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ABSTRACT With a steady increase in the number of vehicles predicted, traffic congestion has become a
significant logistical challenge. The increase in traffic not only results in pollution and traffic congestion, but
also leads to increased travel time and productivity loss. Thus, traffic prediction has become an important
research topic in the academia. In fact, logistics managers are more concerned about predicting short-term
traffic conditions than the accuracy of prediction. Therefore, this study used a discrete-time Markov chain
and online traffic monitoring data to predict the probability of traffic congestion and identify the freeway
bottlenecks. The findings of the study revealed the high probability of National Freeway 3’s northern section
being non-congested during the morning and afternoon rush hours. However, several bottlenecks were found
in the links to nearby urban areas. The results of this study can not only facilitate logistics managers to
optimize vehicle routes but can also support transportation control centers with regulating traffic flow in
freeways during peak periods.

INDEX TERMS Discrete-time Markov chain, freeway traffic congestion, logistics management, short-term

traffic prediction.

I. INTRODUCTION

With an increase in the number of vehicles predicted, traf-
fic congestion has become a significant challenge world-
wide. In Taiwan, for example, there were 341 vehicles per
1,000 persons in 2018 [1]. The deterioration in traffic con-
ditions makes countermeasures to mitigate the effects of
increasing fuel consumption, travel time, pollution, traveler
dissatisfaction, and productivity loss [2]. However, coping
with traffic congestion by building more freeways or expand-
ing the existing freeway network is not a valid solution
because of budget and land constraints, as well as the cor-
responding increase in trips caused by capacity expansion.
Hence, many researchers have focused on short-term traffic
prediction [3], [4], an important research topic that is also
the focus of this study, to determine an efficient approach
to utilize the current traffic infrastructure [4]. The majority
of recent research applies traffic monitoring data and time
series and neural network (NN) approaches to fit the dynamic
characteristic of transportation systems and traffic flow over a
relatively short time period [S]. However, a previous study [4]
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indicated that traffic data possess stochastic, trend, and sea-
sonality properties. Seasonality and trend can be obtained
from long-term monitoring data, but the short-term data
appears rather stochastic. Thus, these studies may be hindered
by such data characteristics [4]. Additionally, the results of
this research may disregard the systemic problems relevant to
the basic need of logistic management, namely faster deliv-
ery, higher service level, and reliability [6]. In fact, logistics
managers are more concerned about short-term traffic condi-
tions than the accuracy of prediction [7], [8].

The objective of this study was to provide a process
for predicting the probability of traffic congestion in the
specific segment of freeway containing several consecu-
tive links. The process applied the concept of probabilis-
tic breakdown, which is based on discrete-time Markov
chains (DTMC), to freeway segments since the probabil-
ity of congestion at each link was defined by the con-
cept of probabilistic breakdown. Additionally, the scope of
the study comprised congestion caused by heavy traffic
regardless of incidents, accidents, roadwork, and weather
conditions.

This paper is organized as follows. Section 2 presents
information about discrete-time Markov chains and open data
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on traffic congestion prediction. Section 3 summarizes the
steps to obtain the data and analyze them. The results and
discussion are presented in Section 4. Finally, summary and
conclusion are provided at the end of this paper.

Il. BACKGROUND

A. TRANSPORTATION IN LOGISTICS SYSTEMS

Rapid motorization and urbanization present significant
challenges to logistics systems; hence, technologies and
managerial strategies are being continuously developed and
modified to provide customers with efficient service [7]. The
production procedures rely on a logistics system to connect
the disparate activities from manufacturing to delivery and
returns from the customers [8]. Structured coordination of all
the components in the value chain is essential for optimal effi-
ciency. To this end, transportation becomes the key element
in logistics systems and directly affects the total logistics
costs [8]. In general, transportation is nearly half the total cost
of logistics and amounts to 4%-10% of the product selling
price [9].

Currently, an increasing number of companies imple-
ment the just-in-time (JIT) principles, which is deemed
the solution for attaining quality breakthroughs, produc-
tivity advancement, and waste reduction [10]. Ideally, the
JIT-supply based manufacturing system works on zero inven-
tory. It is inevitable that smaller and more frequent orders,
precise scheduling, and shortened lead times requested by
customers can be hindered by the increasing traffic con-
gestion in the streets and freeways [11]. Since traffic con-
gestion causes delivery delays, it becomes very costly for
logistics service providers and distribution firms to formu-
late diverse countermeasures, such as shifting warehouse
location, redesigning shipment size, and shipping cargoes at
night [12].

B. DISCRETE-TIME MARKOV CHAIN

A Markov chain is a mathematical system that is widely
used for both short- and long-term analysis of stochastic
systems [13]. Theoretically, the statistical model is consid-
ered a stochastic characteristic that evolves over time with a
definite probability. Additionally, the stochastic process can
be considered as possessing the Markov property when it
depends only on the previous state. The Markov model argues
that the current state of the system evolves from the original
state with time, and that the state transition can be displayed
by a certain probability. Theorizing that the Markov chain
has a countable stationary state, many researchers applied
it to studying the evolution of material through a series of
countable states [14].

The Markov chain is a discrete-time stochastic process [13]
in which the conditional probability of transiting to the future
event only depends on the current state and is unrelated to
past states [14]. The stochastic process X = X; : ¢ > 0 with
countable state S can be considered as a Markov chain for any
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state of i, j € S and t > O if

Pij = P (X1 =JjIXe = 1p)

fori,j=1,2,---,m, andt=1,2,3--- (1)

where p;; is the transition rate from state i to state j and m is
the total number of possible states. On the other hand, the p;;
is defined as the conditional probability of each specific tran-
sition and is determined by empirical evidence. At any state,
however, the aggregate of all transition probabilities must be
one, i.e., jes Pij = 1,i € S. Eq. (1) is based on the Markov
chain property, which means that the future state X4 can be
established only by the current state X; € S and is unrelated
to all the other previous states, e.g. Xo, X1, --- , X;—1.

As aforementioned, S is a countable and finite state, which
can be depicted as S = {S1,952,---,S,,}. In this context,
transition matrix P comprises all transition probabilities and
is displayed below.

P11 pi2 - Plm
P21 P22 e P2m

P=1 . . ) . 2
Pm1 Pm2 te Pmm

Here, P is the stochastic matrix and the aggregate of each row
must be one [14].

The Markov chain model is established with state and
transition matrix. If the initial moment at t = 0, the state
probability matrix is [T € S. After the nth transition, the state
probability of future state IT" can be computed using transi-
tion matrix P as follows.

m=mn’xp
n? = ' x p=n'?
In this context, the transition can be derived as follows.
m =11 x P A3)

In the countable Markov process, the state matrix can be com-
puted by utilizing the above formula [13]. This concept can
be applied to the prediction of traffic conditions in freeways,
as smooth traffic flow could be interrupted during rush hour
and then recover during off-peak hours.

C. OPEN DATA

This section is about the concept of open data that is pub-
lished by the government and should be freely available to
every organization, person, and company [15]. Additionally,
the open data platform is defined as a repository that is
used to manage and release data to users [9]. The purpose
of releasing government-owned data is to better empower
citizens, reform public service, enhance transparency, and
foster innovation [16]. Hence, there are several advantages
to open government data [17].

1) Developing new applications — by utilizing open data
to deduce, link, cross-reference, and combine with other data
from various sources, new applications can be developed and
original knowledge can be obtained.
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TABLE 1. ETC gantry location along national freeway 3.

Link No. Gantry ID Distance
Southbound  Northbound From To (km)

1 5 03F0447  03F0498 4.9

2 4 03F0498  03F0525 3.3

3 3 03F0525  03F0559 3.7

4 2 03F0559  03F0648 8.4

5 1 03F0648  03F0698 5.5

2) Enhancing innovation — accessing open data encourages
users to exploit, view holistically, and gain deep insight into
the potential of the data.

3) Attaining feedback from external sources —users’ ideas
can be collected by way of a data interchange platform to
reinforce internal analyses.

4) Increasing transparency — open data not only pro-
vides public control over government actions, but also
increases trust in the government, thus contributing to greater
satisfaction.

lll. METHOD

A. DATA COLLECTION AND PRETREATMENT

In this study, data retrieved from the Ministry of Transporta-
tion and Communications ROC (http://tisvcloud.freeway.
gov.tw/) were applied to develop a discrete-time Markov
model (DTMM). The raw data were collected from numerous
RFID based electronic toll collection (ETC) devices, which
are placed in gantries and remotely read the electronic tags
embedded in vehicles when they cross the gantry. Addition-
ally, the identification information is preloaded into elec-
tronic tags; this mainly includes time interval, vehicle type,
gantry number, traffic flow, and travel time. Then, the data are
aggregated into five-minute intervals for each detector and are
provided for route guide reference and Internet research. This
study focused on the northern section of National Free-
way 3. Therefore, the research data were collected from a
25.8 km segment between the Tucheng and Daxi junctions.
Table 1 shows the gantry number and distance of the study
area. The data for this study were collected over six months,
from January 1 to June 30, 2019. This study extracted traf-
fic flow (flow,y,, and flow,,,) and travel times of sedans
(TT sedan) and vans (1T ,4,) on weekdays, then calculated the
total travel time (S77) and Speed using equations (4) and (5).

(TT sedan * floWsegan + TT van X flow,,4,)
((ﬂowsedan +ﬂ0wvan) X 60)

Str(min.) =

“4)
Speed(km/hr) = Distanceofroute x 60 / Str (@)

B. DEFINITIONS OF TRAFFIC STATE AND VARIABLE

Naturally, traffic monitoring data are nonlinear and the day-
time and nighttime traffic speed patterns vary (see Figure 1).
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FIGURE 1. Traffic speed in link 1 on January 24, 2019.
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FIGURE 2. lllustration of traffic state.

Therefore, this study used the aforementioned dataset to
examine the data from the morning (7:00 - 10:00) and evening
(16:30 - 19:30) rush hours from link 1 to link 5, which are near
the urban area of North Taiwan. This study intends to identify
the bottlenecks and provide probability of traffic congestion
to facilitate optimal vehicle route planning. Therefore, this
study referenced a previous study [18] and set the traffic
speed of 80 km/h (50 mph) as the threshold. The traffic was
considered congested when speed dropped below 80 km/h for
ten minutes, and the congestion was considered ended when
the vehicle was in motion at a speed up to 80 km/h.
Additionally, a binary variable was utilized to define the
traffic state: if a specific link of the freeway during an interval
was congested, the traffic state was denoted as 1, otherwise
it was 0. This study evaluated the traffic conditions in these
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TABLE 2. One-step transition matrix of southbound rush hour during A.M. rush-hour for line 1-5.

X(@) 1 5 9 13 17 19 25 26 27 28 29 30 31
1 0.92 0.5 0.11 0.17 0.3 0.330 0 0 0 0 0 0 0
5 0 0.5 0 0 0.04 0 0 0 0 0 0 0 0
9 0.05 0 0.83 0.5 0 0 0.09 0 0.08 0 0 0 0
13 0 0 0.01 0.17 0 0 0 0 0 0 0.02 0 0
17 0.01 0 0 0 0.57 0.33 0.02 0 0 0 0 0 0
19 0 0 0 0 0.04 0.33 0 0 0 0 0 0 0
25 0.01 0 0.05 0 0.04 0 0.84 1 0.15 0 0.2 0.5 0.08
26 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0.17 0 0 0.01 0 0.54 0 0 0 0.15
28 0 0 0 0 0 0 0 0 0.08 0.67 0 0 0
29 0 0 0 0 0 0 0.04 0 0.08 0 0.73 0 0.23
30 0 0 0 0 0 0 0 0 0 0.33 0 0.5 0
31 0 0 0 0 0 0 0 0 0.08 0 0.06 0 0.54
I 0.47 0 0.26 0 0.02 0 0.19 0 0.01 0 0.04 0 0.01
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FIGURE 3. Three-dimensional view of the transition probability matrix.

five links. Thus, 32 traffic states are derived and presented in
Figure 2.

C. ASSESSMENT OF THE TRANSITION

PROBABILITY MATRIX

Using the defined traffic states, the congestion occurrences
in these five southbound and northbound links during the
morning and evening rush hours can be counted and the
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associated one-step transition matrices can be computed. For
brevity, only portions of the southbound links in the morning
peak period are shown in Table 2. In this study, the transition
probability matrix displays the likelihood that a future state
will follow the current state in the next five minutes. There is
a diagonal probability trend in the matrix. The diagonal trend
(inclination) indicates that the traffic state is likely to remain
in the same or adjoining state. A higher probability indicates
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TABLE 3. Steady-state probability.

Southbound Northbound
State AM PM AM PM
1 0.47 0.86 0.96 0.43
2 0 0 0 0
3 0 0 0 0.01
4 0 0 0 0
5 0 0 0 0.01
6 0 0 0 0
7 0 0 0 0.02
8 0 0 0 0
9 0.26 0.10 0.01 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0.01
14 0 0 0 0
15 0 0 0 0.01
16 0 0 0 0
17 0.02 0.03 0.03 0.05
18 0 0 0 0.04
19 0 0 0 0
20 0 0 0 0.01
21 0 0 0.01
22 0 0 0 0.01
23 0 0 0 0.03
24 0 0 0 0
25 0.19 0.01 0 0.06
26 0 0 0 0.01
27 0.01 0 0 0
28 0 0 0 0.03
29 0.04 0 0 0.10
30 0 0 0 0
31 0.01 0 0 0.15
32 0 0 0 0.01

that traffic is more likely to transition to that state if uncertain
disruptions occur. Additionally, steady-state probabilities can
be computed using Eq. (3), IT" = T1° - P". The steady-state
probabilities are calculated by using library of Python, and
whole results are shown in Table 3.

IV. RESULTS AND DISCUSSION
A. ONE-STEP TRANSITION PROBABILITY

In total, 7,640 data items, retrieved from the Min-
istry of Transportation and Communications website,
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were analyzed using the discrete-time Markov model.
As shown in Table 2 and Figure 3, the one-step transition
probability revealed the likelihood of a future state following
the current state. Referring to Table 3, state 1 has the highest
probability (0.92) to transit to the same state, which means
southbound traffic is in motion at speeds over 80 km/h in
links 1-5 when the initial traffic condition is non-congested
during the morning rush hour.

To highlight the traffic conditions during various time peri-
ods and in the different travel directions, this study utilized a
three-dimensional view to display the transition probability
matrix (see Figure 3). Figure 3 C indicates the number of
state evolution in the southbound route during the morn-
ing rush hours. It revealed that its traffic condition is more
complex than the northbound route during the same period.
Furthermore, the traffic states of the northbound route during
the afternoon peak hours and the southbound route during
the morning peak hours are more complex than the opposite
directions’ traffic states during the same periods.

B. STEADY-STATE PROBABILITY

For insight into the traffic conditions in specific links, this
study used the transition probability matrix to calculate
steady-state probability. As shown in Table 3, state 1 during
the various time periods and different travel directions all
have the highest steady-state probability (0.47, 0.86, 0.96,
and 0.43 respectively). The results imply that these traf-
fic conditions in links 1-5 are non-congested. Conversely,
state 17 in the southbound and northbound travel directions
has a lower steady-state probability (0.02, 0.03, 0.03, and
0.05 respectively), which means that link 1 experiences traffic
congestion rarely.

In the southbound direction, the steady-state probability
of state 9 is 0.26 and 0.10 during the morning and evening
rush hours respectively, while state 25 is 0.19 and 0.01 dur-
ing the morning and evening rush hours respectively. The
results indicate that southbound traffic breaks down easily in
link 2 regardless of the rush hours. In the northbound travel
direction, 16 transition states were found in the afternoon
rush hours, which indicates that the traffic condition is most
complex during the evening rush hours. However, traffic
congestion rarely occurs in links 1-5 in both travel directions,
because the steady-state probability of state 32 is very low
(0 and 0.01 respectively).

C. SUMMARY AND CONCLUSION

The purpose of this study was to provide logistics managers
a set of probabilities of freeway traffic conditions using
discrete-time Markov chains (DTMC), in which the traffic
state evolved in five-minute intervals. The study found that
the traffic condition of the freeway was contingent upon
the time period and travel direction. However, obtaining and
understanding reliable prediction of traffic conditions is cru-
cial for optimal transportation routes and vehicle capacity
utilization.
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As shown by the results of this study, congestion often
appears in the same freeway segments that are considered
traffic bottlenecks. To improve logistics performance, logis-
tics managers can adopt these results to formulate an appro-
priate travel scheme. However, there are existing strategies
to avoid traffic congestion, for example, selecting alternative
routes among various customers during rush hours, shipping
cargoes at night, and rearranging the visit sequence of vehi-
cles. Thus, these results combined with congestion avoidance
strategies can be the foundation of a sound and customized
travel plan.

The process of predicting probability of traffic condi-
tions can be extended to logistics and supply chain man-
agement. For empirical application, this process can be a
dynamic decision support system requiring access to data
from government websites. The prediction process will pro-
vide decision-makers with real-time information. However,
the results and findings of this paper are limited in scope
as they use partial traffic data from a segment of National
Freeway 3. Hence, our future research will utilize this pre-
diction process to investigate other freeway segments, and the
discrepancy in the probability of traffic congestion can be a
basis to determine the traffic bottlenecks.
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