
Received August 30, 2019, accepted September 18, 2019, date of publication September 23, 2019, date of current version October 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943194

An Effective Algorithm and Architecture for the
High-Throughput Lossless Compression of
High-Resolution Images
JAESHIN LEE1, JUWON YUN 1, JINYOUNG LEE1, IMJAE HWANG1, DUKKI HONG1,
YOUNGSIK KIM2, CHEONG GHIL KIM3, (Member, IEEE),
AND WOO-CHAN PARK 1, (Member, IEEE)
1Department of Computer Engineering, Sejong University, Seoul 05006, South Korea
2Department of Game and Multimedia Engineering, Korea Polytechnic University, Siheung 15073, South Korea
3Department of Computer Science, Namseoul University, Cheonan 31020, South Korea

Corresponding author: Woo-Chan Park (pwchan@sejong.ac.kr)

This work was supported in part by the Institute for Information and Communications Technology Promotion through the Korean
Government (MSIP) under Grant 2016-0-00204, in part by the Development of Mobile GPU Hardware for Photo-Realistic Realtime
Virtual Reality, in part by the National Research Foundation of Korea (NRF) Grant Funded by the Korean Government (MSIP) under
Grant 2019R1A2C1005163, and in part by the Computer Aided Design (CAD) tools funded by the IC Design Education Center (IDEC)
of South Korea.

ABSTRACT This paper proposes a high-throughput lossless image-compression algorithm based on
Golomb–Rice coding and its hardware architecture. The proposed solution increases compression ratios
(CRs) while preserving the throughput by taking advantage of a novel parallel variable-length sign
coding (PVSC) algorithm that reduces the sign bits to achieve a higher CR. In addition, the proposed
solution adopts and modifies the two existing compression algorithms to improve the overall compression
performance. The experimental results show that the proposed solution yields an average CR of 3.12, which
is higher than those achieved with the previous algorithms. The hardware implementation of the proposed
solution for an 8×8 block unit achieves a throughput of 18 GBps and 24 GBps when encoding and decoding,
respectively. This hardware performance is enough to handle 7680× 4320@240-Hz image processing.

INDEX TERMS Variable length coding, lossless image compression, DDPCM, Golomb-Rice coding, UHD.

I. INTRODUCTION
In recent years, high-definition (HD) images, such as full
HD (1920 × 1080), quad HD (QHD, 2560 × 1440), and
ultra HD (UHD, 3840 × 2160 or 7680 × 4320) have been
used in mobile devices, PCs, and TVs. To handle 4:2:0 YUV
images at 30 Hz, full HD requires a processing capability
of 93 MBps, QHD requires 166 MBps, and UHD requires
373 MBps or 1.5 GBps. These processing speeds increase to
3 GBps or 12GBps if the UHD scanning frequency is 240 Hz.
With the rapid improvement in image resolution in the latest
video systems, the bus bandwidth needed to refer to the
images stored in the frame buffer has increased dramatically.
In addition, the memory bandwidth requirement has become
one of the most concerning issues in binocular video appli-
cations such as virtual reality systems, as they require twice

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhamamd Aleem .

the throughput. Therefore, there have been many studies on
image-compression techniques to alleviate this problem.

Image-compression techniques are classified into two cate-
gories: lossy and lossless. The quantization in lossy methods
increases compression ratios (CRs) but data loss can occur.
Lossless compression methods have lower CRs than lossy
methods, but they allow the original data to be perfectly
reconstructed from the compressed data. As a result, this
lossless compression could be very suitable as a frame buffer
recompression algorithm that is applicable to liquid crys-
tal display (LCD) overdrive [40]. Here, data redundancy is
generally eliminated in the prediction stage, and the out-
come is compressed via entropy coding. The available pre-
diction methods are either spatial-based (e.g., CALIC [2],
LOCO [3], DPCM [4], etc.) or transform-based (e.g., wavelet
analysis [5]) in nature. The coding strategies commonly
used for entropy coding include Golomb–Rice coding and
Huffman coding [39].

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 138803

https://orcid.org/0000-0003-3962-6361
https://orcid.org/0000-0002-9249-2887
https://orcid.org/0000-0001-8342-5757


J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

To address the memory bandwidth problem in high-
resolution images without quality degeneration, a number of
lossless embedded compression (LEC) techniques have been
proposed [7], [8], [18], [23]–[38], [42]. However, the studies
in [8], [18] point out that the previous LEC schemes in [23],
[27]–[31], [34]–[36], [33]–[35] are not sufficient to handle
high-performance applications such as HD video sequences
in real time due to heavy data dependency, high hardware
complexity, and low throughput. The works in [7], [32]
achieve higher throughput by employing line-based algo-
rithms. In this approach, the images are displayed line by line
and non-power-of-two 3D textures are supported. According
to the findings in [37], block-based algorithms generally yield
better compression performance than line-based algorithms.

The studies in [8], [18], [36]–[38], [42], [43] increase
CRs by proposing block-based prediction algorithms or by
enhancing entropy coding algorithms. These studies also
implement hardware for high-resolution image processing.
In [36], [38], the implemented hardware can process 4-K
images with a high CR, but it is unable to process more than
3 pixels per cycle due to data-processing dependency. The
methods in [18], [37], [43] achieve highCRswhile processing
5.1 pixels/cycle, 10.7 pixels/cycle, and 10.67 pixels/cycle
when encoding and 14.2 pixels/cycle, 21.3 pixels/cycle and
10.67 pixels/cycle when decoding. In other words, they still
encounter the problem of data dependencies. During com-
pression or decompression, they take an N × N block shape
in a frame as a basic unit that cannot that cannot be applied
to non-power-of-two 3D textures.

In [8], our previous work and the base model to
be improved in this work, the differential–differential
pulse-coded modulation (DDPCM) prediction is performed
on various M × N blocks of the original image frame, and
prediction errors are encoded using Golomb–Rice coding.
The hardware architecture in [8] can perform massively par-
allel processing in the variable-length coding stage and in the
prediction stage. It achieves lossless pixel throughput by com-
pressing and decompressing blocks during every cycle with
6-12 times the performance improvement compared to the
comparative models [13], [26]–[29]. However, from the point
of CR, the model [8] still have the room for improvement.

In this paper, we propose a lossless compression solu-
tion (algorithms and architecture) that increases CRs while
offering the massively parallel pixel-processing architecture
suggested in [8]. For this purpose, following three techniques
are utilized:

• sign-bit field compression
• efficient use of spatial locality in image data
• flexibility in the use of k parameter

The first is to develop a new parallel variable-length sign
coding (PVSC) algorithm. The second and third are to adopt
and modify the previous compression solution, which shall
replace DDPCM with DPCM and adopt adaptive-k instead
of fixed-k , respectively. Kim et al. [8] scanned the first left
column pixels by vertical prediction method and the other

pixels using horizontal prediction method. We follow this
sequence in the same way.

The hardware architecture of the proposed algorithm
enables each sign bit to be coded in parallel, called PVSC,
thus allowing massively parallel processing. In addition,
the proposed architecture eliminates the pipeline latency that
can occur in variable-length sign decoding. In the exper-
iments with six full-HD benchmarks, the proposed solu-
tion yields an average data-reduction ratio of 70%. The
four-stage pipeline encoder and decoder implemented in the
55-nm fabrication process have a maximum clock frequency
of 370MHz and 286MHz and a gate count of 83K and 121K,
respectively. Due to the pipeline depth adjustment, logic opti-
mization, and the high-end manufacturing, this implementa-
tion achieves a throughput of 24 GBps, which is higher than
the hardware performance (13 GBps) reported in [8].

The proposed architecture has the following three charac-
teristics. First, it exceeds the throughput requirement (about
12 GBps) necessary to provide a high-end screen refresh
rate for 8-K images (e.g., 240 Hz). Second, its throughput
in relation to the hardware size is higher than that in [37]
by more than 1.8 times. Third, there is no tradeoff between
hardware performance and compression efficiency. Despite
improved hardware performance, the CR of the proposed
solution is as good as those reported in the latest literature
on lossless compression technologies.

The remainder of this paper is organized as follows.
Section II reviews the previous works related to the topic.
Section III introduces the proposed architecture for our paral-
lel algorithm and the packing and unpacking parallel scheme
of two variable-length coded data (unary and PVSC) with-
out individual length information. Section IV presents the
experimental results of algorithm and hardware performance.
Section V consists of the conclusion.

II. RELATED WORK
In many LEC methods, Golomb algorithms or Golomb–Rice
algorithms are used for entropy coding [8], [11], [12], [13],
[22], [32]. Golomb–Rice coding divides a positive integer (an
input value) into two parts: quotient q and remainder r. The
quotient is sent in unary coding. Unary coding represents a
natural number n, with n ones followed by a zero (a unique
terminating symbol). The remainder r is redefined in trun-
cated binary encoding as 2k . In [8], [13], [32], a fixed-k value
is used in Golomb–Rice coding.

As far as the authors are aware, the massive parallel pixel-
processing architecture for Golomb–Rice coding was first
proposed in [8]. This architecture consists of DDPCM and
Golomb–Rice encoding with a fixed-k (k = 2) value. The
original image frames are organized as M × N sub-window
arrays, to which DDPCM is applied, thereby producing
one seed and M × N − 1 pieces of differential data. The
Golomb–Rice algorithm then encodes the differential data
into a variable-length codeword. The study in [8] noted that
the position of a unique symbol in a variable-length code-
word gave an indication of the original data; based on this,

138804 VOLUME 7, 2019



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

FIGURE 1. Proposed hardware architecture: (a) compression and (b) decompression. The dotted-line boxes denote
newly proposed components, solid-line boxes denote legacy components, and ∗ indicates a parallel-processing
component.

hardware architecture for parallel encoding and decoding was
proposed. The experiments performed with 8 × 8 blocks
show that this architecture achieves fully parallel processing
of 64 pixels/cycle, but its CR is 1.52, which is rather low.

According to [37], a high-throughput hardware imple-
mentation for a variable-length coding algorithm is diffi-
cult to apply; therefore, its reference frame recompression
scheme uses semi-fixed length (SFL) or significant bit trun-
cation (SBT) algorithms that encode prediction errors in a
group with the same number of bits and store the fixed-length
data of each group. In [18], the hierarchical average and copy
prediction (HACP) algorithm that processes N ×N blocks at
L-levels is used to create prediction residuals, and the pre-
diction errors are entropy coded using SBT. Reference [37]
suggests that themulti-modeDPCMand averaging prediction
(MDA) algorithm for N × N blocks should combine the
advantages of DPCM scanning and averaging and uses SFL
for entropy coding. The compression algorithm in [18] has
parallelism of 5.1 pixels/cycle in compression and 14.2 pix-
els/cycle in decompression for the 16 × 8 block unit. The
algorithm in [37] yields parallelism of 10.7 pixels/cycle in
compression and 21.3 pixels/cycle in decompression for the
8 × 8 block unit. Although the algorithms in [18], [37] are

not fully parallel, they achieve a high CR of 2.2 and 2.49,
respectively.

III. PROPOSED ARCHITECTURE
This section describes the proposed algorithm and architec-
ture for the high-throughput lossless compression converting
the overall architecture, pipeline stages, PVSC, adaptive-k
parallel scheme of Golomb–Rice, and packing/unpacking
codeword scheme including two variable-length data.

A. ARCHITECTURE OVERVIEW
Figure 1 shows the proposed architecture. The solid-line
components are identical to those proposed in [8] and the
dotted-line components are the newly proposed parts pre-
sented in this paper. The seven dotted-line boxes in the
compressor and decompressor are classified into five groups:
1) DPCM/InvDPCM, 2) KSplitter, 3) SignENC/SignDEC,
4) ZeroDT, and 5) VLSplitter.

The DPCM/InvDPCM component, a replacement for the
previous DDPCM/InvDDPCM prediction algorithms in [8],
enables a slight increase in the CR. The KSplitter com-
ponent replaces the previous fixed-k (k = 2) algorithm
with a block-based adaptive-k algorithm in Golomb–Rice

VOLUME 7, 2019 138805



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

FIGURE 2. Pipeline stage: (a) encoder (b) decoder.

coding, compensating for the degradation in the CR related
to the fixed-k algorithm. The SignENC/SignDEC component
enables parallel processing by resolving the data-dependency
problem in the proposed PVSC algorithmwhich is a variable-
length algorithm. The ZeroDT component eliminates latency
that occurs in PVSC decoding. It accelerates a restoration
of the sign bits that are deleted during encoding. Finally,
the VLSplitter splits the unary code and PVSC code from the
packed data without requiring knowledge of their individual
lengths.

The pipeline architecture consists of four stages, as shown
in Figure 2. One stage is added to the compressor in [8]
to perform the proposed algorithm. The adaptive condition
of k and the shift amount (SA) are calculated in the added
stage. If a macro block is given to the compressor at time t0,
DPCM, adaptive condition/SA, and unary/sign encoding are
performed from time t1 to t3, respectively, and the codeword
is completed at time t4. One stage is also added to the
decompressor but alleviates the critical time path, unlike the
compressor. If the codeword is given to the decompressor at
time t0, the SA/quotient and two steps of inverse DPCM are
performed from time t1 to t3, respectively, and a macro block
is reconstructed at time t4.
The algorithm proposed for the decompressor is performed

in parallel at time t1 when the quotient is reconstructed
(see Figure 2). Inverse DPCM is separated into two stages.
We compute and store half of the mathematical opera-
tions in the first stage, and then calculate other half in the
half-result stored in the next step. This technique can be
applied to mathematical operations which don’t have feed-
back or branch path such as unary or DPCM in our algorithm.

We consider the tradeoff between area and performance and
decide to apply it to the inverse DPCM.

Our compressor and decompressor performed four cycles
because of the four-stage pipeline. There is no throughput
drop for [8] because the macroblock is compressed or decom-
pressed every cycle after the first pipeline latency.

The data-compression flow of the proposed architecture is
as follows. The DPCM component takes the pixel image data
of an M × N block to be compressed and produces residual
data for the M × N block by eliminating data redundancy.
The residual data are split into the first element (seed) that
is exempted from compression and the prediction error field
(consisting of (M × N )− 1 prediction errors) that is to be
compressed. The SignCONV component takes the predic-
tion error field and splits it into the sign field consisting of
(M × N ) − 1 sign bits and the magnitude field consisting
of (M × N ) − 1 magnitudes. The SignENC component
takes the sign field and produces variable-length sign data by
referring to the magnitude data (see Section 3.1). The Sig-
nENC component performs massively parallel bit processing
to achieve a throughput that is as high as that achieved using
the previous algorithms (see Section 3.2). The Golomb–Rice
encoder takes the magnitude field and produces a variable-
length codeword.

During Golomb–Rice encoding, the KSplitter finds the k
that is optimized for the code length (see Section 3.4) and
produces the remainder of (M × N − 1) × k bits. The
UnaryENC component performs the massively parallel pro-
cessing proposed in [8] for the magnitude field that is split
by k and produces a variable-length unary code. The pro-
duced variable-length unary code, seed, variable-length sign

138806 VOLUME 7, 2019



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

data, and (M×N−1)×k remainder bits are packed, creating
a final codeword (see Section 3.5).

The decoding flow of the proposed architecture, which is
the opposite of the encoding flow, is as follows. The com-
pressed variable-length codeword is unpacked and split into
the seed, remainder, and variable-length data. The VLSplitter
takes the variable-length data and divides it into the variable-
length sign code and the unary code. In the SignDEC com-
ponent, the variable-length sign code along with the sign bit
data that is partially restored in the ZeroDT using the unary
code (see Section 3.3) is restored to the sign field. At the
same time, the Golomb–Rice decoder restores the magnitude
field using the inputted unary code and the remainder. The
restored sign field and magnitude field are reconstructed into
the (M × N ) − 1 signed residuals. Finally, the InvDPCM
component generates the original data of an M × N block
with the signed residual data and the seed.

B. PROPOSED PVSC ALGORITHM
The Golomb–Rice coding widely used in existing LEC algo-
rithms is a positive integer-based compression technique.
To use Golomb–Rice coding, prediction errors are gener-
ally changed to positive numbers in the prediction stage via
mapping, as in JPEG-LS [1], [10], [12], [28], or via pre-
processing, as in FELICS [13], [32]. In [8], the sign field
after the prediction stage is stored without being compressed.
In this paper, the PVSC algorithm that compresses the sign
field is proposed.

The proposed PVSC algorithm is based on the fact that
the sign bits of +0 and −0 are redundant in signed mag-
nitude number representations. The proposed PVSC algo-
rithm concatenates the non-zero magnitude sign bits when
encoding. After passing through the PVSC encoding stage,
the zero-magnitude sign bits are removed, which con-
tributes to increasing the CRs. During decoding, the restored
zero-magnitude sign bits are automatically restored to zero,
and the non-zero magnitude sign bits are restored from the
inputted PVSC code.

Figure 3 shows an example of PVSC coding that exhibits
five prediction errors when k = 1. Figure 3 (a) illustrates
PVSC encoding. Among the prediction errors a0–a4, those
with both a zero quotient and a zero remainder are found.
This indicates that the prediction error is 0 and its sign bit
is unnecessary (removable). In Figure 3 (a), a1 and a3 have
both a zero quotient and a zero remainder, so their sign bits
can be removed. Therefore, the inputted sign bits ‘‘1, 0, 0, 0,
1’’ become ‘‘1, 0, 1’’ after passing through PVSC encoding.

Figure 3 (b) presents the decoding process. During PVSC
decoding, the prediction errors with both a zero quotient and a
zero remainder are found, and their sign bits are reconstructed
to 0. The sign bits of the other data are recovered from the
PVSC code. In Figure 3 (b), a1 and a3 satisfy zero detection
(i.e., the output of the zero-detection stage is ‘‘true’’), so their
sign bits are restored to 0. The sign bits of a0, a2, and a4 are
restored from the PVSC code ‘‘1,0,1’’ in a sequential manner.
Finally, the restored sign field is ‘‘1,0,0,0,1.’’

FIGURE 3. Example of sign bit coding: (a) encoding and (b) decoding.

FIGURE 4. PVSC processing flow: (a) conventional sequential processing
and (b) proposed parallel processing. (R#: Residual data, S#: Sign data,
M#: Magnitude data).

C. SignENC/SignDEC: PARALLEL ARCHITECTURE
FOR PVSC
The PVSC algorithm described in subsection 3 B either
deletes the unnecessary sign bits or reorders the remaining
sign bits using shifts during compression. This can be done
in a sequential manner, as shown in Figure 4 (a). During
sequential processing, concatenating the sign bit of each
residual with the previously encoded variable-length sign
code is repeated sequentially, which gives rise to long latency.

As represented in Figure 4 (b), this paper proposes
an architecture that enables the parallel processing of the

VOLUME 7, 2019 138807



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

FIGURE 5. Example of PVSC parallel processing: (a) SignENC and (b) SignDEC (o: inverter, +: adder, SBE: sign bit encoder, PVSC: parallel
variable-length sign coding, and SA: shift amount).

proposed PVSC algorithm. To provide parallelism dur-
ing compression, two different types of components are
introduced. A single SignDELPosition component pro-
duces bit position information simultaneously, and mul-
tiple SignBitEncoder (SBE) components perform the bit
encoding.

The SignDELPosition checks the magnitude field to deter-
mine whether each sign bit should be deleted or reordered
and calculates the corresponding SA and total sign bit length.
If a sign bit needs to be deleted, its SA becomes a fixed value
that is the field length (M × N ) − 1. If the sign bit needs to
be reordered, the SA is the sum of sign bits that have been
deleted up to the current bit position. Each SBE encodes the
1-bit sign data by shifting it as much as its SA and generates
(M × N ) − 1 length codes. If a SA is (M × N ) − 1, its sign
bit is shifted out of range and is eventually deleted. Finally,
a bitwise OR operation is performed on all the encoded sign
data of (M ×N )− 1 length, thus producing PVSC code with
variable length that is calculated by SignDELPosition.

SA =


n∑
i=1

M i − 1; if Mi = 0

n; otherwise (i=1, 2, 3, . . . , n)
(1)

PVSC length =
n∑
i=1

M i (2)

Figure 5 depicts the encoding and decoding of four sign
data items in the proposed parallel-processing architecture.
The SignENC represented in Figure 5 (a) encodes a 4-bit sign
field into a variable-length sign code. The SignDELPosition
takes an input from the magnitude field, determines whether

to delete or shift the sign bit of each data item, and calculates
the SA for each data item using the ‘‘(1)’’ and total variable
length using the ‘‘(2)’’. (1) is a SA calculation formula. Here,
M is a message, and the - symbol means inversion. That is,
the i-th SA is the total number of magnitude (M ) of 0 values
from 0th to the i-th when the i-thM is 0. The i-th SA is n when
the i-thM is 1. (2) is the formula for the PVSC length, which
is the total number of 0 Ms for the magnitude field. If the
magnitude field {2,0,7,0} is inputted, the SAs of the second
and fourth data items with a zero magnitude are the field
length n (i.e., n = 4). The SAs of the first and third data
items with non-zero magnitude are the accumulated number
of removed sign bits, that is, 0 and 1, respectively. As a result,
the SAs are {0, 4, 1, 4}.

Each SBE encodes an individual sign bit of the inputted
sign field. When a given sign field is {1, 0, 0, 0}, each bit
of the sign field is sent to each SBE (SBE1, SBE2, SBE3,
SBE4) in order. In SBE2 and SBE4where the SA is 4, the sign
bits are shifted out of range and thus deleted. The SAs of the
first and third SBEs are 0 and 1, so they produce {1, 0, 0,
0} and {0, 0, 0, 0}, respectively. A bitwise OR operation is
performed on all SBE outputs, creating {1, 0, 0, 0}. Finally,
a PVSC code becomes {1, 0} with a 2-bit length that comes
from SignDELPosition.

Figure 5 (b) illustrates how the SignDEC component
restores the variable-length sign code {1,0} into the 4-bit
sign field {1, 0, 0, 0}. To restore the sign field, the zero-
detection result of the magnitude field, {0, 1, 0, 1}, is used.
The magnitudes of the second and fourth data items are 0,
so their sign bits are reconstructed to 0. To restore the sign bits
of the first and third data items, the PVSC code is decoded.

138808 VOLUME 7, 2019



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

FIGURE 6. ZeroDT component: (a) conventional PVSC decoding flow and
(b) the proposed architecture with an additional component for latency
reduction.

The SignRECPosition component accumulates the num-
ber of the zero sign data, which makes the SA value of
the first and third data items become 0 and 1, respec-
tively. The SignBitDecoder1 (SBD1) creates {1, 0, 0, 0}
by shifting the PVSC code bit ‘‘1’’ zero times. SBD2 pro-
duces {0, 0, 0, 0} by shifting the PVSC code bit ‘‘0’’ one
time. A bitwise OR operation is then performed on all the
created sign fields and on the reconstructed zero-magnitude
sign field, restoring the final 4-bit sign field {1, 0, 0, 0}.

D. ZeroDT: AN ADDITIONAL COMPONENT FOR
LATENCY REDUCTION
In the proposed PVSC algorithm, decoding is performed
in two stages. As shown in Figure 6 (a), the Golomb–
Rice decoder restores the magnitude field in the first stage.
In the second stage, the sign field is restored using the
zero-detection output of the magnitude field and the PVSC
code. That is, 2-stage processing is needed to restore the
original data.

As shown in Figure 6 (b), the proposed architecture intro-
duces an additional component called ZeroDT that avoids
dependencies between the first and second decoding stages.
The basic idea is that zero detection is possible by identifying
a code segment consisting only of symbols (i.e., terminating
zero symbols) in the unary code. For example, a 16-bit unary
code 1011101111100110 is decoded into {1, 3, 5, 0, 2}.
The fourth code bit that involves successive symbols (‘‘00’’)
can be pinpointed during the zero detection. With ZeroDT,
sign-field restoration and magnitude-field restoration can

FIGURE 7. KSplitter hardware architecture.

be performed independently and simultaneously at a single
pipeline.

E. KSplitter: AN ADAPTIVE-k BIT SPLITTER
According to [13], the FELICS algorithm uses a sim-
ple and efficient method for k parameter selection in the
Golomb–Rice code (GR), but it also gives rise to heavy
data dependencies that limit parallelism during compression.
There is another reference [41] improves the compression
efficiency by using the adaptive divisor k . It determines the k
of the current block by using the previous k . So that it has
dependency between blocks when calculating the current k .
Due to this block dependency issue, only sequential process-
ing is possible, and random access cannot be implemented.
In [8], [13], the implemented hardware uses a fixed-k value
(k = 2) for Golomb–Rice coding. The KSplitter of the
proposed architecture replaces the fixed-k (k = 2) algo-
rithm for Golomb–Rice coding in [8] with a block-based
adaptive-k algorithm. This allows for compensating for a
loss of compression efficiency (CRs) related to the fixed-k
algorithm. Note that k is still fixed within a block to avoid
data-dependency issues.

Figure 7 presents the hardware architecture of the KSplit-
ter that finds an adaptive-k in block-based Golomb–Rice
encoding. In the KSplitter component, k values are in the
range of 0–3. This is because experimental results show that
CRs are not significantly affected when the parameter k is
greater than 4. Each LenUNARY computes the length of
the Golomb–Rice code that is created when a given k is
applied to the inputted magnitude field. The Golomb–Rice
code length is the sum of the unary code length and the
remainder length. The unary code length is proportional to
the sum of quotients, and the remainder length is a fixed
length determined according to k. The splitter separates the
quotient field from the magnitude field using the k value

VOLUME 7, 2019 138809



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

FIGURE 8. Benchmark sequences: (1) HEVC, CLASS A TRAFFIC, (2) HEVC, Class A PeopleOnStree, (3) HEVC, Class
B Kimono, (4) HEVC, Class B ParkScene, (5) HEVC, Class B Cactus, (6) HEVC, Class B BasketballDrive, (7) HEVC,
Class B BQTerrace, (8) HEVC, Class C BasketballDrill, (9) HEVC, Class C BQMall, (10) HEVC, Class C PartyScene,
(11) HEVC, Class C RaceHorses, (12) HEVC, Class D BasketballPass, (13) HEVC, Class D BQSquare, (14) HEVC, Class
D BlowingBubble, (15) HEVC, Class D RaceHorses, (16) HEVC, Class E Vidyo1, (17) HEVC, Class E Vydyo3, (18)
HEVC, Class E Vidyo4.

that is determined in the SEL_K component and sends the
quotient field to the UnaryENC component.

We can determine k for each block just taking one cycle
without increasing latency, unlike the sequential process-
ing case, as the proposed technique simultaneously obtains
all unary lengths for the given k . In addition, k is deter-
mined before unary encoding because the proposed archi-
tecture consists of the KSplitter component followed by the
UnaryENC component.

F. PACKING OF VARIABLE-LENGTH DATA
Figure 8 shows two types of data-pack formats. Figure 8 (a)
presents the format used in the previous algorithm. It contains
one variable-length field, Unary data, and stores the length
of the entire data in the Length field. Figure 8 (b) shows
the data-pack format of the proposed solution. There are two
variable-length data fields, Unary data and Sign data. There is
also an additional fixed-length field, adaptive-k (AK). To pre-
vent a decrease in the CR, the individual lengths of the two
variable-length codes are not stored. Only the total length of
the data is stored in the Length field. If the value of the length
is greater or equal to the original data length, the original data
is stored. In this case, since a separate indicator for recording
whether the data is compressed is not necessary, the total
length of the codewords can be prevented from exceeding the

frame buffer size. As represented in Figure 8 (c), the unary
code and the sign code that compose a variable-length data
item place their first bits at one of the two opposite ends of
their fields.

When decoding packed data with the format shown in
Figure 8 (b), the fixed-length data are separated and sent
to the appropriate decoding components. The fixed-length
data include the 2-bit AK field, the 8-bit seed field, and the
remainder field (the length of which is determined by AK),
with the last one consisting of two variable-length data items.
In the VLSplitter, the last fixed-length data item is split into
two variable-length data items (i.e., a unary code and a sign
code) by retrieving their bits that start from one of each of
their field ends. If the value of the length field is equal to the
original data length, the data at the location of the unary data
is the quotient data.

IV. EXPERIMENTAL RESULTS
This section introduces the simulation results of the pro-
posed algorithm and the implementation of the proposed
hardware architecture. The effects of the PVSC algorithm on
data compression are analyzed, and the proposed algorithms
are compared with others [8], [18], [37] in terms of CR.
The hardware implementation is designed with Verilog HDL
and its evaluation is expressed in terms of clock frequency,
throughput and unit/total area in a 55-nm cell library.

138810 VOLUME 7, 2019



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

FIGURE 9. Data packing for variable-length data: (a) previous packing
format, (b) proposed packing format, and (c) bit order of the
variable-length data.

FIGURE 10. Full-High Definition (FHD) Benchmark images: (1) blue_sky,
(2) pedestrial_area, (3) riverbed, (4) rush_hour, (5) station, and (6) tractor.

FIGURE 11. Histogram of residual data (HEVC-1: CLASS A TRAFFIC,
HEVC-2: Class A PeopleOnStree, HEVC-3: Class B Kimono, HEVC-4: Class B
ParkScene, HEVC-5: Class B Cactus, HEVC-6: Class B BasketballDrive,
HEVC-7: Class B BQTerrace, HEVC-8: Class C BasketballDrill, HEVC-9: Class
C BQMall, HEVC-10: Class C PartyScene, HEVC-11: Class C RaceHorses,
HEVC-12: Class D BasketballPass, HEVC-13: Class D BQSquare, HEVC-14:
Class D BlowingBubble, HEVC-15: Class D RaceHorses, HEVC-16: Class E
Vidyo1, HEVC-17: Class E Vydyo3, HEVC-18: Class E Vidyo4, 4K-1:
CrowdRun, 4K-2:DucksTakeOff, 4K-3: InToTree, and 4K-4: ParkJoy).

Regarding the benchmark sequence, we use two kinds
of benchmark groups consisting of 18 HEVC benchmark
sequences, and 4 4-K × 2-K sequences shown in Figure 13.
The HEVC benchmark sequences are from the Joint Collab-
orative Team on Video Coding (JCT-VC) and the 4-K× 2-K
sequences are from theXiph.Org Foundation. They are shown
in Table 1.

FIGURE 12. Histogram of adaptive-k and fixed-k on GR coding (HEVC-1:
CLASS A TRAFFIC, HEVC-2: Class A PeopleOnStree, HEVC-3: Class B
Kimono, HEVC-4: Class B ParkScene, HEVC-5: Class B Cactus, HEVC-6:
Class B BasketballDrive, HEVC-7: Class B BQTerrace, HEVC-8: Class C
BasketballDrill, HEVC-9: Class C BQMall, HEVC-10: Class C PartyScene,
HEVC-11: Class C RaceHorses, HEVC-12: Class D BasketballPass, HEVC-13:
Class D BQSquare, HEVC-14: Class D BlowingBubble, HEVC-15: Class D
RaceHorses, HEVC-16: Class E Vidyo1, HEVC-17: Class E Vydyo3, HEVC-18:
Class E Vidyo4, 4K-1: CrowdRun, 4K-2:DucksTakeOff, 4K-3: InToTree, and
4K-4: ParkJoy).

FIGURE 13. 4-K× 2-K Benchmark images: (a) CrowdRun,
(2) DucksTakeOff, (c) InToTree and (4) ParkJoy.

A. COMPRESSION RATIOS
Figure 11 shows the distribution of the residual data obtained
after DPCM processing. The distribution of 0 data was the
highest in all test benches. When our PVSC was applied to
these test benches, the sign bits decreased by up to 35%.

The compression efficiency of the proposed algorithm is
evaluated with the CR using (3). The CR evaluation is per-
formed on all benchmark sequences without and with quan-
tization by applying the quantization parameter, QP, values
of 22, 27, 32, and 37.

CR =
(

Originaldatasize
Compresseddatasize

)
(3)

Figure 12 shows the results of CR comparisons for all
test benches between the coding algorithms of the adaptive-k
GR and the fixed-k GR. The experiment was performed by
limiting the adaptive-k to a range of 0 to 3 and by fixing the
fixed-k to 2. As a result, the compression ratio increased in

VOLUME 7, 2019 138811



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

TABLE 1. Bench mark list and compression condition.

TABLE 2. CRs (1: blue_sky, 2:pedestrian_area, 3: riverbed, 4: rush_hour, 5:
station2, 6: tractor).

every test bench by 9.87% on average. The compression ratio
increasing effect was high in HEVC-16 and HEVC-17 where
the color and pattern are relatively simple.

Table 2 shows the simulation results of the CR of
the proposed solution with an average CR of 2.06 sin
Luma sample frames. It yielded an average CR of 2.30 in
4:2:0 frames.

Table 3 presents the results of the experiment that exam-
ined how the CR was influenced by QP. For this experiment,
the FHD images were transformed into 8 × 8 block images
through a discrete cosine transform (DCT) with four differ-
ent QP values. The images were restored then via inverse
DCT and inverse quantization. Next, the restored images
were compressed using the proposed compression solution.
The proposed solution achieved an average CR of 3.48. The
CRs with regard to each QP value (i.e., 22, 27, 32, and 37)
were 2.94, 3.18, 3.58, and 4.22, respectively. The lossless
compression of images with a quality loss with a high QP
parameter setting shows higher CR.

Table 5 and Table 4 show the CRs of the proposed and
existing algorithms with HEVC sequence and 4-K sequences,

TABLE 3. CRs (1: blue_sky, 2: pedestrian_area, 3: riverbed, 4: rush_hour,
5: station2, 6: tractor).

respectively. In Table 5, the data of [37] was reused for the
CRs of the existing algorithm. The test results with HEVC
test sequences showed an average CR of 2.78, which is higher
than the 1.7, 2.06, and 2.33 CRs of the previous studies.
In Table 4, those with 4-K test sequences showed an average
CR of 2.71, which is higher than the 1.7, 2.06, and 2.23 CRs
of the previous studies.

B. PARALLEL HARDWARE IMPLEMENTATION
This paper proposes the parallel architecture for PVSC to
code each sign bit in parallel and adaptive-k condition of
Golomb-Rice coding algorithm. Their performance compar-
isons are made with other works using bytes per cycle and
cycles per 8 × 8 blocks. In Table 6, the lower section shows
the comparison results. The proposed parallel architecture
achieves 64 bytes compression and decompression per cycle.
That is, one clock cycle is required for 8 × 8 block data
processing. This parallelism is at the same level as [8] and
is higher than [18], [37].

The proposed hardware architecture with a four-stage
pipeline was designed for the encoder and decoder with Ver-
ilog HDL (Hardware Description Language). It was imple-
mented with a 55-nm standard cell library up to the synthesis

138812 VOLUME 7, 2019



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

TABLE 4. CRs of the proposed and previous algorithms (1: CrowdRun, 2:DucksTakeOff, 3: InToTree, 4: ParkJoy).

TABLE 5. CRs of the proposed and previous algorithms (HEVC-1: CLASS A TRAFFIC, HEVC-2: Class A PeopleOnStree, HEVC-3: Class B Kimono, HEVC-4:
Class B ParkScene, HEVC-5: Class B Cactus, HEVC-6: Class B BasketballDrive, HEVC-7: Class B BQTerrace, HEVC-8: Class C BasketballDrill, HEVC-9: Class C
BQMall, HEVC-10: Class C PartyScene, HEVC-11: Class C RaceHorses, HEVC-12: Class D BasketballPass, HEVC-13: Class D BQSquare, HEVC-14: Class D
BlowingBubble, HEVC-15: Class D RaceHorses, HEVC-16: Class E Vidyo1, HEVC-17: Class E Vydyo3, HEVC-18: Class E Vidyo4).

step (synopsys dc). After synthesis, the maximum operating
frequency was 370 MHz and 286 MHz for the encoder and
the decoder, respectively. Both performed massively parallel
processing, yielding a throughput of 24 GBps and 18 GBps
for 8 × 8 blocks, a total gate count of 83 K and 121 K, and a
gate count per pixel of 1.3 K and 1.9 K, respectively.

Table 7 summarizes the hardware implementation results
in terms of hardware performance, total area, and unit area.
The proposed solution achieved better hardware performance
and lower power consumption than the previous algorithms.

The proposed hardware architecture had a throughput
of 24 GBps during encoding and 18 GBps during decoding,
which was the highest rate among the compared algorithms.
This can be explained when considering two key points.

First, the proposed architecture provides the massively par-
allel processing of [8], whereas the algorithms in [18], [37]
have data-processing dependencies during compression and
decompression. Second, the proposed hardware implementa-
tion has a higher operating frequency than the implementation
in [8] thanks to pipeline depth adjustment, logic optimization,
and high-end manufacturing.

The hardware of the proposed solution requires the small-
est gate counts per pixel, which leads to the lowest power
consumption per pixel. All these characteristics make the pro-
posed compression solution suitable for high-performance
mobile applications.

Our decompressor is larger than our compressor. Our pro-
posal uses adders for parallel processing. For unary parallel

VOLUME 7, 2019 138813



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

TABLE 6. Comparisons of CR and hardware parallelism.

TABLE 7. Hardware implementation summary.

processing, encoding requires M × N − 1 adders to com-
pute the termination position. Decoding requires a number of
adders by unary length to reconstruct quotients. As a result,
the number of adders makes the decompressor larger than the
compressor.

Even though the proposed method adds some hardware
modules for SignENC/SignDEC, zeroDT, and KSplitter,
the hardware cost is reduced compared with those in [8].
This result occurred for two reasons. First, the subtraction
operation step has been shortened from two to one because
we replaced the DDPCM algorithm adopted in [8] with the
DPCMalgorithm. Second, the logic complexity for the adders
on unary coding or inverse DPCM has been reduced by
performing the pipeline depth adjustment of [8].

V. CONCLUSION
This paper proposed a lossless compression solution by
developing novel algorithms for frame-buffer recompression
and by extending some of the previous compression methods.
It also proposed hardware architecture that allows massively
parallel processing for the compressor and decompressor.
The proposed solution was implemented in a lossless embed-
ded compressor. This hardware implementation has an aver-
age CR of 3.12 and an operating frequency of 370 MHz.

Its throughput is 24 GBps, which exceeds the throughput
requirement for 8-K UHD image processing at 240 Hz (i.e.,
12 GBps). It occupies 1.3K gate counts for single pixel pro-
cessing, which leads to lower power consumption (23mW for
the compressor and 17.6mW for the decompressor). There-
fore, the proposed solution is suitable for use in mobile
applications where energy efficiency is a significant factor.
In addition, the size of the compression unit (M × N blocks)
can be adjusted, so the proposed solution can be used in
line-based applications and in block-based applications.

The work presented in this paper focuses on compression
algorithms for the entropy coding stage and parallel-
processing architecture. In the future, prediction-stage com-
pression algorithms will be studied to further improve
compression efficiency. In addition, the current architecture
offering block-level random access will be extended to pro-
vide intra-block random access. We also need to study that
a hybrid compression algorithm to ensure fixed bandwidth
requirements. The hybrid algorithm can be a mixture of both
lossy and lossless algorithms.

REFERENCES
[1] A. Savakis and M. Piorun, ‘‘Benchmarking and hardware implementation

of JPEG-LS,’’ in Proc. Int. Conf. Image Process. (ICIP), Rochester, NY,
USA, Sep. 2002, p. 2.

138814 VOLUME 7, 2019



J. Lee et al.: Effective Algorithm and Architecture for the High-Throughput Lossless Compression of High-Resolution Images

[2] X. Wu and N. Memon, ‘‘CALIC-a context based adaptive lossless
image codec,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 4, May 1996, pp. 1890–1893.

[3] M. J. Weinberger, G. Seroussi, and G. Sapiro, ‘‘LOCO-I: A low complex-
ity, context-based, lossless image compression algorithm,’’ in Proc. Data
Compress. Conf., Mar./Apr. 1996, pp. 140–149.

[4] A. D. Mitra and P. K. Srimani, ‘‘Differential pulse-code modulation,’’ Int.
J. Electron., vol. 46, pp. 633–637, Jun. 1972.

[5] S.Mallat, ‘‘A theory formultiresolution signal decomposition: Thewavelet
representation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7,
pp. 674–693, Jul. 1989.

[6] H. Gao, F. Qiao, and H. Yang, ‘‘Lossless memory reduction and efficient
frame storage architecture for HDTV video decoder,’’ in Proc. Int. Conf.
Audio Lang. Img. Process., Jul. 2008, pp. 593–598.

[7] S.-H. Lee, M.-K. Chung, S.-M. Part, and C.-M. Kyung, ‘‘Lossless frame
memory recompression for video codec preserving random accessibil-
ity of coding unit,’’ IEEE Trans. Consum. Electron., vol. 55, no. 4,
pp. 2105–2113, Nov. 2009.

[8] H.-S. Kim, J. Lee, H. Kim, S. Kang, and W. Park, ‘‘A lossless color image
compression architecture using a parallel golomb-rice hardware CODEC,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 11, pp. 1581–1587,
Nov. 2011.

[9] S. A. Martucci, ‘‘Reversible compression of HDTV images using median
adaptive prediction and arithmetic coding,’’ in Proc. IEEE Int. Symp.
Circuits Syst., May 1990, pp. 1310–1313.

[10] M. J. Weinberger, G. Seroussi, and G. Sapiro, ‘‘The LOCO-I lossless
image compression algorithm: Principles and standardization into
JPEG-LS,’’ IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324,
Aug. 2000.

[11] J. Kim, J. Kim, and C. Kyung, ‘‘A lossless embedded compression algo-
rithm for high definition video coding,’’ in Proc. IEEE Int. Conf. Multime-
dia Expo, New York, NY, USA, Jun./Jul. 2009, pp. 193–196.

[12] M. Papadonikolakis, V. Pantazis, and A. P. Kakarountas, ‘‘Efficient high-
performance ASIC implementation of JPEG-LS encoder,’’ in Proc. Int.
Design Autom. Test Eur. Conf Exhibit., Apr. 2007, pp. 1–6.

[13] T. H. Tsai, Y. H. Lee, and Y. Y. Lee, ‘‘Design and analysis of
high-throughput lossless image compression engine using VLSI-oriented
FELICS algorithm,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 1, pp. 39–52, Jan. 2010.

[14] H.-C. Kuo and Y.-L. Lin, ‘‘A hybrid algorithm for effective lossless com-
pression of video display frames,’’ IEEE Trans. Multimedia, vol. 14, no. 3,
pp. 500–509, Jun. 2012.

[15] Y. Li, W. Wang, and G. Zhang, ‘‘Hybrid pixel encoding: An effective
display frame compression algorithm for HD video decoder,’’
in Proc. IEEE 15th Int. Conf. Comput. Sci. Eng., Dec. 2012,
pp. 303–309.

[16] Y. Jiang, Y. Li, D. Ban, and Y. Xu, ‘‘Frame buffer compression without
color information loss,’’ in Proc. IEEE 12th Int. Conf. Comput. Inf. Tech-
nol., Oct. 2012, pp. 12–17.

[17] Y. Li, Y. Jiang, and H. Meng, ‘‘Adaptive pixel encoding: An effective
algorithm for frame buffer compression,’’ in Proc. IEEE 12th Int. Conf.
Comput. Inf. Technol., Oct. 2012, pp. 5–11.

[18] J. Kim and C.-M. Kyung, ‘‘A lossless embedded compression using sig-
nificant bit truncation for HD video coding,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 20, no. 6, pp. 848–860, Jun. 2010.

[19] W.-Y. Chen, L.-F. Ding, P.-K. Tsung, and L.-G. Chen, ‘‘Architecture design
of high performance embedded compression for high definition video
coding,’’ in Proc. IEEE Int. Conf. Multimedia Expo, Hannover, Germany,
Jun./Apr. 2008, pp. 825–828.

[20] S. Lee, N. Eum, M.-K. Chung, and C.-M. Kyung, ‘‘Low latency variable
length coding scheme for frame memory recompression,’’ in Proc. IEEE
Int. Conf. Multimedia Expo, Jul. 2010, pp. 232–237.

[21] R. Moussalli, W. Najjar, X. Luo, and A. Khan, ‘‘A high throughput no-
stall Golomb-Rice hardware decoder,’’ in Proc. IEEE 21st Annu. Int. Symp.
Field-Program. Custom Comput. Mach., Seattle, WA, USA, Apr. 2013,
pp. 65–72.

[22] T.-H. Tsai and Y.-H. Lee, ‘‘A 6.4 Gbit/s embedded compression codec
for memory-efficient applications on advanced-HD specification,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 2, pp. 1277–1291,
Oct. 2010.

[23] K. Denecker, M. V. D. Ville, F. Habils, W. Meeus, M. Brunfaut, and
I. Lemahieu, ‘‘Design of an improved lossless halftone image compression
codec,’’ Signal Process., Image Commun., vol. 17, no. 3, pp. 277–292,
Mar. 2002.

[24] L. Brooks and K. Fife, ‘‘Hardware efficient lossless image compres-
sion engine,’’ in Proc. IEEE Int. Conf. Acous., Speech, Signal Process.,
May 2004, pp. 17–21.

[25] X. Chen, N. Canagarajah, and J. L. Nunez-Yanez, ‘‘Lossless multi-
mode interband image compression and its hardware architecture,’’ in
Proc. Algorithm-Architecture Matching Signal Image Process., 2008,
pp. 208–215.

[26] M. Milward, J. L. Nunez, and D. Mulvaney, ‘‘Design and implementation
of a lossless parallel high-speed data compression system,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 15, no. 6, pp. 481–490, Jun. 2004.

[27] C.-C. Cheng, P.-C. Tseng, C.-T. Huang, and L.-G. Chen, ‘‘Multi-mode
embedded compression codec engine for power-aware video coding
system,’’ in Proc. IEEE Workshop Signal Process. Syst., Nov. 2005,
pp. 532–537.

[28] X. Li, X. Chen, X. Xie, G. Li, L. Zhang, C. Zhang, and Z. Wang,
‘‘A low power, fully pipelined JPEG-LS encoder for lossless image
compression,’’ in Proc. IEEE Int. Conf. Multimedia EXPO, Jul. 2007,
pp. 1906–1909.

[29] X. Chen, N. Canagarajah, J. L. Nunez-Yanez, and R. Vitulli, ‘‘Hardware
architecture for lossless image compression based on context-based mod-
eling and arithmetic coding,’’ in Proc. IEEE Int. SOC Conf., Sep. 2007,
pp. 251–254.

[30] T. Song and T. Shimamoto, ‘‘Reference frame data compression method
for H.264/AVC,’’ IEICE Electron. Express, vol. 4, pp. 121–126, Jan. 2007.

[31] Y.-H. Lee, Y.-Y. Lee, H.-Z. Lin, and T.-H. Tsai, ‘‘A high-speed lossless
embedded compression codec for high-end LCD applications,’’ in Proc.
IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 185–188.

[32] Y.-Y. Lee, Y.-H. Lee, and T.-H. Tsai, ‘‘An efficient lossless embedded
compression engine using compacted-FELICS algorithm,’’ in Proc. IEEE
Int. SOC Conf., Sep. 2008, pp. 233–236.

[33] C.-C. Cheng, P.-C. Tseng, and L.-G. Chen, ‘‘Multimode embedded com-
pression codec engine for power-aware video coding system,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 2, pp. 141–150, Feb. 2009.

[34] T.-C. Chen, Y.-H. Chen, K.-C. Wu, and L.-G. Chen, ‘‘Hybrid-mode
embedded compression for H.264/AVC video coding system,’’ in Proc.
Intl. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Dec. 2005,
pp. 257–260.

[35] Y.-X. Lee and T.-H. Tsai, ‘‘An efficient embedded compression algorithm
using adjusted binary codemethod,’’ inProc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2008, pp. 2586–2589.

[36] D. Zhou, J. Zhou, X. He, J. Zhu, J. Kong, P. Liu, and S. Goto,
‘‘A 530 mpixels/s 4096×2160@60fps H.264/AVC high profile video
decoder chip,’’ IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 777–788,
Apr. 2011.

[37] L. Guo, D. Zhou, and S. Goto, ‘‘A new reference frame recompression
algorithm and its VLSI architecture for UHDTV video codec,’’ IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2323–2332, Dec. 2014.

[38] X. Lian, Z. Liu, W. Zhou, and Z. Duan, ‘‘Lossless frame memory com-
pression using pixel-grain prediction and dynamic order entropy coding,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 1, pp. 223–235,
Jan. 2016.

[39] S. W. Golomb, ‘‘Run-length Codings,’’ IEEE Trans. Inf. Theory, vol. 12,
no. 7, pp. 399–401, 1966.

[40] D. A. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. Inst. Radio Eng., vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[41] S. Kim, D. Lee, H. Kim, N. X. Truong, and J. S. Kim, ‘‘An enhanced one-
dimensional SPIHT algorithm and its implementation for TV systems,’’
Display J., vol. 40, pp. 68–77, Dec. 2015.

[42] Y.-Z. Kao, K.-H. Heung, S.-S. F. Jiang, and Y.-H. Lee, ‘‘A novel lossless
embedded compression algorithm for video coding for wireless sensor
node applications,’’ in Proc. IEEE Int. Conf. Consum. Electron. Taiwan
(ICCE-TW), Jun. 2017, pp. 103–104.

[43] C. Gu, X. Zeng, andY. Fan, ‘‘A 5.3Gpixels/s framememory recompression
method for QHD video coding,’’ in Proc. 14th IEEE Int. Conf. Solid-State
Integr. Circuit Technol. (ICSICT), Oct./Nov. 2018, pp. 1–3.

VOLUME 7, 2019 138815


