel checking tool
UPPAAL SMC, it can facilitate the application of our
assessment scheme in industry and achieve automated
model verification.

Figure 1 shows an overview of our approach to the
construction of a safety assessment scheme as described
above. The scheme consists of formal modelling and veri-
fication. Given the driving scenario and driving decisions,
the abstract model is constructed as the basis for decision-
making. It involves abstract features based on observation
and calculation. The scenarios are characterized according to
the observed information. And the estimation is calculated on
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FIGURE 2. Multi-lane roundabout scenario. Photo by Luiz Felipe Castro.
https://www.vcg.com/creative/811237205.

the basis of observation and characterization of the scenario.
Mapping from the formal description in abstract model and
property to the verification approach based on the principle
of SHA, feeding the model to the automated verification tool
UPPAAL SMC, the assessment of driving decisions can be
achieved by the verification of qualitative and quantitative
properties.

The rest of the paper is organized as follows: Section II
presents the observed features in the abstract model.
Section III defines the scenario and puts forward the funda-
mental scene structures. Section IV shows the calculated fea-
tures in the estimation based on the observation in the abstract
model. Section V delivers the verification method. Section VI
shows the way our scenario-based approach works in detail
and illustrates by cases in the fundamental scene structures.
Section VII elaborates the case study in the multi-lane round-
about and analyses the verification result. Section VIII intro-
duces the related work. Section IX concludes this paper.

II. OBSERVED INFORMATION IN THE
SCENARIO-BASED ABSTRACT MODEL
It is vital to partition and abstract the driving scenarios in
the complex urban traffic environment. In our abstract model
based on the scenario, the characterized features can facilitate
the specification and reasoning of properties.

A. FEATURES IN THE SCENARIO
The scenario is considered as the dynamic evolution of the
spatio-temporal data in the static road geometry over a
period of time. Figure 2 shows a typical scenario of a multi-
lane roundabout. A roundabout is a type of circular intersec-
tion in which road traffic is permitted to flow in one direction
around a central island without the use of traffic signals [15].
Some principles should be obeyed in the roundabout that
vehicles entering should give way to traffic already within
the roundabout; vehicles should leave with the signal on.

Obviously, the roundabout is a composite scenario accord-
ing to the road geometry. It is necessary to express the com-
posability of the scenario. Since the composite scenario can
be decomposed into several linked sub-scenarios which

are fundamental scene structures, the safety assessment
of the driving decisions can be realized in these sub-
scenarios in sequence.We select the roundabout scenario as
a running example in this paper since it consists of all the
fundamental scene structures.

Based on the characterization of the scenario, this section
shows the static observed features and dynamic observed
features in the abstract model for decision-making in auto-
mated driving.

B. STATIC OBSERVED INFORMATION
Static features are the fixed information describing the par-
titioning, positioning and connectivity of roads through the
mapping from the physical world to the abstract model. Such
a description in the abstract model consists of the road and
the road topological structure.

To enable spatial reasoning and reduce state space,
we define Segment as the finite set of abstract road segments
for the mapping from physical locations in the real world. SM
is the set indicating the infinite real locations on R× R in the
rectangular coordinate system. All the drivable locations in
SM can be mapped to the road segments in Segment . And
we can retrieve the corresponding road segment of one real
location via function divSeg : SM 9 Segment .
To express the positions of vehicles inside a segment,

their positions are abstracted to the points on the centre
lines according to the allowed driving directions inside each
segment in Segment . CP is the subset of SM . CP includes the
points on the centre lines of Segment . Function centre is used
to define the centre lines of Segment . Apparently, multiple
centre lines exist in the intersection of roads in accordance
with the driving directions.

• centre : P(CP)→ Segment is the function denoting the
centre lines of Segment where P(CP) stands for the sets
of centre lines consisting of points in CP.

Then the longitudinal lengths can be calculated due to the
accumulated distance of adjacent points on the centre line,
according to centre and driving directions inside each seg-
ment within Segment . Similarly, the lateral widths of each
segment within Segment can be calculated by points on the
borderline of Segment . The division of the segments in length
is introduced in Section II-C.

Based on Segment , the road is formed upon the connectiv-
ity of road segments in Segment , and then the whole map is
build up.
Definition 1 (Map): Map = (Segment,Road,Arc) indi-

cates the drivable area upon the directed connections
between road segments where:

• Road is the finite set of roads. An element road of Road
is a set containing segments in the same road.

• Arc is the finite set of directed connections between adja-
cent segments with shared boundaries where the driving
direction is allowed. Each connection is described as an
ordered pair (u, v) where u 6= v and u, v ∈ Segment.
Arcs is the finite set of directed connections between the
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segments on the same road. Arcd = Arc − Arcs is the
set of directed connections between road segments on
different roads.

Based on Arc, function Next extracts the successor seg-
ments connected with the segment, and function Former
shows the previous segments connected to the segment.
• Next(v) = {u | (v, u) ∈ Arc}
• Former(v) = {u | (u, v) ∈ Arc}

We can figure out the fundamental scene structures via the
connectivity between segments in Section III, and figure out
the existence and quantity of the interference segment in the
estimation process in Section IV later.

In fact, Segment is the union of three disjoint subsets.
• Segment = Cross ∪ Critical ∪ Normal

For the connections between the segments on the same road,
a segment is an element in Cross when the connection from
the other segments to it is more than 1, and the connection
from it to the other segments is equal to or more than 1.
• Cross = {u | card({v | (u, v) ∈ Arcs}) ≥ 1 ∧
card({w | (w, u) ∈ Arcs}) > 1} where card() counts the
elements.

Other than Cross defined above, Critical indicates segments
adjacent to Cross and which should be passed through before
entering the Cross.
• Critical = {u | (u, v) ∈ Arc ∧ u /∈ Cross ∧ v ∈ Cross}

Normal denotes the set of remained segments.
According to the Map, the available driving paths can be

described. A single driving path is an ordered list of con-
nected segments in Segment .
Definition 2 (Path): Let Map be the map, Path be the set

of path on the Map. path : < Sn > is a sequence of segments
with finite length n. S0 stands for the starting segment, and Sn
represents the destination segment.
• path : < Sn >= {Sn | Sn ∈ Segment ∧ (Sn, Sn+1) ∈
Arc ∧ n ∈ N}

Figure 3 shows the static observed information for the
scenario of a multi-lane roundabout. The static information
in this scenario is as follows:
• Segment = {A,B,C,D,E,F,G,H , I , J ,K ,L,M}
• {A,B,C,D,E,F} ∈ Road
• (L,M ) ∈ Arcs
• (C,K ) ∈ Arcd , (K ,C) ∈ Arcd
• B ∈ Cross, A ∈ Critical, G ∈ Normal
• Next(B) = {C, J ,K }, Former(B) = {A,H}

C. DYNAMIC OBSERVED INFORMATION
Based on the static features, dynamic features contains the
time-dependent traffic data obtained from the observation
and calculation. From the observation, real-time traffic data
from the onboard and wayside stations are recognition and
tracking of moving obstacles. It indicates the instantaneous
driving statuses of all the vehicles on theMap, e.g. the vehicle
ahead is with the left turning light on etc. The estimation
is dynamic calculated information according to the traffic

FIGURE 3. Static information in the abstract model for the multi-lane
roundabout scenario.

data from observation, e.g. the vehicle ahead has different
possibilities to turn left, turn right and go straight. Then we
can specify the guard conditions via traffic data from both
observation and reasonable calculation. In this part, we focus
on the dynamic observed features, the estimation information
is studied later in Section IV.

As defined below, the traffic snapshot structure captures
dynamic observed information including the driving environ-
ment and the host vehicle itself, and it is updated once in every
control period. The obstacles considered in this paper are only
vehicles.
Definition 3 (Traffic Snapshot): Let Map be the map, self

be the host vehicle with ADS, C be the set of the
other vehicles driving on the Map. The traffic snapshot is
TS = (position, speed, acceleration, left, right) where
• position : C ∪ {self } → SM is the function indicating
the positions of vehicles in C ∪ {self }.

• speed : C ∪ {self } → R+ ∪ 0 is the function denoting
the distance passed in a control period.

• acceleration : C∪{self } → R is the function that shows
the value of acceleration by calculation upon captured
speeds at this control period t and the former control
period t − 1. For a vehicle c ∈ C, acceleration(c) =
(speedt (c) − speedt−1(c)) / n where n is the cycle time
in one period. n = 1 in this paper.

• left, right : C ∪ {self } → Bool is the boolean function
representing the on-off states of the left and right turn
signals respectively.

We define the route for automated driving as a given path
acquired from the routing module and observe the route every
period to get the next target segment. The starting segment
and the destination segment of the driving task are deter-
mined.
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FIGURE 4. Dynamic information in the abstract model for the multi-lane
roundabout scenario.

Definition 4 (Route): Let Map be the map, Path be the set
of path on the Map. rt :< rtn > is the specific path with finite
length in Path. rt0 is a determined starting segment and rtn is
a determined destination segment.
• rt : < rtn >= {rtn | rtn ∈ Segment ∧ (rtn, rtn+1) ∈
Arc ∧ n ∈ N}

In this paper, we don’t look into the process of the route
planning, and the route is given during the driving task.

The dynamic observed information about the vehicle c1 for
the moment is shown in Figure 4 where:
• divSeg(position(c1)) = {H}
• speed(c1) = 10
• acceleration(c1) = 2
• left(c1) = false
• right(c1) = true
• rt :< A,B,K ,D,E,F > is the assumed route where A
is the starting segment and F is the destination segment.

TS captures the essential dynamic observed information,
and the division of the segments in the length is exactly upon
the speed and acceleration information of the host vehicle
self . In addition, the speed and acceleration of any vehicle can
not increase or decrease infinitely, their values are limited due
to the driving performance.We divide the segment by the safe
distance SD of the host vehicle. Now that the safe distance
is composed of stopping distance, reaction distance, and
spacing distance. Stopping distance is the distance from the
time the brake operation works to the time the host vehicle

stops. It can be defined as sd =
speed(self )2

2acceleration(self )max
where acceleration(self )max is the maximum brake accel-
eration of self . Reaction distance is the distance moved
during the reaction time for activating the brake operation
according to the current speed. It can be defined as the
rd = speed(self )× t + 0.5acceleration(self )× t2 where t is

the reaction time. Spacing distance θ is the intrinsic distance
composed of length of the vehicle and the shortest space
gap between the vehicles. Then, based on the safe distance
SD = sd+rd+θ , the length of the segment should be settled
upon SD that vehicles can not go through two road segments
in one period according to its maximum brake acceleration.
Based on this assumption, the segments are set to the equal
length for simplification of the calculation in the case study
in Section VII.

III. CHARACTERIZATION OF SCENARIO
Speaking of keeping safety in the diverse driving task with
different routes, we intend to find the divide-and-conquer
method to decompose the whole driving task into subtasks
related to the type of scenario. According to the observed
features in the previous section, we can define the formal
description of the scenario and the fundamental types of the
scenario which serve as the base of scenario composition.

A. SCENARIO
The scenario can be defined if given the static connectivity
between the segments based on the dynamic position of the
host vehicle divSeg(position(self )). Reaching a segment in rt
implies being in a scenario, so the type of scenario should
be checked immediately once the occupied segment of host
vehicle changes.

Here we give the general formal definition for scenario
SS along rt , and we define the scenario as the set of the seg-
ment occupied by self , connected segments from the position
of self including the target segment, other segments linked
to the target segment (interference segments), and the other
segments connected to the interference segments except for
the target segment.
Definition 5 (Scenario): SS denotes a scenario on the

given Map. n ∈ N+, TAR ∈ rt, and TAR denotes the target
segment which satisfies TAR ∈ Next(divSeg(position(self ))).

SS = divSeg(position(self ))

∪Next(divSeg(position(self )))

∪ · · ·

∪Nextn(divSeg(position(self )))

∪ (Former(TAR) \ divSeg(position(self )))

∪ · · ·

∪Formern−1(Former(TAR) \ divSeg(position(self )))

∪ (Next(Former(TAR) \ divSeg(

position(self ))) \ {TAR})

∪ · · ·

∪Next(Formern−1(Former(TAR) \ divSeg(

position(self )))) \ {TAR}
Suppose that the vehicle can move through n segments

in a period, which indicates the n layers in the observation
range, the target segments in sequence contained in Next
(divSeg(position(self )))∪· · ·∪Nextn(divSeg(position(self )))
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FIGURE 5. (a) is the single road structure. (b) is the fork structure. (c) is
the junction structure with multiple interference segments.

should be considered. More segments connected to the inter-
ference segments in (Former(TAR)\divSeg(position(self )))∪
· · · ∪ Formern−1(Former(TAR) \ divSeg(position(self )))
should be taken into account. The other possible seg-
ments the interference vehicle may enter under sense
area except the path towards the target segment are in
(Next(Former(TAR)\divSeg(position(self )))\{TAR})∪· · ·∪
Next(Formern−1(Former(TAR) \ divSeg(position(self )))) \
{TAR}. Then traffic data in more segments would be cal-
culated during estimation for one period. To be clear, these
segments can be detected if they are on the Map, and they
can not be noticed if they are not on the Map even if they
satisfy the connection relationship.

Upon the partition of segments put forward in Section II-C,
the vehicle can only move from one segment to another in
a period (n = 1), then the scenario SS considered in this
paper is as follows:

SS = divSeg(position(self ))

∪Next(divSeg(position(self )))

∪Former(TAR) \ divSeg(position(self ))

∪Next(Former(TAR) \ divSeg(

position(self ))) \ {TAR}

B. FUNDAMENTAL SCENE STRUCTURES
Fundamental scene structures are the basic units com-
posing the complex scenarios based on both static and
dynamic features. That is to say, the entire driving task
is regarded as the composition of the subtasks in the sub-
scenarios based on the fundamental scene structures along
the rt .
As shown in Figure 5, A stands for the occupied segment

of the host vehicle self , B represents the target segment of
the host vehicle, C is the other irrelevant segment, and D, E
are the interference segments that are connected to the same
target segment with the host vehicle.

Then the three fundamental scene structures are scenar-
ios satisfying particular conditions respectively.

1) SINGLE ROAD STRUCTURE
The single road structure meets the following conditions:

SS |H Next(divSeg(position(self ))) = {TAR}

∧ Former(TAR) \ divSeg(position(self ))=∅

As Figure 5(a) shows, the target segment based on rt is the
only connected segment ahead of the host vehicle, and no
other segment is connected to the target segment except the
segment occupied by the host vehicle. So there are no inter-
ference segments and interference vehicles. In this structure,
we could only observe the traffic in the target segment, and
move forward if no vehicle is in the target segment TAR
ahead.

2) FORK STRUCTURE
The fork structure meets the following conditions:

SS |H card(Next(divSeg(position(self )))) > 1

∧Former(TAR) \ divSeg(position(self )) = ∅

As Figure 5(b) shows, the occupied segment of the host
vehicle is connected to multiple segments including the target
segment. Since the vehicle will move cling to the planned
route rt , the other connected segments are irrelevant, and no
other segments are connected to the target segment. So there
are no interference segments and interference vehicles. In this
structure, we could only observe the traffic in the target
segment just as in the single road structure.

3) JUNCTION STRUCTURE
The junction structure meets the following conditions:

SS |H card(Former(TAR) \ divSeg(position(self ))) ≥ 1

As Figure 5(c) shows, this is the junction structure with two
interference segments. In the junction structure, there exist
interference segments connected to the target segment other
than the segment occupied by the host vehicle. Traffic in the
target segment and the interference segments inFormer(TAR)
should be observed to make a considerate and reasonable
driving decision. First of all, check the quantity of the interfer-
ence segment. Then, confirm the existence of vehicles in the
interference segments and the target segment, and calculate
the driving decisions of the interference vehicles one by one
if the interference vehicles exist. Finally, make the driving
decisions considering the observed information and estima-
tion information. The occupation of the target segment or the
high possibility for the interference vehicle to enter the target
segment will stop the host vehicle for safety guarantee.

With the help of the fundamental scene structures, the
estimation calculated from the observation according to the
scenarios is patterned.
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IV. ESTIMATION INFORMATION IN THE
SCENARIO-BASED ABSTRACT MODEL
Absolute safety is elusive due to the inherent uncertainty
in the driving environment, even the observed information
can tell the current driving statuses of the host vehicle self
and the other vehicles in C. The uncertainty mainly comes
from the following two aspects: i) the driving decisions of
other vehicles are uncertain and unobservable, and ii) the
cognition from the observed datamay be inconsistent with
the intentions of the vehicles. For instance, the vehicle in
the interference segment may enter the target segment of self
when self approaches the target segment at the same time,
the manned vehicle turns right with the left turn light on,
etc. All these unexpected stochastic behaviours and miscon-
ception contribute to the difficulties of making safe driving
decisions. So achieving relative safety as far as possible is
studied in this paper.

To cope with the uncertainty, estimation information is
proposed in the abstract model.To estimate the probabilities
of the driving decisions of the surrounded vehicles, esti-
mation is the calculated information based on the current
observation at each period and updated in accordance
with the latest observation.

A. SCENARIO-BASED ESTIMATION PROCESS
The estimation process is in two main steps as follows.
Estimation should obey the rules that the segment can only
be occupied with one vehicle at one time.

1) FIGURE OUT THE INTERFERENCE SEGMENTS AND
INTERFERENCE VEHICLES BASED ON THE SCENE
STRUCTURES
Based on the driving intentions of self and scene structures,
we can easily figure out the interference segments and inter-
ference vehicles.

a: SINGLE ROAD, FORK
In the single road structure and fork structure, there are no
interference segments. So the final driving decision depends
on the observation only, which means the vacancy in the
target segment allows for moving forward and the following
estimation step is unnecessary.

b: JUNCTION
In the junction structure, there is at least one interference
segment. First, check if there exists a vehicle in the target seg-
ment. The following steps can be omitted if the target segment
is already occupied. Then, check if there is an interference
vehicle in each interference segment. If the interference seg-
ment is vacant, just calculate the moving distance of self in
movDistance() defined below to decide to move out or not.
If the interference segment is occupied, take the next step
described below.

Here, we take the multi-lane roundabout scenario
in Figure 4 as an example. At the current step, in this

junction with one interference segment, we get the observed
information as follows:

i) occupied segment of self : divSeg(position(self )) = A,
ii) the target segment: B,
iii) the interference segment: H , and
iv) the interference vehicle: c1.

2) CALCULATE THE PROBABILITIES OF THE POSSIBLE
DRIVING DECISIONS FOR THE INTERFERENCE VEHICLES
When in a junction, the target segment is empty and at least
one interference vehicle exists, we follow the second step.
We model the estimated probabilities for driving decisions
of the interference vehicles in Prob. It depends on the esti-
mation process based on the calculation of possible moving
distances movDistance, possible driving paths drivingPath
and probability distribution of various reachable segments
upon accesPosition. In Prob, we adopt probability distri-
bution as an explicit expression of the stochastic driving
decisions of the interference vehicles. The data in the Prob
combined with the observation in the abstract model can be
used to judge the satisfaction of the guard conditions for the
corresponding driving decisions.

First, compute how long the interference vehicle c1 and
the host vehicle self can drive during the next period by
movDistance(). The results show whether the current speed
of self and c1 can enable them to move out of the current seg-
ment. As described in Section II, the passing distance inside
the segment can be regarded as the distance on the centre line
according to the driving direction. To calculate the accumula-
tive distance based on the computational method, the formula
for uniformly acceleratedmotion is used (movDistance(c1) =
speed(c1)× t + 0.5acceleration(c1)× t2, t is one period) in
this paper, while other kinds of formulas can be used due to
the requirement of the system. Given theMap and Path, TS at
this control period is acquired, C is the set of the interference
vehicles in the scene structure that C ⊂ C.
• movDistance : C ∪ {self } → R+ is the function
extracts the distances the interference vehicle and self
pass according to the computation result on the basis of
position, speed , and acceleration data during the current
period.

If it is possible for self and c1 to reach the target segment in
the next period, we should calculate the value of probabilities
for the driving decisions of the interference vehicle in each
interference segment.

Then, find out the stochastic driving decisions of the
interference vehicle. Actually, the driving decisions can be
described as the different sequences of passed segments <
H ,G, · · · >,< H ,B, · · · > extracted by drivingPath(c1)
from the position of the interference vehicle.

• drivingPath : C → P(Path) denotes the possible driving
paths for each c ∈ C starting from the present position
divSeg(position(c)).

Now, we can calculate the new positions of the interference
vehicle based on drivingPath(c1) andmovDistance(c1). If the
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value of distance in movDistance(c1) exceeds the length of
the current segment according to the driving path, its new
position will be in a new segment; otherwise, it will be in the
new position in the current segment. accesPosition is defined
to estimate the possible positions which can be abstracted to
the possible segments.
• accesPosition : C×drivingPath(C)×movDistance(C)→
P(SM ) is the function indicating the possible positions
for each c ∈ C, after moving through movDistance(c) in
various routes in drivingPath(c).

Then possible paths could be reduced to paths ended within
segments in divSeg(accesPosition(c, drivingPath(c),
movDistance(c))).

After the series of calculation, we can describe the prob-
abilities for stochastic driving decisions of each interference
vehicle in Prob.
Definition 6 (Probability Distribution for Driving Deci-

sions): Given the Map and Path, TS at this control period
is acquired, C is the set of the interference vehicles driving
on the Map. For the host vehicle self , its estimation of the
driving decisions of the interference vehicles is in Prob.
• Prob : C × divSeg(accesPosition(C, drivingPath(C),
movDistance(C)))→ [0, 1] denotes the estimated prob-
ability distribution of possible reachable segments along
the various driving paths for each interference vehicle in
the next period.

∃c ∈ C ·6s∈divSeg(accesPosition(c,drivingPath(c),movDistance(c)))
Prob(c, s) = 1.
For the interference vehicle c1, it is obvious in Figure 4

that:
• movDistance(c1)
= speed(c1)× 1+ 0.5acceleration(c1)× 12

• divSeg(accesPosition(c1, drivingPath(c1),
movDistance(c1))) = {G,B}

• Prob(c1,G)+ Prob(c1,B) = 1
Now that we have got the description of the stochastic driv-
ing decisions of the interference vehicle, the value of Prob
is obtained from the prior probability distribution and the
successor modification.

B. CALCULATION OF PROBABILITIES FOR STOCHASTIC
DRIVING DECISIONS
As shown in Figure 4, we can get the prior probability
distribution of driving behaviours from the historical data
as the basis of probability modification, due to the possi-
ble reachable segments in drivingPath(c1) calculated from
accesPosition(c1, drivingPath(c1),movDistance(c1)) in the
next period.

1) THE PRIOR PROBABILITY DISTRIBUTION OF DRIVING
DECISIONS FOR THE INTERFERENCE VEHICLE
For each interference vehicle in the interference segment,
the possible driving paths from the current segment and the
feasible vehicle behaviours are determinant. Thus, we define
the probability distribution as follows.

Definition 7 (Probability Distribution of Driving Deci-
sions): ST = {A1,A2, . . . ,An} is the universal set of
driving decisions of one interference vehicle c based on
the its current occupied segment, and each element in
ST means a decision of moving to the estimated segment
divSeg(accesPosition(c, drivingPath(c),
movDistance(c))). A1,A2, . . . ,An are collectively exhaustive
since A1,A2, . . . ,An are mutually exclusive, and the union of
decisions is the universal set where
(1) Ai ∩ Aj = ∅ (i 6= j ∧ i, j ∈ N+);
(2) A1 ∪ A2 ∪ . . . ∪ An = ST . The probability distribution

for A1,A2, . . . ,An is that 6n
i=1P(Ai) = 1 (P(Ai) > 0) where

P(Ai) stands for the probability of driving decision Ai for the
interference vehicle.

The prior values for the probability distribution is from the
knowledge library. It is necessary to note that, we assume
that there is a knowledge library (or maybe a cloud centre,
a database in the wayside station, etc.) which stores and
updates history data for probability distributions in this paper.
The probability distribution has two main sources. One is
the comprehensive statistical data of the interference vehicle
collected from similar scenarios based on its history driving
decisions. The other is the statistical data of other vehicles
collected from similar scenarios for reference, and these data
are set as the reference data in case the interference vehicle
has no such data in the scenario. This prior probability distri-
bution is used as the base of modification.

In Figure 4, ST = {turn, forward}. The value of P(turn)
is obtained for approachable segment G, and the value
of P(forward) is obtained for approachable segment B.
Definitely, P(turn)+ P(forward) = 1.

2) MODIFICATION OF PROBABILITY BASED ON TS AND
APPROACHABLE DISTANCE
Probability is modified upon observed traffic data and the
possible moving distance of the interference vehicles. In the
following part, a rational modification is introduced, while
the modification method can be varied due to the system
requirement based on our estimation scheme.

(1) To achieve a more precise estimation, light status is
considered to modify the prior probability distribution. For
the interference vehicle c, it is feasible that the probability
of heading left rises when left(c) = true. Correspondingly,
the probabilities of other decisions of c must be decreased to
maintain the overall sum of probabilities as 1.

(2) Now we further consider the emergencies in the same
driving path. For instance, the interference vehicle decides to
turn left with a sudden acceleration at the maximum speed,
deceleration at the maximum speed or original acceleration.
We consider these sudden situations and adopt the samemod-
ification method as light status. That is to say, the probability
of the vehicle moving to the next segment rises when the
vehicle is able to move outside the current segment even
by deceleration. The rational estimation of movDistance(c)
with sudden speed change is for addition when the intention
is determined. And this process is put forward to keep the
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high autonomy of the host vehicle while relative safety is
guaranteed.
Definition 8 (Modification Method of the Probability Dis-

tribution): Let ST = {A1,A2, . . . ,An} be the universal set
of driving decisions of one interference vehicle c based on
its current occupied segment, and each decision of moving to
the estimated segment divSeg(accesPosition(c, drivingPath(c),
movDistance(c))) is an element in ST . p(Ai) ∈ (−1, 1) (i =
1, 2, . . . , n) denotes the modification parameter of the cor-
responding probability. And the instructions of modification
according to the observed traffic data and the possible mov-
ing distance is for example in guarded command language
as follows. φ is the specification of guard condition from
observation or estimation.
P(A1)+ P(A2)+ . . .+ P(An) := 1

p(A1)+ p(A2)+ . . .+ p(An) := 0

if φ→

P(A1),P(A2), . . . ,P(An) := P(A1) + p(A1),P(A2) +
p(A2), . . . ,P(An)+ p(An)

fi.
For φ in different types, φobs is the specification of

observed condition such as light status, while φcal is the
specification of estimated condition such as possible moving
distances of the interference vehicle. Suppose that A1 is a
decision of c for turning left in this case, p(A1) must be
positive if φobs : left(c) = true; otherwise, p(A1) must be
negative if φcal : movDistancemaxacc(c) < segLen. It means
that c is not able to move out of the current segment even
it accelerates. maxacc stands for the maximum acceleration,
and segLen is the length of current segment.

The estimation process is calculated based on the observed
data to cope with the stochastic driving behaviours of the
interference vehicles. For the host vehicle, it is much con-
siderate to consider both traffic data from observation and
estimation before making the driving decision.

V. VERIFICATION
Now we have got the abstract model which includes the
static (Map) and dynamic traffic data (TS, rt , Prob) from
real-time observation and estimation, and three fundamen-
tal scene structures which are scenarios satisfying specific
spatial conditions, according to the decision-making process.
That is to say, we are in need of the model verificationmethod
upon our abstract model to complete the safety assessment
scheme. In this section, we first propose our model verifica-
tion method for the abstract model and then put forward the
mapping rules from the abstract model to SHA for accom-
plishing the automatic verification.

A. MODEL VERIFICATION
During the driving task, the host vehicle self makes a
sequence of driving decisions due to traffic condition
along rt . To verify driving decisions means checking whether
the safety property is satisfied in the sequence of driving

decisions in the sequential scenario transitions until arriving
at the destination in rt .

A driving decision of self considers both observation and
estimation including: i) the observed information received at
the current control period, ii) local knowledge inherited from
the previous state, and iii) the reasonable driving decisions
of vehicles surrounding self . As mentioned in Section I,
decision-making process for automated driving is a periodic
control system according to the scenario-based abstract
model in each period. Apparently, the process operates as
the combination of continuous vehicle dynamics evolution
and discrete periodic control signals. In addition, the stochas-
tic driving behaviours of the other vehicles give rise to the
uncertainty of the environment, from the perspective of the
host vehicle self .

The aim of the model verification here is relative safety.
In other words, we verify that the safety property with prob-
ability holds in all reachable states of our abstract model.
The value of probability is a given safety threshold, e.g.
probability of the collision rate should be lower than 0.2.
Suppose that SAFE stands for the safety property should hold
in the model, self stands for the host vehicle, we assess safety
by checking whether the following formula holds:

Map,TS, rt,Prob, self |H SAFE

It means that the model is safe enough for the host vehicle
self driving according to the route rt if this formula holds.
According to our divide-and-conquer and scenario-based ver-
ification method, we should guarantee that SAFE holds in the
same scenario and between scenario transitions. Then there
exist three conditions to verify.
1) The first is the initial state in the initial scenario, then

Map,TS0, rt,Prob, self |H SAFE .

2) The second is the transition in the same scenario based
on the same occupied segment seg1 of self . In this condi-
tion, we first check the type of scenario which is one of
the fundamental scene structures according to Section III.
Since Map is static and self is the host vehicle, for each

transition TS, rt,Prob
guard,action
−−−−−−−→ TS ′, rt ′,Prob′, we assume

that AM = (TS, rt,Prob). And the jumping function for
evolution of continuous variable and the weight of the uncer-
tain behaviour are implied in action here. For each transition,
TS1 6= TS2, seg1 → TS1, and seg1 → TS2 where the
occupied segment seg1 of the host vehicle is calculated from
seg = divSeg(position(self )).

Map,TS1, rt,Prob, self |H (SAFE ∧ guard)

∧ action(AM ,AM ′)⇒ Map,TS2, rt ′,Prob′, self |H SAFE

3) The third is the transition from the original segment seg1
to the new segment seg2 when transiting to the new scenario.
For each transition, TS1 6= TS2, seg1 6= seg2, seg1 → TS1,
seg2 → TS2, and seg2 ∈ Next(seg1) where the values
of occupied segment of the host vehicle seg1 and seg2 are
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calculated from seg = divSeg(position(self )).

Map,TS1, rt,Prob, self |H (SAFE ∧ guard)

∧ action(AM ,AM ′)⇒ Map,TS2, rt ′,Prob′, self |H SAFE

The driving environment is the synchronous actions of the
host vehicle and the other vehicles. When self reaches the
target segment in this scenario, the original target segment
becomes the currently occupied segment, and the target seg-
ment is updated. We can control the host vehicle self , but
only observe and get information about the other vehicles
in each period. To conclude, we should guarantee that the
safety property holds in the scenario and scenario transi-
tions between fundamental scene structures. Then we can
verify the model upon the composite scenario composed of
sub-scenarios.

To enable automated model checking of the abstract model
with hybrid and stochastic features, and make the approach
applicable in the industry, the automated model checking
tool is needed. SHA combines continuous system dynamics,
stochastic alternatives, and real-time behaviours etc. At the
core of UPPAAL SMC, via broadcast channels and shared
variables, the model runs as the network of dynamic instanti-
ation of templates which are defined as SHA [16]. Our model
is defined as a periodic system and run as the simultaneous
processes of the host vehicle and the environment (other
surrounding vehicles). In each period, the traffic data from
the synchronous driving vehicles are fetched in this scenario.
When transiting to the next scenario type in sequence, new
traffic data and scenario information are fetched, though the
calculation of data is varied. Therefore, we apply the verifi-
cation approach by mapping from the abstract model to SHA
which is supported in UPPAAL SMC.

B. MAPPING RELATION FROM ABSTRACT MODEL TO SHA
In this part, we suggest the verification approach based on
UPPAAL SMC by mapping from the abstract model to SHA.
This is the advanced and more specific approach based on our
previous work [17], [18].
Definition 9 (Verification Approach): A stochastic hybrid

automaton is described by a tuple M = (Loc, loc0,Q,Var,
Inv,A,G, T ) where the meanings of the symbols and the
mapping between the abstract model and SHA is as follows
based on given Map, traffic snapshot TS, estimation for
stochastic driving behaviours in Prob, the host vehicle self
and the set of vehicles C in the driving environment.
• Loc = divSeg(position(C ∪ {self })) ∪ } is the finite

set for discrete states or locations. It indicates the occupied
segments of the vehicles according to Segment in theMap.}
denotes the non-existence of vehicles.
• loc0 is the initial location, which denotes the initial

locations of the vehicles in C ∪ {self }.
• Q = {q|q(t) = TS ∧ t ∈ [0, ε]} is the continu-

ous state space of the SHA over the time interval [0, ε]
where ε is a non-negative number. In Q, the continuous
state variables in the continuous state q take their values

at time t based on the vehicle dynamics in
TS = (position, speed, acceleration, left, right) of all vehi-
cles on theMap.
• Var is the finite set of discrete variables such as static

information in theMap.
• Inv : Loc → P(Q) is a mapping from the locations

in Loc to the set of subsets of Q. It means that Inv(loc) ⊂
Q (loc ∈ Loc), and Inv(loc) is the location invariant for
loc ∈ Loc. When the system reaches location loc, the con-
tinuous state q must satisfy q ∈ Inv(loc). In our model,
loc = divSeg(position(c)) is the location for the vehicle c,
then its passed distance in the location loc should not exceed
the length of loc; otherwise, c violate the location variant.
• A = Actself ∪ActC is the finite set of actions of vehicles

where Actself denotes the actions of the host vehicle self ,
ActC denotes the actions of the other vehicles in C.

For self , its decisions are determined, the decision
a ∈ Actself can only be triggered when the corresponding
g ∈ G is satisfied.
While for the vehicle c ∈ C, its stochastic driving deci-

sions leads to the uncertain subsequent locations. Based on
loc = divSeg(position(c)), they can make several reasonable
decisions Ai in ST with the weight wi as put forward in
Section IV and ST ⊂ ActC.
When action a is taken, such as entering the roundabout,

it implies the activation of the continuous vehicle dynamics
change in Q such as speed etc.
• G = Qsub∪Varsub∪Prob is the set of guard conditions

depends on the spatial conditions consisting of observa-
tion of the continuous variables in Qsub and discrete vari-
ables in Varsub and estimation in Prob where Qsub ⊂ Q,
Varsub ⊂ Var .
• T ⊆ Loc × G × P(A) × P(J ) × P(W (A × Loc)) ×

P(Loc) is the finite set of transitions inM .
P is the power set identifier. J = {(q, q′)|(q, q′) ⊂ Q ×

Q} (q, q′ ∈ Q) is the set of relations on the continuous
states. In function W : A × Loc → N+, the weight is
attached to actions and their corresponding post locations.
In the transition tr ∈ T ofM , it means the corresponding g is
satisfied in location loc, the allowed action a with the weight
w ∈ W (a, loc′) is triggered, the transformation j ∈ J from
the continuous state q to q′ is achieved, and it is transited to
the subsequent location loc′.

Because the stochastic behaviours are from the other
vehicles in the environment while the decision of self is
determined, the actions with weight values are modelled in
automata of the other vehicles.

Given a state loc ∈ Loc at the current period, the tran-
sition of this automaton transfers from loc to a post-state
loc′ ∈ Loc of loc with satisfied guard g and the corre-
sponding action a with the weight w. From the state loc0
of vehicle c, for instance, when g is satisfied, a1, a2 can
be activated with weight w1 ∈ W (a1, loc1) and w2 ∈

W (a2, loc2), so loc0
g,a1,j1,w1
−−−−−→ loc1 and loc0

g,a2,j2,w2
−−−−−→ loc2.

As Prob(c, segment1) = 0.5 and Prob(c, segment2) = 0.5
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FIGURE 6. Mapping from the abstract model to SHA.

in Prob are probability values, we change these values to
weight values through the probabilistic representation from

w1

w1 + w2
and

w2

w1 + w2
to enable the weight representation in

the verification.
Figure 6 shows the description of our model in SHA after

mapping from the abstract model. It is obviously an automa-
ton for the interference vehicle with stochastic behaviours
where w1 = w5 = w6 = w7 = 1, ST = {A2,A3,A4}, and
w2 + w3 + w4 = 1.

In fact, we do not dig into the evolution (ODEs) of vehicle
dynamics but focus on the control, so we do not give the
explicit calculation method of the continuous variables due
to its variety. For the network of SHAs, we construct the
communication among SHAs through broadcast channel and
shared variables.

According to the definition mentioned above, we also
summarize the mapping relation between features in our
abstract model and SHA as shown in Table 1, in order to
explain generality and help the users to complete themap-
ping when the features in the abstract model have been
obtained. For the host vehicle self , its values of the variables
should be consistent with its driving route until it reaches the
destination. But for the other vehicles, the reachable segments
are only related to the road topological structure. The map-
ping relation is applicable for all the vehicles appearing on
the givenMap.

C. PROPERTY
For the model as the network of SHAsMM , statistical model
checking monitors runs of the model with respect to some
properties, and then use results from the statistics to get
an overall estimate of the correctness of the design. The
approach has been applied to verify both qualitative and quan-
titative properties. Qualitative property checks the probability
that a random run of model satisfies the property greater or
equal to a certain threshold. Quantitative property verifies
what is the probability that a random run of model satisfies
the property.

In this paper, we define the safety as the only presence
of one vehicle in a segment in a period. Then, the presence

TABLE 1. Mapping relation between features in the abstract model and
SHA.

of two vehicles in the same segment in the same period
indicates a (potential) collision. To verify the safety of the
driving decisions, we assume the vehicles in the scenario all
obey the traffic rules, and the danger is mainly caused by
the unexpected behaviours in the driving environment. When
c1 ∈ C, then we specify the safety property as

ψ : ¬∃c1 6= self · divSeg(position(c1))

∩ divSeg(position(self )) 6= ∅

According to the uncertainty of the driving environment
mentioned before, how much ψ is satisfied in the sequence
of driving decisions is the measure of relative safety of the
driving decisions.

The expression of properties in UPPAAL SMC is a
simplified version of Dynamic Metric Temporal Logic
(DMTL) [16], [19] which can specify state formulae and path
formulae. State formulae describe individual states, whereas
path formulae quantify over paths or traces of themodel.With
regard to the symbolic model checking, relative safety can
be checked in UPPAAL SMC. In addition to the stochastic
behaviours, we can check three kinds of properties mapping
from ψ . ϕ and φ are the properties specified in DMTL.
Mapping from ψ to ϕ in DMTL, we check the probability
confidence interval of collision in

ϕ : divSeg(position(c1)) == {TAR}

&& divSeg(position(self )) == {TAR}

&& c1 6= self

&& c1 ∈ C

conversely within the time bound of clock x.
PrMM (�x≤boundϕ) >= γ : the probability that there is

another vehicle in the same segment with self is greater than
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the probability γ , through runs of paths in MM before the
time bound bound for the approximation of estimation of
probability. The satisfaction of this property indicates the
unsafe driving decisions leading to high probability of col-
lision compared to the threshold.
PrMM (�x≤bound1ϕ) >= PrMM (�y≤bound2φ): without calcu-

lation of value of the probabilities, compare the probability
values of ϕ and φ through runs of paths inMM before the time
bound bound1 and bound2 respectively, x and y are clocks.
PrMM (�x≤boundϕ): the probability confidence interval that

there is another vehicle in the same segment with self through
runs of paths inMM before the time bound bound . Compared
to the first two specifications, we obtain the exact interval
values of potential collision.

Mapping from the abstract model and property to SHAs
and DMTL property, our safety assessment scheme is appli-
cable in the case with the help of automated verification tool
based on the formal model.

VI. SCENARIO-BASED APPROACH
Now that we have introduced the structure and content of our
safety assessment scheme as shown in Figure 1 in the previ-
ous sections, we will give a comprehensive description of the
processing steps for our approach in detail. In this section,
we will show how the scenario works in the modelling phase
and verification phase, and show the composability of the
scenarios in multi-lane roundabout shown in Figure 3 based
upon three cases on fundamental scene structures.

A. PROCESSING STEPS
As a preliminary, we obtain the identifier self for the
autonomous vehicle and its starting and destination position.
The real map in coordinates is required and the abstraction of
the real positions and the naming system are done in advance.
Then the set of segments and the connection relationship
can be stored in Map in our abstract formal model. Now the
initial route rt is also determined due to the path on theMap.
At the same time, some historical records of self are copied.
The features and structures of Map, TS, Prob in the abstract
model are fixed. Other real-time data TS from observation
and estimationProb can only be gathered and calculated upon
the coming period when running the model since our model
is a periodic system.

1) PROCESSING STEPS IN THE MODEL
i) When a new period comes, gather the real-time sen-

sor data of self and the surrounding vehicles from the
onboard and wayside sensors, and feed the data into TS.
Check the target segment in rt .

ii) Calculate the occupied segment of self upon position
information in TS, check the type of scenario based
on Map, and calculate Prob based on TS in different
procedure shown in Section IV.
a) If the scenario is a single road or a fork, omit the

calculation of Prod .

b) If the scenario is a junction, calculate Prob if there
is an interference vehicle in the interference segment.
Repeat the calculation if there are multiple interfer-
ence vehicles in the multiple interference segments.

iii) A decision is given according to real-time observation
TS and the probabilities of all possible driving decisions
for all interference vehicles in Prob.

iv) Repeat step i) to iii) in each period until self reaches the
destination in rt .

According to the steps above, writing computer programs to
feed data into the model is necessary. While manual inter-
vention is not required since the structure and content of our
abstract model is determined.
To verify that the safety property holds in the sequence of

decisions, the processing steps are shown below.

2) PROCESSING STEPS IN VERIFICATION
i) Specify the safety properties based on the system

requirements.
ii) Mapping the abstract model and property to the auto-

mated model checking tool UPPAAL SMC.
iii) Check automatically by verifying the safety of each

decision in the connected scenario in the simulation of
running paths as shown in Section V.

By the above steps, we can assess the safety of the driving
decision. In the verification phase, manual intervention is
needed in step i) and ii), while iii) is automatic by the tool.

B. APPLICATION IN FUNDAMENTAL SCENE STRUCTURES
To illustrate our approach, we show three cases of fundamen-
tal scene structures extracted from the multi-lane roundabout
discussed in Section VII. Through these cases, we show
the composability of scenario based upon the connection of
fundamental scene structures.
Since the driving route rt for self is< A,B,K ,D,E,F >,

we divide the driving task into subtasks on < A,B >,
< B,K > . . . < E,F > as shown in Figure 7. If the subtask
in each scenario is verified that the collision rate is lower
than 0.2, then the whole task is safe. As Figure 5 shows in
Section III, we can judge the scenario respectively in these
three subtasks easily, according to the occupied segment of
self .
Figure 7(a) is the junction structure with one interference

segment H . A stands for the occupied segment of the host
vehicle self , B represents the target segment of the host vehi-
cle, and G is the other segment for the interference vehicle
(if exist) to leave. Figure 8 shows that the collision rate
is low (referred to the result of the second property) while
completing the subtask< A,B > (referred to the result of the
first property), so it is safe in this scenario.
Figure 7(b) is the junction structure with multiple interfer-

ence segments C and J . B stands for the occupied segment
of the host vehicle self , K represents the target segment of
the host vehicle, and D is the other segment for the inter-
ference vehicle in C (if exist) to leave. Figure 9 shows that
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FIGURE 7. (a) is the junction structure with one interference segment. (b)
is the junction structure with multiple interference segments. (c) is the
single road structure.

FIGURE 8. Verification results for properties in junction structure with
single interference segments in 100 time units.

FIGURE 9. Verification results for properties in junction structure with
multiple interference segments in 100 time units.

FIGURE 10. Verification results for properties in single road structure and
fork structure in 100 time units.

the collision rate is low (referred to the result of the second
property) while completing the subtask < B,K > (referred
to the result of the first property), so it is safe in this scenario.

Figure 7(c) is the single road structure. E stands for the
occupied segment of the host vehicle self , F represents the
target segment of the host vehicle, and there is no interference
segments. Since the fork structure with a determined target
segment is similar to the single road structure, the result of
this case is also applicable for the fork structure. Figure 10
shows that the collision rate is little (referred to the result of
the second property) while completing the subtask< E,F >
(referred to the result of the first property), so it is safe in this
scenario.

As the three cases and processing steps mentioned above,
the model of the host vehicle (with determined judge logic)
and the model of traffic data in the target segment (with
random simulation) are the same as the ones in Section VII
as shown in Figure 11. While the models for traffic condition
in the interference segments are different parts of the model
shown in Figure 11(d) which contains all possible situations
when considering traffic conditions in the interference seg-
ment. In the scenario shown in Figure 7(a), the interference

vehicle has the other segment G to leave if it exists. Then
ToTgtSeg1, ToOutSeg1, ToStay1, ToOutSeg2, and ToStay2
are reachable through part of the paths from the initial state.
In the scenario shown in Figure 7(b), the interference segment
C has another segment to leave, while segment J does not.
Then all the states are reachable, its corresponding model
should cover all possibilities as shown in Figure 11(d). In
the scenario shown in Figure 7(c), there is no interference
segment. So only NoKeySeg is reachable.
To summarize, the model in Figure 11(d) composes all

possible states in various fundamental scene structures for
the traffic conditions in the interference segment. Then any
scenario that can be described as the composition of fun-
damental scene structures can be modelled as Figure 11.
Since the safety property holds in < A,B >,< B,K >

and < E,F >, the model is safe if it is still satisfied in
the corresponding scenarios of the subtask < K ,D > and
< D,E >. To find whether we can achieve this, later in
Section VII, we prove that the high collision rate in one
scenario of a subtask will bring the danger to the whole
driving task.

VII. CASE: MULTI-LANE ROUNDABOUT
Now that we have put forward the safety assessment scheme
of the driving decisions in automated driving based on the
formal modelling and verification approach, the modelling
and verification of the decision-making in the multi-lane
roundabout scenario are illustrated in UPPAAL SMC as a
case study in this section.

In the multi-lane roundabout scenario shown in Figure 4,
the host vehicle self is initially at segment A approaching
the roundabout, and its driving task is driving through the
roundabout along the planned route rt :< A,B,K ,D,E,F >
and finally reach the destination F . The segment is set to
the equal length as 100 in the case. During the driving task,
self obeys the traffic rules that it should not enter the target
segment that has already been occupied by another vehicle,
give way to the vehicles already in the roundabout, and vice
versa for the other vehicles. Only self utilizes the estimation
process based on the prior probability distributions of driving
decisions for the interference vehicles, while the decision-
making process of the interference vehicles is unknown to
self . The prior probability distributions obtained from the
knowledge library is not updated in this driving task. The
final driving decisions and latest probability distributions of
the interference vehicles are unobservable to self .

A. MODELLING IN UPPAAL SMC
Single road structure, junction structure and fork structure
are fundamental scene structures composing the multi-lane
roundabout. Then the whole system can be considered as the
network of automata where the traffic operating simultane-
ously in the occupied segment of the host vehicle, the tar-
get segment of the host vehicle, the interference segment(s)
of the host vehicle and a period controller, due to the
previous description of driving scenario and fundamental
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FIGURE 11. Modelling of decision-making in multi-lane roundabout scenario in UPPAAL SMC. (a) Automaton Period for period control.
(b) Automaton CarSelf for the host vehicle with rational estimation. (c) Automaton CarC2InTargetSeg for the traffic in the target segment.
(d) Automaton CarC1InKeySegs for the traffic in the interference segment.

scene structures. The existence of the interference segment
and the target segment refers to the observation of Map in
every control period. And the presence of vehicles on the
target segment and the interference segment is controlled by
the random function and observed in TS in every control
period. The synchronized network of the four automata via
broadcast channels time and reset are as follows and shown
in Figure 11:

CarSelf ||CarC2InTargetSeg||CarC1InKeySegs||Period

1) PERIOD
Figure 11(a) is the automaton Period for a period controller.
Through the broadcast channel time, all four automata are
synchronized, and this signal is sent when it comes to a
period. One period equals to one cycle clk in this case.
initiate() initializes the traffic data at first, and uptSelf ()
ensures that self always has an acceleration to start. The
period controller is spawned according to an exponential
distribution with rate 2 by the SHA, and the function initiate()
is executed only once during the driving task.
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2) CarSelf
As Figure 11(b) shows, CarSelf is the automaton for the host
vehicle self with rational estimation. Rational estimation is
based on the calculation of running parameters of the interfer-
ence vehicles as described in Section IV. The driving decision
of self depends on the satisfaction of the guard conditions of
their corresponding decisions as written in the tool below.

bool guardSlowdownSelf 2()

{ return calMovDstSelf () >= segLen

&& position[c2]! = rt[locRt + 1]

&& relSegsLen >= 2

&& position_c1[car2]! = rt[locRt + 1]

&& position_c1[car1] == relSegs[1]

&& estimate1() >= 30 && estimate2() >= 30; }

The guard conditions of self concern the observed traf-
fic data and estimation of driving decisions of the inter-
ference vehicles. guardSlowdownSelf 2() is the boolean
function of the guard condition g on the transition

CurrentSeg
g,slowdownSelf (),jself ,1
−−−−−−−−−−−−−→ CurrentSegwith all weights

to slow down where jself indicates the transformation of
continuous states. In g, as mentioned in the previous section,
we focus on the continuous state in Qsub where the tar-
get segment rt[locRt + 1] is not occupied and at least one
interference vehicle car1 exists checked in position[c2]! =
rt[locRt + 1], position_c1[car2]! = rt[locRt + 1] and
position_c1[car1] == relSegs[1]; relSegsLen >= 2 shows
the discrete variables in Varsub that this is a junction structure
with at least one interference segment; calMovDstSelf () >=
segLen indicates that self is able to move out the current seg-
ment in the next period due to the estimation process of Prob,
at the same time estimate1() >= 30 and estimate2() >= 30
shows the great probabilities for moving towards the target
segment in the next period which is higher than the thresh-
old for both interference vehicles car1 and car2 if exist.
Definitely, self will slowdown if g is satisfied.
Figure 12(a) shows the automaton for self with conser-

vative estimation. Conservative estimation means immediate
slowing down whenever there exist interference vehicles.
Figure 12(b) shows the automaton for self with aggressive
estimation. Aggressive estimation means immediate enter-
ing whenever there exist interference vehicles. Apparently,
the estimation style is not limited to rational, conservative,
and aggressive style. We propose the three typical styles in
this paper for comparison as shown in the Table 2. The host
vehicle has different decisions with various estimation style
when there are no vehicles in the target segment and the
interference segment is occupied at the same time.

The planned route rt of self is divided into intervals
between adjacent segments where CurrentSeg is the start-
ing location while NextSeg is the end location in each
interval. Synchronization signal for updating new observa-
tion of the environment is sent through broadcast chan-
nel reset . After reset, traffic data in the target segment in

FIGURE 12. Automaton CarSelf with various styles of estimations.
(a) Automaton CarSelf for the host vehicle with conservative estimation.
(b) Automaton CarSelf for the host vehicle with aggressive estimation.

TABLE 2. Comparison of estimation styles.

CarC2InTargetSeg and traffic data in the interference seg-
ment in CarC1InKeySegs is updated based on the current
location of self and the scene structure. According to the
guards with the estimation of traffic in the interference seg-
ments and observation, self can keep moving in the original
segment (maintainSelf ()), slow down (slowdownSelf ()), and
enter the target segment (enterSelf ()) until self reaches the
location Destination in F .

3) CarC2InTargetSeg
Figure 11(c) is the automaton CarC2InTargetSeg for traffic
in the target segment of self , and the vehicle originally in this
segment is c2 by a random function. For the target segment
of self , we check whether c2 is already in this segment.
Once existed, it will leave in random periods by a random
function. If the target segment is vacant, the target segment
keeps unoccupied until the interference vehicle or the host
vehicle reaches the segment.

4) CarC1InKeySegs
Figure 11(d) is the automaton CarC1InKeySegs for traffic in
the interference segment of self . At first, search theMap and
rt to find the existence of the interference segment (when the
topology infers a junction structure) in location NoKeySeg,
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and random function is utilized to randomize the existence of
interference vehicle c1 if the interference segment exists in
location KeySeg. The parameter id is introduced to identify
the instance of c1 in the interference segments in location
KeySegC1. The identifiers for the interference vehicles are
car1 and car2 since there are at most two interference seg-
ments in the junctions in the multi-lane roundabout, i.e. self
is in B, the target segment is K , car1 is in C , and car2
is in J .
Considering the assumption that c1 obeys the traffic rules,

for instance, c1 may leave, maintain, or forward if the guard
hasCar() == false and hasLeavePos() == true are sat-

isfied. For the transition KeySegC1
gc1,ac1,jc1,ProbForward_C1
−−−−−−−−−−−−−−−−→

ToTgtSeg1 where gc1 is its guard condition as written in the
modelling language in the tool below.

gc1 = hasCar() == false

&& hasLeavePos() == true

&& resetSignal == false

Except for listening to the time signal, in gc1, the target
segment is not occupied as described in hasCar() == false,
and hasLeavePos() == true means c1 has another segment
for leaving except the target segment in the observation
of c1. resetSignal == false means there is no signal on the
broadcast channel reset which activates the reset. And with
probability ProbForward_C1 to move to the target segment,
c1 completes the actions in ac1 which update the new proba-
bility of moving forward in uptProb1() and calculates the new
covering distance in forwardC1() according to the intention
of moving forward. ProbLeave_C1 + ProbForward_C1 +
ProbMaintain_C1 = 1 and each of them is the weight value
of the intention of the interference vehicle. The successor
locations are in accordance with the intentions when the cor-
responding guard conditions are satisfied, otherwise, transmit
to the unexpected outcomes. These values are refreshed by
one of the operations in uptProb1, uptProb2, and uptProb3
to simulate the stochastic probability values.

The location marked with U means an urgent state does
not consume time. For location ToTgtSeg1, it indicates the
moving forward intention of interference vehicle c1 and does
not cost time. If c1 is able to move out of the current seg-
ment, the successor state will be TgtSeg1. The traffic data in
CarC1InKeySegs is updated when receiving the signal from
the channel reset .

All the model files are open to the public in the
case study repository on: https://github.com/JoyaXu?tab=
repositories.

B. QUALITATIVE AND QUANTITATIVE VERIFICATION BY
STATISTICAL MODEL CHECKING
The safety of the driving decisions upon this model can be
assessed through the verification of safety properties. Quali-
tative and quantitative properties can be verified in the built-in
verifier in UPPAAL SMC through statistical model checking.

FIGURE 13. Verification results for safety properties with rational
estimation.

FIGURE 14. Verification results for safety properties with conservative
estimation.

Considering safety in the driving task according to rt ,
the following requirements are essential and should be ver-
ified. One is that self should reach the destination in rt; the
other is that the driving decisions of self ensure to maximize
the probability of safety during the driving task and avoids
collision with the other vehicles. Since safety is considered
between the host vehicle and its environment, the dangerous
situation between the interference vehicles is not studied in
this paper.

Several fundamental qualitative and quantitative proper-
ties verified by SMC demonstrate the relative safety via
the expression of probability value. The list of the safety
properties is in Table 3 below. Figure 13, 14, and 15 shows
the verification results of qualitative and quantitative prop-
erties with rational estimation, conservative estimation, and
aggression estimation respectively. Here, all the properties
are verified within 100 in time. The red spot indicates the
failure of satisfaction of the property while the green spot is
a success. And we demonstrate the typical ones as follows.

P1 verifies the probability that self reaches the destination
according to rt , which is the basic requirement of the driving
task. The probability value of the verification result ensures
the high probability of arriving at the destination within the
time bound in three versions of the model.

P2 indicates the tiny possibility that self and the interfer-
ence vehicle car2 collide in the target segment. When the
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TABLE 3. List of safety properties verified in multi-lane roundabout.

FIGURE 15. Verification results for safety properties with aggressive
estimation.

FIGURE 16. Verification result for probability comparison.

estimation is conservative, no collision will happen due to the
verification results.

P5 verifies the probability that self and the interference
vehicle car1 collide in the target segment K . Obviously,
the great value of probability means high possibility of colli-
sion. Then wewill expose the reason why it is likely to collide
in segment K compared to B,D,E which is also the target
segment of the interval in scene structures. Then we analyse
the responsibility of collision and relationship of collision and
scene structure in Section VII-C later.

P8 indicates the high probability of collision between the
two inference vehicles. It is easy to conclude that the estima-
tion information is a vital part of keeping safety since the high
probability of collision results from the lack of estimation of
driving behaviours between the interference vehicles.

P9 verifies the quantitative comparison as Figure 16 shows
in three versions of the model. The probability of car1 mov-
ing to the target segment is larger than the probability of car1
colliding with self caused by a sudden behaviour change
which is not expected according to its original intention.

FIGURE 17. Verification result for probability hypothesis with rational and
conservative estimation.

FIGURE 18. Verification result for probability hypothesis with aggressive
estimation.

And this indicates that unexpected event rarely happens based
on the estimation.

P10 is to verify whether the probability is larger than
0.18 that self reaches the target segment while car1 hap-
pens to move to the same segment in the same period. The
red spots in Figure 13 and 14 shows that the probability is
lower than 0.18 which indicates a safer situation. As shown
in Figure 17, the property is not satisfied in the rational and
conservative estimation since it meets the request of safety
that the probability of collision is smaller than 0.17. That
means the rational and conservative really contribute to the
safety of the driving decisions. Figure 18 shows that this
property is satisfied in the model with aggressive estimation.
This indicates that aggressive estimation is more likely to
lead to a dangerous state if compared to a determined safety
threshold of 0.18.

C. SAFETY RESPONSIBILITY IN THE MULTI-LANE
ROUNDABOUT
This part reveals the practical application of safety
assessment scheme of driving decisions based on the scene
structures, such as the discussion on the responsibility of
collision. From the high probability of collision in segment
K verified in P5: Pr[<=100](<> position[self]==K &&
position_c1[car1]==K), we discover that self and the inter-
ference vehicle car1 will collide in K with high probability
while the collision probability is low in B,D, and E . And it
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FIGURE 19. Verification results for safety properties with advanced
rational estimation.

is definitely related to the scene structure. According to the
Map in Figure 4, B,K ,D, and E are the target segments in
the junction structures according to the occupied segments of
self . The collision is about to happen in K in two cases.
1) When self is in K , C is the interference segment that

car1 is in, D is the target segment, and K is the seg-
ment for car1 to leave. In this scene structure with one
interference segment, the segment for leaving and the
position of self is the same segment.

2) When self is in B, C is the interference segment that
car1 is in, J is the interference segment that car2 is
in, K is the target segment, and D is the segment for
car1 to leave. And this is the scene structure with two
interference segments.

We mainly focus on the driving decisions of self , but not
control the decision-making process of the interference vehi-
cle, e.g. car1 enters the other segment to leave. Therefore,
we doubt that the high probability of collision is caused by
a rear-end collision by car1 due to the lack of observation
and its stochastic behaviour in the first case described above.
To confirm the speculation, we add the judging process for
car1when it enters the segment for leaving. The collision rate
sharply decreases in the model with rational, conservative,
and aggressive estimation as shown in Figure 19, 20, and 21.
It is believed that the characterized scenarios and verification
results for quantitative safety properties can be used to help
to analyse the cause of the collision.

And for the property P10, it still remains the same verifica-
tion result as shown in Figure 13, 14 and 15, and aggressive
estimation leads to a higher collision rate compared to the
rational and conservative estimation.

D. TRADE-OFF BETWEEN SAFETY AND EFFICIENCY IN
FUNDAMENTAL SCENE STRUCTURES
In the industrial field, the requirement of driving task is
not limited to safety, but also efficiency. As the verification
above is based on the 100 time units, it is more practical to
study the balance between safety and efficiency in three scene
structures if less time is allowed.

According to the scene structures in Figure 5, we verify
the properties in 15 and 20 time units. Through these exper-
iments, we come to the conclusion regarding both safety

FIGURE 20. Verification results for safety properties with advanced
conservative estimation.

FIGURE 21. Verification results for safety properties with advanced
aggressive estimation.

and efficiency in the decision-making process. For instance,
the adoption of combined estimation styles achieves better
performance in safety and efficiency in the composite driv-
ing scenario composed of fundamental scene structures. The
concerned properties are in two types.

Properties denoting completion of the driving task:
• Pr[bound](<> CarSelf.Destination)
Safety properties:
• Pr[<=15](<> position[self]==B &&
position[c2]==B)

• Pr[<=15](<> position[self]==B &&
position_c1[car1]==B)

• Pr[bound](<> position[self]==B &&
(position_c1[car1]==B || position_c1[car2]==B))

1. For scene structures without interference segments like
single road and fork, the estimation process can be removed
from the abstract model as mentioned in Section IV to
save the computation time as it is safe enough as shown
in Figure 22.
2. For the junctionwith one interference segment, a rational

estimation is recommended to keep safety in the driving task.
As shown in Figure 23, in the given time, the conserva-
tive estimation will not cause a collision but has a lower
probability in the completion of the task. At the same time,
the collision rate is too high using the aggressive estimation.
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FIGURE 22. Verification results for properties in single road structure and
fork structure in 15 time units.

FIGURE 23. Verification results for properties in junction structure with
single interference segment in 15 time units.

FIGURE 24. Verification results for properties in junction structure with
multiple interference segments in 15 time units.

FIGURE 25. Verification results for properties in junction structure with
multiple interference segments in 20 time units.

If given the safety threshold and arrival rate according to the
industrial standard, we can adjust the time bound specified in
the property to find out the acceptable time interval in which
safety is guaranteed through the quantitative verification.

3. For the junction with multiple interference segments,
analysing the rational part in Figure 24, the arrival rate is
obviously decreased as it costs more time on estimation
compared with the junction with single interference segment
in Figure 23 in the same given time.

4. For the junction with multiple interference segments,
the arrival rate increases if given more time as shown
in Figure 24 and Figure 25.

Given the driving decisions under our abstract model of
decision-making process in the composite driving scenario
and our verification method, we can infer how the element
in our abstract model influences safety such as estimation
style or the observation. For each scene structure, we can

extract the necessary structure and the corresponding style
in the abstract model to make the decision with respect to
the balance between safety and efficiency. According to the
functional safety requirement of vehicles in the industrial
standard like ISO 26262, our verificationmethod provides the
solution for safety assessment based on the safety threshold.

VIII. RELATED WORK
In the previous studies, from different perspectives, there
exist numerous work on scenario-based spatial modelling and
safety assessment methods of driving behaviours in auto-
mated driving.

A. MODELLING DRIVING SCENARIOS
The driving performance of a vehicle is studied regarding its
driving scenarios, and the existing approaches of modelling
driving scenario are under a hierarchical structure or by fea-
tures classification based on domain knowledge.

The researchers from the Institute for Automotive
Engineering at RWTH Aachen University adopt the logical
scenario as a six-layer model of different properties for
scenario-based testing. Sensor data including road geometry,
moving objects, environmental conditions etc. is segmented
into each layer of the model [20]. Kettani et al. propose
notions of the spatial conceptual map (data structure of
mental images) and object’s influence areas (neighbourhood
space around spatial objects). And the two notions enable the
formal definition of the properties of neighbourhood, orien-
tation and distance in a qualitative way [21]. Bagschik et al.
put forward a knowledge-based scene creation applied in
traffic scenes for automated vehicles by the approach of
ontology [22]. Uwe et al. introduce the Stop&Go system
to cope with complex urban traffic scenario rather than
highway traffic and extract spatial features based on object
detection, tracking and recognition [23]. For driving tasks as
lane change and overtaking on the highways, the Multi-lane
Spatial Logic (MLSL) [24] is proposed for the specification,
reasoning, and verification of spatial property based on the
sequence model of lanes. Length measurement and dynamic
modality are later introduced to refine MLSL as an extended
EMLSL [25]. Based on the one-directional spatial model in
MLSL, we expand it into a two-directional one which can
specify and verify spatial properties in the crossroads [26].
Later, a generic topology of urban traffic networks is put
forward to modify the abstract model of the typical cross-
roads [27]. Simulators such as CARLA [28] and PTV Vis-
sim [29] providemaps generation, sensor data, environmental
conditions considering the weather, driving behaviours etc.
for scenario description.

In this paper, we link the spatial and temporal properties
with the traffic data and characterize these data based on the
domain knowledge in the automated driving.

B. AUTOMATED TOOLS FOR QUANTITATIVE VERIFICATION
For the formalized model of the stochastic complex system,
automated model checking tools make the formal verification
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applicable in the industry with higher safety. Especially the
ones that can check both qualitative and quantitative proper-
ties.

PRISM is suitable for quantitative verification in the proba-
bilistic systems [30], [31] and stochastic multi-player games.
Chen et al. propose the temporal logic rPATL reasoning
out the probability of an event’s occurrence or the expected
amount of accumulated cost/reward when a set of players
achieving a goal [32]. They also study the strategy synthe-
sis for stochastic two-player games where each property in
the conjunction can be either an LTL formula or a reward
function [33]. MoDeST toolset is ideal for modelling and
verification of Stochastic Timed Automaton (STA) [34] and
SHA [35]. UPPAAL SMC is the Statistical Model Check-
ing (SMC) extension [19] of UPPAAL, which can achieve
performance analysis by quantitative property verification.
It is an integrated tool environment for modelling, validation,
and verification of real-time systemsmodelled as networks of
timed automata [36]. COSMOS, a statistical model checker
for the Hybrid Automata Stochastic Logic(HASL), it takes a
Generalized Stochastic Petri Net, an LHA and an expression
Z representing the quantity to be estimated as the input [37].

We choose UPPAAL SMC in this paper due to its strength
on real-time behaviours and its performance analysis that
can reveal the relative safety of the host vehicle with high
autonomy.

C. SAFETY ASSESSMENT APPROACHES
OF AUTOMATED DRIVING
For standardization of safety assurance in automated driving,
Responsibility-Sensitive Safety (RSS) is proposed as a white-
box, interpretable, mathematical model for safety assurance.
It reveals the safety standard that the autonomous car should
never take the initiative action leading to crash according to
the current traffic condition [38]. For classic safety assess-
ment, safety descriptors use only the time to collision and the
vehicle distance gap. The Dwell Time descriptor is extended
to assess safety from both time and distance criteria on driver
safety under mixed traffic styles [39]. Based on the assess-
ment by virtual testing and hardware in-the-loop testing,
Gelder et al. present a data-driven method to generate test
cases from real-life driving data, and compute the probability
of the occurrence of unsafe situations in real scenarios [40].
ESACS platform integrates the system design and the sys-
tem safety assessment processes where formal notations are
the common and shared language. An application in the
embedded controllers of Secondary Power System for the
Eurofighter Typhoon aircraft is demonstrated [41]. Besides
the testing method, model checking method is also studied
for the safety assessment. With respect to both continuous
and discrete aspect of the self-driving process, to verify
the driving behaviours of the autonomous car in platoons
on highways, how combined verification approaches work
is presented based on the driving data from TORC [42].
Wang et al. from theNational Highway Traffic Safety Admin-
istration (NHTSA) present a technique used by BMW for

the safety assessment of highly automated driving functions.
However, an international consensus on safety standard and
methodological issues of the safety assessment of automated
driving is still lacking [43]. To assess the safety of driving
decisions, it is believed that an integrated theoretical frame-
work by the formal model should combine the probabilis-
tic perception and deterministic control to handle driving
behaviours better in the uncertain urban environment [44].
For the black box problem of the fully data-driven decision-
making approaches, Sifakis proposes the hybrid architecture
of formal model as the combination of data-driven mod-
ules and model-driven modules for automated driving [45].
Accordingly, using formal methods is convinced as a promis-
ing way to improve safety in the safety-critical systems of
industrial applications [46].

IX. CONCLUSION
This paper studies a safety assessment scheme of decision-
making in automated driving, including the scenario-based
formal modelling and verification approach.We construct the
abstract model to describe the essential spatio-temporal fea-
tures in the decision-making process. According to the obser-
vation of static road geometry and time-dependent dynamic
traffic in the abstract model, the general formal descrip-
tion of the scenario is defined. Moreover, we characterize
three fundamental scene structures, which indicates the basic
unit scenarios that can connect and compose a composite
scenario together. Based on the classified scene structures,
the scenario-based estimation of stochastic driving decisions
of other vehicles in the probabilistic representation is calcu-
lated by the observation in the abstract model. Due to the
features in the abstract model, we can specify and reason
the spatial properties and guard conditions considering both
the observed data and estimation. The corresponding model
verification method is suggested based on the successive ver-
ification in the connected fundamental scene structures along
the driving route. Then any scenario that is a composition
of fundamental scene structures does not need a new model,
because the model and verification method of the fundamen-
tal scene structure is fixed. Mapping from the abstract model
to the network of SHAs, both qualitative and quantitative
properties can be verified in the automated verification tool
UPPAAL SMC, and find a way to apply the approach in the
industry. Based on the verification result, it is applicable to
analyse the trade-off between various properties in the case
of the system requirements and discuss the responsibility of
danger under the scene structure.

In this paper and our previous work [17], [18], [26],
the observed local traffic of the host vehicle is the basis of
spatio-temporal logic and scenario-based safety assessment.
While the shared traffic data by communication in the collab-
oration with the other vehicles should be concerned in both
theoretical and experimental research. In the future, we shall
consider the integration of the individual local spatial data and
the mapping from local knowledge to the global consistent
knowledge through spatial reasoning.
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