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ABSTRACT Electrocardiogram (ECG) and phonocardiogram (PCG) signals reflect the electrical and
mechanical activities of the heart, respectively. Although studies have documented that some abnormalities
in ECG and PCG signals are associated with coronary artery disease (CAD), only few researches have
combined the two signals for automatic CAD detection. This paper aims to differentiate between CAD and
non-CAD groups using simultaneously collected ECG and PCG signals. To entirely exploit the underlying
information in these signals, a novel dual-input neural network that integrates the feature extraction and deep
learning methods is developed. First, the ECG and PCG features are extracted from multiple domains, and
the information gain ratio is used to select important features. On the other hand, the ECG signal and the
decomposed PCG signal (at four scales) are concatenated as a five-channel signal. Then, the selected features
and the five-channel signal are fed into the proposed network composed of a fully connected model and a
deep learning model. The results show that the classification performance of either feature extraction or deep
learning is insufficient when using only ECG or PCG signal, and combining the two signals improves the
performance. Further, when using the proposed network, the best result is obtained with accuracy, sensitivity,
specificity, and G-mean of 95.62%, 98.48%, 89.17%, and 93.69%, respectively. Comparisons with existing
studies demonstrate that the proposed network can effectively capture the combined information of ECG

and PCG signals for the recognition of CAD.

INDEX TERMS Deep learning, feature extraction, ECG, PCG, coronary artery disease, classification.

I. INTRODUCTION

Coronary artery disease (CAD) is a major type of cardio-
vascular diseases and a leading cause of death worldwide.
It is primarily caused by the accumulation of plaques along
the inner walls of coronary arteries, which reduces the blood
flow to the myocardium [1], [2]. Under severe conditions,
the ruptured plaques can completely occlude the arterial
lumen, eventually triggering an acute myocardial infarction.
At present, coronary angiography, the gold standard in the
clinical diagnosis of CAD, is an invasive technique that
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requires professional surgical procedures, considerable time,
and cost. Thus, it is not attractive as a screening method for
general medical conditions. Electrocardiogram (ECG) and
phonocardiogram (PCG) signals have valuable information
about the electrical and mechanical activities of the heart,
respectively. Studies have documented that in the resting
ECG signals of CAD patients, symptoms such as T-wave
inversion, ST-T abnormalities, left ventricular hypertrophy,
and premature ventricular contractions can be observed [3].
In the PCG signals of CAD patients, turbulent flow in
narrowed coronary arteries may produce weak murmurs in
diastolic heart sounds [4]. Thus, both ECG and PCG are
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promising tools for CAD screening, with advantages of sim-
ple operation, high efficiency, non-invasiveness, and low cost.

With the development of signal processing and machine
learning techniques, the automated analysis of ECG and PCG
signals has been increasingly investigated for the diagnosis
of cardiac diseases. A computer-aided system can capture
important information that may be overlooked by the subjec-
tive interpretation of the physicians. Conventional methods
focus on feature extraction and classification process, and
commonly used features are extracted from time [5], fre-
quency [6], nonlinear [7]-[9], and time-frequency [10]-[15]
domains. When useful features are obtained, the next step is
classification. Numerous classifiers have been employed thus
far, for example, k-nearest neighbours [11], Gaussian mix-
ture model [12], artificial neural network [16], [17], support
vector machine (SVM) [18], [19], and decision tree [8], [9].
In recent years, deep learning techniques based on the con-
volutional neural network (CNN) have become very popular.
Owing to its strong feature learning capabilities, CNN has
gained research interest in its application to the classification
of ECG and PCG signals [20]-[24]. CNN is a hierarchical
neural network whose convolutional layers alternate with
downsampling layers [25]. It primarily imitates the human
visual system and can effectively recognize the patterns in
visual objects. Compared with conventional methods, CNN
can detect hidden patterns from physiological signals without
any feature extraction and selection processes.

Researchers have attempted using various ECG or PCG
databases for the automatic detection of CAD. Among the
studies that use the ECG signal, a majority of the focus
is on conventional feature extraction and classification pro-
cess [8], [12], [15], [16], [18]. Moreover, Acharya et al. [20]
and Tan et al. [21] adopted the CNN model as a tool for
feature learning and attained improved performance using
the ECG signals of 47 subjects. The previously mentioned
studies have reported the effectiveness of ECG for diag-
nosis of CAD, however, they all use very small datasets
(less than or equal to 47 subjects). Considering significant
morphological differences in physiological signals among
different people, a small amount of data may lack diversity
and universality, which may easily lead to insufficient learn-
ing ability and poor generalization of the classifier model.
Hence, several studies attempted using comparatively larger
databases [26]-[28], and among them, Lee et al. [26]
achieved the highest classification accuracy of 90% using
the ECG signals of 193 subjects. The studies using the PCG
signal are based on traditional methods, and the obtained
results are not satisfactory [29]-[31]. Of these studies, Gau-
thier et al. [31] achieved the highest accuracy of 73.3% using
the PCG signals of 30 subjects. In fact, researches have
pointed out that using either the ECG or PCG signals to detect
CAD proves insufficient because signal abnormalities may be
absent in some patients [32], [33].

Additionally, current studies use either conventional meth-
ods or CNN technique to differentiate CAD from the
non-CAD group. Nevertheless, the deep learning features
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extracted from the signals focus on temporal and morpholog-
ical information, which may be inadequate to diagnose the
disease as features from other representational domains have
also been found to be useful [26], [27], [30]. If multi-domain
feature extraction can be combined with deep learning, suf-
ficient information can be provided for the classification
task, and better results are likely to be achieved. To the best
of our knowledge, there is no literature integrating the two
techniques for the identification of CAD at present.

Consider the complementarity between the ECG and PCG
signals in CAD detection, this paper uses simultaneously
collected ECG and PCG signals from 195 subjects. The
combined utilization of ECG and PCG signals can overcome
the disadvantages of using only one of the signals and thus
provide more evidence for an accurate diagnosis of CAD.
To classify the CAD and non-CAD classes, a novel dual-input
neural network architecture is developed using an ensemble
of feature extraction and deep learning. One input of the
network comprises the extracted and selected multi-domain
features from ECG (time, frequency, and time-frequency
domains) and PCG (time, frequency, entropy, energy, and
kurtosis domains) signals. The other input of the network is a
five-channel concatenation of the ECG signal and the PCG
signal decomposed into four scales. Inside the dual-input
neural network, a fully connected model and a deep learning
model are used to process the two inputs, and their outputs are
consolidated to predict the class label. The proposed network
takes advantages of both the traditional method and the deep
learning technique. Through the mutual complement between
the hand-crafted features and the deep learning features, more
underlying patterns within the signals can be recognized to
enhance the classification performance. The main contribu-
tions of this work are summarized below:

« Combined utilization of simultaneously collected ECG
and PCG signals.

o Development of a novel dual-input neural network
that integrates conventional feature extraction and deep
learning techniques.

« Extraction of multi-domain features from ECG and PCG
signals and design of a five-channel signal for the pro-
posed dual-input network.

o Achieving superior classification performance com-
pared with existing studies.

The remainder of this paper is organized as follows.
Section II separately describes the data acquisition, signal
preprocessing, feature extraction, feature selection, proposed
dual-input neural network, and performance evaluation meth-
ods. The feature selection result and classification result are
presented in Section III, and Section IV discusses the results.
Finally, Section V concludes this paper and gives some future
extensions.

Il. MATERIALS AND METHODS

A. DATA ACQUISITION

The study received full approval from the Institu-
tional Review Board of Shandong Provincial Qianfoshan
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TABLE 1. Basic characteristics of CAD patients and non-CAD subjects.

Characteristic CAD Non-CAD
Age 62+ 10 56 £ 7
Male/female 89/46 26/34
Height 166 + 8 166 £ 8
Weight 714+11 64+9
Body mass index 26 +4 23+3
Heart rate 67+ 8 68 +7
Systolic blood pressure 133+16 116 +17
Diastolic blood pressure 82 4 12 72410

Values are expressed as male/female or mean =+
standard deviation.

Hospital, Jinan, China, and it was carried out under the
principles in the Declaration of Helsinki and its follow-
ing amendments. Before participation, all subjects provided
informed consent, and the patients who had undergone per-
cutaneous coronary intervention or coronary artery bypass
surgery were excluded. A cardiovascular function detec-
tion device (CVFD-II, Huiyironggong Technology Co., Ltd,
Jinan, China) was used to record the physiological signals.
During the measurement, the subjects were requested to lie in
a supine position in a quiet and temperature-controlled room
(25 £ 3°C). The standard lead-II ECG and PCG signals were
simultaneously recorded for 5 min at a sampling rate of 1 kHz.
The inclusion criteria were subjects who underwent coronary
angiography.

Subjects with at least one major coronary artery stenosis
> 50% were categorized into the CAD class and the others
into the non-CAD class. A total of 195 subjects enrolled
in the data collection, including 135 CAD patients and
60 non-CAD subjects (115 males and 80 females; age range:
42 ~ 86 years). The basic characteristics of all subjects are
given in Table 1.

B. SIGNAL PREPROCESSING

First, the ECG signals are denoised using a Butterworth filter
with a pass-band of 1 ~ 60 Hz, and the baseline wander is
removed. For the PCG signals, a high-pass Butterworth filter
(10 Hz) is applied to remove the low-frequency noise and
the baseline wander. Then, the power interference (50 Hz)
in the ECG and PCG signals is removed. To enlarge the
sample size for machine learning, each five-min recording
is cropped to 20 signals lasting 15 s. Consequently, a total
of 3,900 samples are generated, including 2,700 CAD and
1,200 non-CAD samples. Each signal is regularized with
z-score normalization before inputting it into the network.

C. FEATURE EXTRACTION
A total of 81 ECG and 154 PCG features are extracted from
multiple domains.

1) ECG FEATURE EXTRACTION
First, the R-peaks of the ECG signals are detected using
Afonso’s algorithm [34]. Based on the detected R-peaks,
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TABLE 2. Extracted time-domain features during a cardiac cycle of the
ECG signal.

Abbreviation Description

RR interval duration

The difference of successive RR intervals

The interval duration between P-peak and R-peak
The interval duration between R-peak and T-peak

RR_interval
DRR_interval
PR_interval
RT _interval

QS_interval The interval duration between Q-point and S-point

QT _interval The interval duration between Q-point and T-peak

R_peak The amplitude of R-peak

PQ_peak The amplitude ratio of P-peak to Q-point

PT_peak The amplitude ratio of P-peak to T-peak

TP_peak The amplitude ratio of T-peak to P-peak

TQ_peak The amplitude ratio of T-peak to Q-point

R_signal The average amplitude of the ECG signal in a 0.7-s
window around R-peak that contains the P-QRS-T
wave

SP_signal The average amplitude of the ECG signal between
S-point and P-peak that contains the ST-T segment

ST_bias The depression or elevation degree of ST segmen-

t [35]

the other characteristic points including P-peaks, Q-points,
S-points, and T-peaks are identified successively. Next,
the ECG features are extracted from the time, frequency,
and time-frequency domains. The details of the features are
described below.

(1) Time domain (62 features). The time interval and
amplitude features likely to be associated with CAD
are extracted from each cardiac cycle and listed
in Table 2. Then, the maximum, minimum, aver-
age, and standard deviation of these features are cal-
culated over all cycles of a signal segment, and
the heart rate is derived. Further, the maximum
(max_All_signal), minimum (min_All_signal), average
(avg_All_signal), variance (var_All_signal), and stan-
dard deviation (std_All_signal) of the amplitudes over
the entire signal are calculated.

(2) Frequency domain (5 features). Discrete Fourier trans-
form is used to obtain the frequency spectrum f; (i =
1,2,---,N) of the ECG signals. The average and
standard deviation of the spectrum are computed and
denoted as avg_Sp and std_Sp, respectively. On this
basis, three- and four-order statistics, i.e., skewness and
kurtosis, are calculated separately, which measure the
symmetry and “peakedness” degree of the spectrum
distribution. Further, the entropy of the spectrum is com-
puted. The three features are expressed as

>N (i — avg_Sp)?

Sp_skew = , 1
PSew N x std_Sp3 M
YN (i — avg_Sp)*
Sp_kur = == -3, 2
piur N x std_Sp* @
N

fi fi
Sp_entropy = — ——xlog——  (3)
A

(3) Time-frequency domain (14 features). Wavelet and
wavelet packet features are extracted from the ECG
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signals, respectively. First, in view of the reported cor-
relation between the fragmented QRS complex and
CAD [36], the discrete wavelet transform is employed
for the time-frequency analysis of the QRS complex.
The signal in a 0.3-s window around the R-peak
is decomposed into six scales using the db2 mother
wavelet. Then, the energy of the approximation coef-
ficients (Ea) at the fourth level is computed as E =
Z;'Lzl Ea(i)?, where L is the length of Ea. Similarly,
the energy of the detail coefficients at six scales is com-
puted and expressed as Eb; (k = 1 ~ 6). On this basis,
five wavelet features are obtained and shown below,
which represent the energy ratio of the coefficients in
different frequency bands. Their average and standard
deviation over all cycles are computed.

. Ebg

Wd_ratiol = — @)
Zk:l Eby
Eby + EDb

Wd_ratio2 = #, 5)
Zk:l Eby
Eb

Wd_ratio3 = ?4, (6)
Eb

Wd_ratio4d = 75 @)
Eb

Wd_ratio5 = ?6. (8)

Wavelet packet analysis is an extension of the wavelet
transform and offers a rich signal analysis [37]. Using
the db4 mother wavelet, the entire ECG signal is decom-
posed into four scales, and the coefficients of 16 nodes
at the fourth level of the wavelet packet tree are recon-
structed. Then, the energy of each reconstructed vector
is computed as Ex (k = 1 ~ 16), and the total energy,
wavelet energy entropy, and energy ratios are derived as

16
Wp_energy = ZEk, 9
k=1
16
E; E;
Wp_entropy = — Z 16l * log 16l , (10)
i1 2k=1Ek k=1Ek
. E,
Wp_ratiol = ——, (11)
Wp_energy
. Ey
Wp_ratio2 = ———. 12)
Wp_energy

2) PCG FEATURE EXTRACTION

During each cardiac cycle, the PCG signal is segmented into
four states: S1, systole, S2, and diastole, using the algorithm
proposed by Springer et al. [38]. Then, referring to the liter-
ature on the recognition of abnormal PCG signals [39], [40],
the time, frequency, entropy, energy, and kurtosis features
are extracted from each cardiac cycle, as described below.
In addition to the spectrum features, the mean and standard
deviation of the other features are computed over all cycles.
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TABLE 3. Extracted time-domain features during a cardiac cycle of the
PCG signal.

Abbreviation Description

CC The cardiac cycle duration
IntS1 The S1 interval duration
IntS2 The S2 interval duration
IntSys The systole interval duration
IntDia The diastole interval duration

Ratio_SysCC  The ratio of systole interval to the cardiac cycle

duration

Ratio_DiaCC The ratio of diastole interval to the cardiac cycle

duration
Ratio_SysDia  The ratio of systole interval to the diastole interval
Amp_SysS1 The ratio of average amplitude during systole to that
during S1

Amp_DiaS2 The ratio of average amplitude during diastole to that

during S2

TABLE 4. Extracted frequency-domain features during a cardiac cycle of
the PCG signal.

Abbreviation Description

Spectrum_S1 The spectrum value of S1 at frequency of 20 Hz, 30
(20 ~ 130 Hz) Hz, - - -, 130 Hz respectively

Spectrum_S2 The spectrum value of S2 at frequency of 20 Hz, 30
(20 ~ 130 Hz) Hz, - - -, 130 Hz respectively

Spectrum_Sys The spectrum value of systole at frequency of 20 Hz,
(20 ~ 300 Hz) 30 Hz, - - -, 300 Hz respectively

Spectrum_Dia The spectrum value of diastole at frequency of 20
(20 ~ 300 Hz) Hz, 30 Hz, - - -, 300 Hz respectively

HF_S1 The proportion of high-frequency component in the

total spectrum of S1

HF_Sys The proportion of high-frequency component in the

total spectrum of systole

HF_S2 The proportion of high-frequency component in the

total spectrum of S2

HF_Dia The proportion of high-frequency component in the

total spectrum of diastole

LF_S1 The proportion of low-frequency component in the

total spectrum of S1

LF_Sys The proportion of low-frequency component in the

total spectrum of systole

LF_S2 The proportion of low-frequency component in the

total spectrum of S2

LF_Dia The proportion of low-frequency component in the

total spectrum of diastole

(1

2)

3)

Time domain (20 features). The interval durations, dura-
tion ratios, and average amplitude ratios are calculated,
and the details are given in Table 3.

Frequency domain (98 features). Using the discrete
Fourier transform, the spectrum and spectrum ratio fea-
tures are extracted and listed in Table 4. First, the spec-
trum values of S1, systole, S2, and diastole states are
computed at different frequencies with a 10 Hz interval.
Their mean values are then calculated over all cycles.
Moreover, the proportions of the high-frequency (above
200 Hz) and the low-frequency (below 50 Hz) compo-
nents in the spectrums of the four states are obtained
separately.

Energy domain (20 features). The energy ratio is inves-
tigated between two segmented states, and it is defined
as

Energy_ratio = (13)
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TABLE 5. Extracted energy-domain features during a cardiac cycle of the
PCG signal.

Abbreviation Description

Energy_S1ToSys
Energy_S1ToDia
Energy_S2ToSys
Energy_S2ToDia
Energy_DiaToSys
Energy_S1Total
Energy_SysTotal

The energy ratio of S1 to systole

The energy ratio of S1 to diastole

The energy ratio of S2 to systole

The energy ratio of S2 to diastole

The energy ratio of diastole to systole

The energy ratio of S1 to the total cardiac cycle
The energy ratio of systole to the total cardiac
cycle

The energy ratio of S2 to the total cardiac cycle
The energy ratio of diastole to the total cardiac
cycle

The energy ratio of S1 and S2 to the total cardiac
cycle

Energy_S2Total
Energy_DiaTotal

Energy_HsTotal

TABLE 6. Extracted entropy- and kurtosis-domain features during a
cardiac cycle of the PCG signal.

Abbreviation ~ Description

SE_Sys The sample entropy of systole
rFE_Sys The refined fuzzy entropy of systole
SE_Dia The sample entropy of diastole
rFE_Dia The refined fuzzy entropy of diastole
S1_kur The kurtosis of S1

Sys_kur The kurtosis of systole

S2_kur The kurtosis of S2

Dia_kur The kurtosis of diastole

where M and N denote the lengths of the time series s;
and ¢;, respectively. The details are described in Table 5.

(4) Entropy domain (8 features). Entropy measures the com-
plexity of the time series from the viewpoint of cardiac
dynamics. In addition to the commonly used sample
entropy [41], a refined fuzzy entropy [42] is applied to
the systole and diastole states, which replaces the con-
ventional Gaussian function with the piecewise fuzzy
membership function. The details are given in Table 6.

(5) Kurtosis domain (8 features). The kurtosis of the S1,
systole, S2, and diastole states are computed and the
details are described in Table 6.

D. FEATURE SELECTION

Before feeding the extracted features into the proposed net-
work, IGR [43] is used for feature selection, which helps
reduce feature dimension and enhance classification perfor-
mance. IGR overcomes the drawback of the information gain
when dealing with attributes with a large number of distinct
values. A feature with a larger IGR value is considered to
make a higher contribution to the classification. The compu-
tation of IGR is based on the information gain and the split
information, as shown below

Entropy(S) = Y —pixlogpi, (14)
ieClasses
. Sy ]
Gain(S, A) = Entropy(S)— Z |T * Entropy(S,),
veValues(A)
(15)
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S S
Splitlnfo(S, A) = — > 'SV| * log 'S—”| (16)
veValues(A) | | | |
Gain(S, A)
IGR(S, A) = (17)

SplitInfo(S, A)’

where p; is the probability of records belonging in class i, and
S, denotes the collection of records in class label S whose
value is v for a feature A.

In this study, a large number of spectrum features at differ-
ent frequencies are extracted from the PCG signals. In fact,
there is a considerable redundancy and correlation among
them, and it is difficult to obtain a good performance by
directly inputting these values into the learning model. Con-
sequently, in each state of S1, systole, S2, and diastole, only
one feature with the largest IGR is selected and a total of four
mean spectrum value features are retained. Then, these four
features and the remaining 72 PCG features are combined
with the 81 ECG features into one set of 157 features. Based
on the IGR values calculated from the entire dataset, these
features are ranked in a descending order. The number of
highly ranked features that should be selected depends on the
performance of five-fold cross validation.

E. PROPOSED DUAL-INPUT NEURAL NETWORK

In this paper, we present a new dual-input neural network
using an ensemble of feature extraction and deep learning to
classify the CAD and non-CAD classes. A graphical descrip-
tion of the network architecture is provided in Fig. 1.

The network consists of a fully connected model and a deep
learning model. It has two inputs: the selected multi-domain
ECG and PCG features, and a five-channel signal obtained
from the ECG and the decomposed PCG signals. A two-
layer fully connected model with 32 and 64 neurons is used
to classify the selected features, which provides a nonlinear
transformation function f(-) that maps the input x to the
output y. The transformation is expressed as

y = f(wx + b), (18)

where w and b represent the weight matrix and bias vector
separately. On the other hand, for the PCG signal, the frequen-
cies of S1, S2, and heart murmurs (in systole and diastole)
are about 50 ~ 100, 50 ~ 200, and 120 ~ 660 Hz,
respectively. In the case of coronary stenosis, there may be
an increase in the high-frequency components [4]. Owing
to a wide frequency distribution, the PCG signal is decom-
posed into four scales using the db6 mother wavelet for the
time-frequency analysis. Then, the ECG signal and the PCG
signal decomposed into four scales are concatenated into a
five-channel signal as the input for the deep learning model.

The deep learning model consists of two components: the
CNN and a bidirectional gated recurrent unit (GRU) with the
attention mechanism. The detailed configurations are listed
in Table 7. A leaky rectifier linear unit [45] is used as the
activation function for all layers. The CNN is used as an
automatic feature extractor, and it comprises ten identical
convolutional blocks, each of which has three end-to-end
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ECG signal

A >

Five-channel signal

Dual-input neural network architecture

: Fully connected model
|
|

=
! |
PCG signal Deep learning model : e I
> 4-\.&_/\__—4_/\__ I
' |
Four-scale wavelet | Y = Ho CNN ' y |
decomposition b "I % . : : -
| + | Non-CAD!
| | e d
| Bidirectional GRU :
: with the attention — |
I mechanism :
! |

FIGURE 1. Architecture of the dual-input neural network composed of a fully connected model and a deep learning model.

TABLE 7. Configurations of the deep learning model composed of the CNN and a bidirectional GRU with the attention mechanism.

Layers  Type Output shape  Kernel size  Stride  Dropout
1 Convolutional layer 15000 x 32 16 1 -
2 Convolutional layer 15000 x 32 16 1 -
3 Convolutional layer 7500 x 32 64 2 0.2
31 Bidirectional GRU 15 x 24 - - 0.2
32 Attention mechanism 24 - - -

To avoid repetition, only the configurations of three layers in the first convolutional
block are presented. The structure of the remaining convolutional blocks is the same

as that of the first one.

convolutional layers. The convolutional layers use convolu-
tion instead of multiplication in the fully connected layers,
which is defined as

i = kijxxi+by)

ieM

19)

where M denotes the filter size, i is the size of the input
feature maps, j is the size of convolution kernels, and k;; is
the convolution kernel for the i-th input and the j-th out-
put. The output of the convolutional layers is referred to
as feature maps. As seen in Table 7, in each convolutional
block, the strides of the first two layers are set as the default
parameter 1, and the stride of the third layer is set as 2. The
increase in the stride can down-sample the feature maps to
minimize overfitting and improve learning speed. Further,
the dropout with a probability of 0.2 is used to reduce the
generalization error.

A bidirectional GRU with the attention mechanism follows
the CNN to process the feature sequences learned by the con-
volutional layers. The GRU is a variant of the recurrent neural
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network, suitable for processing the time series [46]. It solves
the vanishing gradient problem and preserves long-distance
memory. There are two gates, a reset gate r, and an update
gate z; in the GRU structure, which together control the
update of information. The bidirectional GRU merges the
representations of a forward and a backwarg GRU to identify
more patterns. At time ¢, the hidden state 4 , of the forward
GRU is computed as

— — =

htz(l_Zt)ht—l+—Z)thtv (20)
— - —

_Z>t IU(WZ)Ct'F Uzht—l)7 (21)

= = —

ho=ah (Wo+ U(F0h ), @

- —
7 —U(Wrxt+ Urhz—l), (23)

. — . .
v_vPere x; is the sequence vector, & ;_j is the previous state,

h ; is the candidate state, o is a logistic sigmoid function,
and © denotes an element-wise multiplication. Similarly,
the hidden state £ ; of the backward GRU is computed, and
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finally, the hidden state 4; of the bidirectional GRU is

Ve
h=| <" |. 24
' |:<h—l:| (24)

The attention mechanism [47] is then added to assign dif-
ferent importance weights to each element of the bidirec-
tional GRU output. The mechanism emphasizes the important
elements that can distinguish CAD from non-CAD class,
and thus, it helps boost the classification performance. The
weight o, is derived through a softmax function, and the
output vector of the attention mechanism is computed by
c=Y,oh.

At the end of the network, the outputs of the fully con-
nected model and the deep learning model are consolidated,
and a sigmoid layer transforms the real values into prediction
probability, which is expressed as

o; = wx; + b, (25)

1
= 26
Pi 1+ exp(—oy) (26)

where x; is the i-th output and p; denotes the output of the
nonlinear activation function.

F. CROSS VALIDATION AND PERFORMANCE EVALUATION
Five-fold cross validation is performed in this work. First,
the 5 min ECG and PCG recordings of all subjects are divided
into five parts by stratified sampling. Subsequently, in each
part, every 5 min recording is cut into twenty 15 s segments.
Four out of the five parts are used as the training set, and
the rest is used as the validation set. This way, the signal
segments for the training and validation phases are assured
to come from totally different subjects, thereby making the
evaluation more realistic. Then, five iterations are conducted,
and the final classification result is the average of five cross
validations.

In order to evaluate the classification performance,
the standard metrics, including accuracy (Acc), sensitivity
(Sen), and specificity (Spe), are used in this study. Further-
more, considering the class imbalance in the data, G-mean is
used as well, which measures the balanced performance of a
learning model between the CAD and non-CAD classes. The
equations associated with these metrics are calculated as

TP+ TN
Acc = , 27
TP+ TN + FP + FN
TP
Sen = ——, (28)
TP + FN
Spe = N (29)
Pe = IN ¥ FP’

G — mean = /Sen x Spe, (30)

where TP, TN, FP, and FN stand for the number of the true
positives, true negatives, false positives, and false negatives,
respectively.
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FIGURE 2. Variation in the accuracy and G-mean with an increase in
feature dimension: (a) Accuracy; (b) G-mean. (The scatters indicate the
true values, and the curve is the fitting of the scatters.)

Ill. RESULTS

In our experiment, feature extraction was implemented in
Matlab R2016b, and machine learning was performed using
Python 3.5. The deep learning codes were executed on Keras
framework with a Tensorflow backend using an NVIDIA
GeForce GTX 1080Ti GPU. The proposed method was per-
formed on a PC with 3.70 GHz Intel Core i7 CPU, 16 GB
RAM and a windows 10 operating system. The results of the
feature selection, feature classification, deep learning classi-
fication, and dual-input network classification are analyzed
in the following subsections.

A. RESULTS OF FEATURE SELECTION AND
CLASSIFICATION

1) RESULTS OF FEATURE SELECTION

The variations in the overall metrics accuracy and G-mean
caused by an increase in the dimension of the input features
are shown in Fig. 2, and the fully connected model is used
for cross validation. The scatters indicate the true values
of the metrics. To clearly observe the change in the trend,
a Gaussian function is used for curve fitting the scatters.
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FIGURE 3. Contributions of ECG and PCG features from different domains.

The fitting curves indicate that, with an increase in feature
dimension, both the accuracy and G-mean increase first and
then decrease, and they reach the maximum value when
the feature dimension is 92. Consequently, 92 features from
the ECG and PCG signals are selected and used for the
classification.

To further determine the feature domains that contribute to
the classification, the ratio between the number of selected
features and original features is computed for each domain,
as shown in Fig. 3. The ECG features from the time-frequency
domain contribute the most, followed by the time domain
ECG features. Furthermore, the energy, entropy, and fre-
quency domain PCG features also play a positive role in
the classification. In contrast with these features, the con-
tribution of the time domain PCG features is relatively
small.

According to the IGR values, the top 22 features are listed
in Table 8 to illustrate the features that are most useful in
the detection of CAD. Among them, there are 11 ECG and
11 PCG features. The wavelet packet and wavelet features of
the ECG signals rank in the top five, indicating their impor-
tance in the classification. Then, the amplitude ratio, energy,
and spectrum features of the PCG signals rank from the sixth
to fifteenth, and the energy features account for a majority of
them. In addition to the above features, the amplitude ECG
features also show their significance in the identification of
CAD.

2) CLASSIFICATION PERFORMANCE BEFORE AND AFTER
FEATURE SELECTION

Table 9 shows the classification results of the extracted ECG
and PCG features and the selected feature set, as well as
the significance test results (p-value) between their accu-
racies. In the classification of the CAD and non-CAD
groups, the extracted ECG features perform better than the
PCG features, and they achieve an accuracy of 88.41%.
Then, by simply combining all ECG and PCG features,
the accuracy is improved by 1.87% compared to that of
the ECG features. After feature selection, the classification

146464

TABLE 8. The IGR ranking of the selected ECG and PCG features.
(max/min/avg/std_abbreviation denotes the
maximum/minimum/average/standard deviation of the ECG features,
respectively. m/std_abbreviation denotes the the mean/standard
deviation of the PCG features.)

No.  Feature IGR

1 Wp_entropy 0.2904
2 Wp_ratiol 0.2894
3 Wp_ratio2 0.2889
4 avg_Wd_ratiol 0.2441
5 avg_Wd_ratio2 0.2416
6 m_Amp_SysS1 0.2411
7 sd_Energy_HsTotal 0.2408
8 m_Energy_HsTotal 0.2401
9 m_Energy_S1ToSys 0.2239
10 m_Energy_SysTotal 0.2115
11 sd_Energy_SysTotal 0.2093
12 sd_Amp_SysS1 0.1975
13 sd_Energy_S1Total 0.1961
14 m_Energy_DiaTotal 0.1948
15 m_Spectrum_Sys (40Hz)  0.1934
16 max_All_signal 0.1889
17 min_R_signal 0.1873
18 m_Energy_S1ToDia 0.1822
19 avg_R_signal 0.1804
20 max_TP_peak 0.1784
21 std_Wd_ratiol 0.1764
22 std_Wd_ratio2 0.1764

The bold text indicates the ECG features.

performance is further improved, and an accuracy of 91.0%
is obtained.

B. CLASSIFICATION RESULTS OF DEEP LEARNING MODEL
AND DUAL-INPUT NEURAL NETWORK

First, the ECG, PCG, decomposed PCG, and five-channel
signals are fed into the deep learning model, respectively.
Among them, the ECG and PCG are both one-channel sig-
nals; the PCG signal decomposed into four scales is con-
catenated into a four-channel signal; the five-channel sig-
nal is the concatenation of the ECG signal and the decom-
posed PCG signal. Then, the selected features and the
five-channel signal are fed into the proposed neural net-
work. Table 10 presents the classification results of the
deep learning model and the proposed network, as well
as the significance test results (p-value) between their
accuracies.

In the results of the deep learning model, although the
classification performance of the ECG signal is better than
that of the PCG signal, the overall results are not satisfac-
tory. By decomposing the PCG signal into four frequency
bands, the performance is better than that of the original
PCG signal. After the ECG signal and the decomposed PCG
signal are concatenated into a five-channel signal, there is an
improvement in the performance. On this basis, the classifica-
tion performance is further boosted by the proposed network
using both the selected features and the five-channel signal
as inputs. Simultaneously, the accuracy reaches 95.62%, and
the sensitivity is as high as 98.48%, which exceeds the per-
formance of either the fully connected model or the deep
learning model.
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TABLE 9. Classification results of the extracted and selected features using the fully connected model.

Features Acc (%) Sen (%) Spe (%) G-mean (%) p-value
ECG features (81) 88.41+4.69 89.63+5.86 85.67+4.02 87.58+4.18 0.36
PCG features (154) 80.23 +2.15 85.194+2.84 69.08+6.81 76.58+3.44 0.00
ECG & PCG features (235) 90.28 +3.25 91.74+£3.76 87.00+4.04 89.31£+3.21 0.69
Selected features (92) 91.00 £ 2.23 92.48+3.01 87.67+£2.03 90.03+1.88 1.00

! The feature dimension is indicated in parenthesis.

2 The p-value indicates the significance test result between the accuracies of the extracted features and selected

features.
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FIGURE 4. Illustration of the ECG and PCG signals of two typical CAD

patients: (a) A CAD patient with abnormal ECG and normal PCG; (b) A CAD
patient with normal ECG and abnormal PCG.

IV. DISCUSSION

Clinically, it is very difficult to identify CAD using only
ECG or PCG signal. Fig. 4 illustrates the ECG and PCG
signals of two CAD patients with considerably typical symp-
toms. As seen in Fig. 4 (a), the ECG signal of the patient
shows the abnormality of the T-wave inversion. However,
there are no obvious abnormal heart murmurs in the PCG
signal. The symptoms of the patient in Fig. 4 (b) are the
opposite. The ECG signal appears normal, while there is a
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significant increase in the heart murmurs of the PCG signal.
In general, the clinical conditions of the CAD patients are far
more complicated than those described above. In some cases,
the variations in the ECG and PCG signals caused by the
coronary stenosis are very subtle and inconspicuous. Thus,
computer-aided diagnosis using combined ECG and PCG is
essential, which provides a more reliable basis for accurately
detecting CAD.

Tables 9 and 10 indicate that the classification performance
of feature extraction or deep learning when using the combi-
nation of the two signals exceeds that when using only ECG
or PCG signal. The results imply that the simultaneous use of
ECG and PCG signals is more promising for assisting clinical
CAD diagnosis. To the best of our knowledge, no similar
studies have been applied to the diagnosis of CAD so far.
One research on myocardial infraction detection used the
combination of ECG, PCG, and clinical data [48]. The results
of that study are consistent with those in this study: neither
clinical data nor ECG nor PCG alone were sufficient for
detecting the disease, and using multimodal features could
improve the performance.

In practice, to capture more hidden information from the
signals, as many features as possible are extracted. However,
in the classification stage, not all these features are useful and
there is some redundancy among them. Hence, feature selec-
tion is necessary to reduce the feature dimension. As seen
in Fig. 3, among the selected ECG features, the wavelet
packet and wavelet features from the time-frequency domain
are the most important for the classification. Similarly, sev-
eral studies used the wavelet decomposition [11], [49] and
wavelet packet decomposition [50] for the ECG signals,
and the extracted features also performed well in identify-
ing CAD. Among the extracted PCG features, the energy,
entropy, and frequency domain features indicate their impor-
tance in classification. The result is consistent with the study
of Tang et al. [40], who used multi-domain features for the
detection of abnormal PCG recordings.

To better understand the feature learning process of the
CNN, the first seven-channel outputs of ten convolutional
blocks are analyzed visually when using the ECG signal as
the input. As depicted in Fig. 5, the feature maps of the
convolutional blocks 1 ~ 6 appear to approximate the pat-
terns associated with the original ECG signal. Nevertheless,
as the convolutional layer deepens to blocks 7 ~ 10, the fea-
ture maps become increasingly abstract and less visually

146465



IEEE Access

H. Li et al.: Dual-Input Neural Network Integrating Feature Extraction and Deep Learning

TABLE 10. Classification results of the deep learning model and the dual-input neural network.

Model Input Acc (%) Sen (%) Spe (%) G-mean (%) p-value
Deep learning ECG signal 84.59 +6.45 88.67 £4.70 75.42+11.32 81.63+£8.21 0.01
Deep learning PCG signal 71.95+£7.16 77.30+£11.59 59.92+11.77 67.28£6.54 0.00
Deep learning Decomposed PCG signal 81.44+3.35 90.15+4.78 61.83 +£12.50 74.13+6.74 0.00
Deep learning Five-channel signal 91.82+1.68 93.15+2.32 88.83 + 7.56 90.84 +3.29  0.00
Proposed network  Selected features & five-channel signal ~ 95.62 +£0.99  98.48 £ 1.22 89.17 + 3.11 93.69£1.51 1.00

The p-value indicates the significance test result between the accuracies of the deep learning model and proposed network.
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FIGURE 5. Visualization of feature learning process of the CNN using the ECG signal as the input.

interpretable. At this stage, the local patterns are learned and
the outputs represent high-level concepts [51]. Higher-level
representations carry less information about the visual con-
tents of the original signal and more information related to
the category.

Through the above visualization of feature maps, it is worth
noting that the features learned by the CNN are primarily tem-
poral patterns constituting structural elements that form dis-
criminative representations for classification [24]. Although
the CNN method proves to be effective in the classification
of ECG or PCG signals [20]-[23], it may be challenging to
learn all the features related to the disease, especially those
features from frequency domain, time-frequency domain,
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entropy domain, and so on, when using the original signals as
input. In this study, among the hand-crafted features, the time-
frequency domain contributes the most for the ECG signal,
and the energy and entropy domain contribute the most for
the PCG signal. Furthermore, on comparing Tables 9 and 10,
we find that the performance of the ECG or PCG features
obtained by the fully connected model is better than that of
the ECG or PCG signal obtained by the deep learning model.
This implies that the CNN learns temporal and waveform
information from the signals, however, it can hardly capture
the information from other representational domains that play
a very important role in the classification. Consequently,
merging the feature extraction with deep learning can provide
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TABLE 11. Summary of the existing studies on the diagnosis of CAD using ECG or PCG signals.

Author Database Feature & Classifier Result (%)

Lee et al. [26] ECG signal Time, frequency, and nonlinear features Acc=90.0
(2007) (193 subjects: 99 CAD & 94 normal) SVM, Naive Bayes, multiple association rules, decision tree  —

Kaveh & Chung [27] ECG signal Time and frequency features Acc=88.0
(2013) (89 subjects: 43 CAD & 46 normal) SVM Sen=84.2
Spe=92.6
Deng et al. [28] ECG signal Cardiodynamicsgram Acc=84.6
(2017) (421 subjects: 347 CAD & 74 normal) Priori threshold method Sen=84.7
Spe=83.7
Makaryus et al. [29] PCG signal Microbruit score Acc=61.5
(2013) (161 subjects: 19 CAD & 142 normal) Logistic regression Sen=89.5
Spe=57.7
Schmidt et al. [30] PCG signal Frequency and nonlinear features Acc=68.4
(2015) (133 subjects: 63 CAD & 70 normal) Quadratic discriminant function Sen=72.0
Spe=65.2
This paper ECG & PCG signals Time, frequency, and time-frequency features Acc=95.6
(195 subjects: 135 CAD & 60 non-CAD)  Energy, entropy, and kurtosis features Sen=98.5
Dual-input neural network Spe=89.2

richer and more diverse information for distinguishing the
CAD from non-CAD groups. In contrast with traditional
methods or CNN, the proposed dual-input neural network has
a higher representation ability, and thus, it can extract more
underlying features from the signals, thereby allowing better
identification of CAD patients.

Table 11 summarizes the existing studies that use a com-
paratively larger ECG or PCG database for CAD diagno-
sis. These studies are based on traditional feature extraction
and classification methods. Among them, Lee et al. [26]
used ECG features from the time, frequency, and nonlinear
domains and achieved the highest accuracy of 90%. Although
studies have reported the association between abnormal heart
murmurs and CAD [29], [30], the classification performance
of the PCG signal remains inferior to that of the ECG signal.
Concerning this study, we used the combination of ECG and
PCG signals from more subjects than in most other studies,
and we extracted features from six different domains that
could represent more potential patterns. A new network archi-
tecture was developed to classify the CAD and non-CAD
classes, and both the obtained accuracy and sensitivity were
found to be higher than those in the other studies. In clinical
diagnosis, a high sensitivity means that the patients can be
detected more accurately, which is of great practical signifi-
cance.

In addition to the above studies, several investigations
attempted single-channel CNN for the classification of ECG
or PCG signals [20], [21], [52]. Similar to the study of Potes
et al. [52], in this study, the PCG signal was decomposed into
four frequency bands for the time-frequency analysis rather
than using the original signal directly, which contributed to
mining more patterns. However, the novelty of this study was
that by concatenating the ECG and four sub-band PCG sig-
nals, we designed a five-channel signal as the input of CNN
instead of using the single-channel input. Multi-channel input
facilitated the simultaneous learning of the ECG and PCG
features. In the feature learning phase, the CNN could extract
not only the features of each channel signal but also the
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combined features between different channels. This helped
to capture more useful information.

V. CONCLUSION

In this work, a dual-input neural network structure was devel-
oped, and the ECG and PCG signals were used in combi-
nation for CAD diagnosis. The proposed network integrated
the traditional feature extraction and deep learning mod-
els to identify more underlying features inside the signals.
The experimental results showed that the proposed method
achieved a classification accuracy of 95.62% on the ECG
and PCG recordings cropped to 15 s, outperforming the
use of only the traditional method or deep learning tech-
nique. Further, these results exceeded those of existing studies
on CAD detection using the ECG or the PCG signal. Our
study suggests that the combined utilization of the ECG and
PCG signals, as well as the proposed network, is potentially
promising for noninvasive CAD detection.

However, it should be mentioned that the proposed method
requires a large amount of annotated data for supervised
learning, and some of the extracted features are of less use
to the classification. Besides, after feature selection, some
of remained features may be strongly correlated. Therefore,
in future work, signals from more subjects are necessary to
test the performance of the proposed method further. More-
over, we will pay attention to exploring more useful features
and investigating whether removing highly relevant features
can help improve classification performance.
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