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ABSTRACT This paper proposes an improved methodology for the hierarchical coordination of daily Plug-
in Electric Vehicle (PEV) charging. The aim is to limit the power supplied by the primary distribution
transformer (PDT) while minimizing the energy costs of the aggregators. This methodology consists of an
iterative optimization of the total aggregated power at the PDT level, considering the local power constraints
of the aggregators and the PEVs with a reduced number of decision variables and constraints which only
depend on the number of time intervals. Moreover, it defines the energy boundaries of the optimization
problem in each iteration through a proposed method for simulating early charging and delayed charging,
considering the power constraints of the aggregators. Otherwise, it evenly distributes the total power among
the aggregators, and the local power of each aggregator among the PEVs, maximizing the feasible region of
the optimization problem. The proposed methodology is applied to two case studies. The uncertainties related
to the charging scenarios are considered by means of Monte-Carlo simulations. The results obtained show
that the total power profile is effectively limited, while the profits of the aggregators are not significantly
affected by the coordinated approach that is expected to be performed by the Distribution System Operator
(DSO). Additionally, to demonstrate the reduction of the impact of PEV charging on the distribution system,
the voltage profile, the transformer loss of life and the power and energy losses are reported.

INDEX TERMS Asset management, electric vehicles, load management, power distribution, power trans-
formers, smart grid.

LIST OF ABBREVIATIONS r Aucxiliary index used for the cumulative energy
[ PEV index. constraints. This varies from j to k.
a Aggregator index. b Index of the order of the E; , of the PEVs.
N Number of intervals in the total period. np  Number of active PEVs in the calculation of
A Number of aggregators. flexible power of charging.
d Distribution line index. u Aucxiliary variable used in the calculation of
Ay  Subset of aggregators supplied by the distribution the deferrable charging power of PEVs.
line d. w Auxiliary index used to adjust the total
V,  Number of PEVs of aggregator a. optimum power according to the voltage
At Time interval length (in hours). limits.
j Index of the iteration of the main algorithm. This Sg  Rated power of the primary distribution
varies from 1 to N. transformer.
k  Auxiliary index used in the calculation of the SOC hiy  Arrival time of the PEV i of aggregator a.
limits. This varies from j to N. hf_flp Departure time of the PEV i of aggregator a.

ni.«  Efficiency of charging of the PEV i

The associate editor coordinating the review of this manuscript and of aggregator a.
approving it for publication was Ahmed F. Zobaa . Bi 4 Battery capacity of the PEV i of aggregator a.
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Energy cost of interval #.

Penalty cost of exceeding the rated

power of the PDT.

Total base load power at time interval k.
Maximum feasible remaining energy to
charge the PEV i of aggregator a at time
interval k.

Surplus of power above the nominal power
of the PDT at time interval k.

Available power of aggregator a at time
interval k.

Optimum total power of the system at time
interval k, under DSO coordination.
Optimum power of aggregator a at time
interval k, without DSO coordination.
Optimum power of aggregator a at time
interval £ under DSO coordination.

Limit of power of aggregator a at time
interval k.

Maximum feasible charging power of the
PEV i supplied by aggregator a.
Maximum feasible charging power of the
PEV i supplied by aggregator a after the
assignation of the non-deferrable power.
Maximum feasible power of total charging
of aggregator a at time interval k.
Maximum feasible power of total charging
of aggregator a after the assignation of the
non-deferrable power at time interval k.
Maximum power of the charger of the PEV

i supplied by aggregator a at time interval k.

Assigned power to the PEV i supplied by
aggregator a in the algorithm of early
charging.

Optimum power of the PEV i of aggregator
a at time interval k, under coordination.
Non-deferrable charging power of the PEV
i of aggregator a at time interval k.
Adjusted value of the non-deferrable
charging power of the PEV i of aggregator
a at time interval k depending

on PraxAG(y),

Deferrable charging power of the PEV i of
aggregator a at time interval k.

Power added to the PEVs in the calculation
of the deferrable charging power.
Maximum power of the distribution line d
at time interval j.

Energy retail price at time

interval k.

SOC of the PEV i of aggregator a at time
interval k.

Upper limit of the SOC of the PEV i of
aggregator a at time interval k.

Soc;j’;/ (tx)  Upper limit of the SOC of the PEV i of
aggregator a at time interval k before the
assignation of the deferrable power at
time interval k.

Lower limit of the SOC of the PEV i of

aggregator a at time interval k.

SOC! (1)

SOC! (&)  Final feasible SOC of the PEV i of
aggregator a, estimated at time interval k.

U(zy) Vector of length A with the bus voltage
magnitudes of the aggregators in time
interval j.

ymin Minimum limit of bus voltage magnitude.

umnex Maximum limit of bus voltage magnitude.

I. INTRODUCTION

Nowadays, society, in general, seeks a technological revo-
lution to reduce the environmental pollution produced by
the conventional transportation system, which is based on
internal-combustion engines [ 1]. Today, the technology avail-
able for such a revolution is based on plug-in electric vehicles
(PEVs). Recent surveys report increasing numbers of PEVs
both manufactured and sold, and this trend is growing at an
exponential rate in different deployment scenarios [2].

The massive connection of PEVs to the distribution net-
works will have a significant impact, which may be negative
if the recharging of the PEV batteries is not properly coor-
dinated. Some of the expected impacts include accelerated
aging of primary and secondary distribution transformers
(SDT), increase of power losses, deterioration of power qual-
ity, and increase in peak demand, among others [3], [4].

In this paper, a methodology to coordinate the recharg-
ing of multiple PEVs, in a distribution grid, is proposed.
The methodology considers a power constraint imposed by
the primary distribution transformer (PDT) that supplies the
medium voltage grid. The fulfillment constraint is achieved
through the coordination of aggregators that manage the PEV
charging systems plugged into low voltage networks. At the
aggregator level, power constraints due to the SDTs are also
considered.

The main objective of the proposal is to minimize charging
cost (under a time of use tariff scheme) while respecting
the limits imposed by the above-mentioned constraints and
maximizing the energy stored in the PEV batteries at their
time of departure. The proposed methodology is tested in two
case studies. The first corresponds to the same case study used
in [5], which consists of a distribution system with four aggre-
gators coordinated by a Distribution System Operator (DSO).
In this case, results obtained by applying the methodology
formulated in [5] are compared with those obtained through
the approach proposed in this paper. In the second case study,
the proposed methodology has been applied to a larger grid,
which has been designed by using the IEEE 33-bus test
distribution system. This case allows for testing the proposed
methodology in a grid which approaches a real distribution
system. Moreover, a diversity of PEV models available in the
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e-mobility market are considered. Regarding the analysis of
results, in both cases, the impact of the coordinated charging
strategy on the energy costs of the aggregators has been
analyzed. However, only in the second case study, the voltage
profile and the power and energy losses were computed to
analyze the impact of the PEV charging on the distribution
system.

This paper has been organized as follows: a brief review
of the state of the art regarding PEV charging strategies is
presented in section II. The proposed methodology is pre-
sented in detail in section III. The case studies in which
the proposal is tested are reported in section I'V. The results
obtained are summarized and discussed in section V. Finally,
the conclusions of this work are given in section V1.

Il. PEV CHARGING STRATEGIES

There are several studies which deal with the problem of
PEV charging management. Usually, these studies are aimed
at reducing the peak load in the demand daily profile in
order to mitigate the impacts mentioned above. Most of the
studies can be classified into two general groups, those which
perform charging management at an aggregator level, and
those which in addition consider coordination among mul-
tiple aggregators.

In [6]-[16], the charging of PEVs is managed only at
the aggregator level. Analyses performed in these references
include power flow calculation, transformer loss of life esti-
mation, and network congestion assessment, among others.
Nevertheless, it is necessary to consider the coordination
among multiple aggregators supplied by the same network to
adequately avoid undesired overloads and stress of network
components.

Regarding the coordination among aggregators, there are
several approaches that consider different control frameworks
and objectives. It is noted that the daily scheduling of the PEV
charging is usually performed at two levels. At the first
level, the coordinator applies an algorithm to obtain the opti-
mum daily power profile demanded by all the aggregators.
At the second level, the total power profile obtained is dis-
tributed among the participants.

In [17], the participation of large fleets of PEVs in elec-
tricity day-ahead markets is studied. The PEV charging is
scheduled considering an inter-aggregator cooperation mech-
anism based on coordinated bids. The aggregators inform a
third-party coordinator of the individual requirements and the
coordinator then optimizes the global bids. In [18], an inter-
aggregator collaboration model is proposed. It formulates
a charging scheduling model which consists of a bi-level
optimization problem to maximize the aggregator profit.
However, the above studies only model the features of the
power market, and they do not consider constraints imposed
by the distribution network to perform the aggregators’ coor-
dination. In [19], a hierarchical dispatch model based on
traditional unit commitment is proposed. It formulates an
optimization problem of charging/discharging coordination
of PEVs, since it is assumed that PEVs can also inject power
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into the network in a vehicle to grid mode (V2G), in this
way modifying the generator dispatch problem. A control
strategy for scheduling the charging/discharging of the PEVs
controlled by an aggregator, through the use of a priority eval-
uation index, is then presented. In [20], an online coordination
method for the charging/discharging of PEVs is proposed.
It aims at maximizing the satisfaction of PEV owners and
minimizing system operating costs without violating power
system constraints. The whole system is served by one central
vehicle controller. It is considered that the aggregators’ role
is to send the operator’s charging/discharging decisions to
the charger controllers. In [21] a mixed-integer linear pro-
gramming model for PEV charging coordination is proposed.
The load unbalance of distribution systems is considered
and a methodology to linearize a mixed-integer nonlinear
programming problem is presented. The control variables of
the formulated optimization problem are the charging power
of each PEV. The work considers both the V2G charging
mode and vehicle-to-vehicle energy exchanges. In this regard,
it has been observed in several reports that bi-directional V2G
technology could offer some benefits for the grid, but still
presents some drawbacks, e.g. battery degradation accelera-
tion, complex requirements in hardware infrastructure, high
investment costs and social barriers [4]. In particular, V2G
implementation depends on advances in research on PEV
batteries, information which will allow us to consider the
economic suitability of V2G as an option for improving
network operation.

Taking into account the above considerations, references
[5], [22]-[24] have focused their research only on the
PEV charging issue, without considering the V2G mode.
In [22], charging coordination aims at matching uncertain
wind supply with PEV charging demand. The problem is
then formulated as a Markov decision process and solved
using a bilevel simulation-based policy improvement method.
In [23], a scheduling approach is proposed to coordinate PEV
charging with the network base load and electricity price. The
upper level model is formulated as a multi-objective opti-
mization problem. An improved particle swarm optimization
algorithm is used to solve both levels. In [5] a methodology to
coordinate the charging of PEVs among multiple aggregators
is proposed. The power and energy constraints of the aggre-
gators are computed as a simple summation of the individual
PEV power and energy constraints. The optimum power pro-
files of the aggregators under a time of use (TOU) tariff are
then solved using a linear optimization model. This includes
a constraint that limits the total power of the distribution
grid. It solves the problem iteratively, sending the scheduled
power of the first interval to the aggregators and repeating and
solving the optimization formulation starting from the next
interval. This last methodology is improved in [24] where it
is adapted to a three-level framework. The main conclusion
after reviewing [5], [22]-[24] is that the state of charge (SOC)
constraints of the individual PEVs are aggregated as a simple
summation, which may be not adequate, as is revealed in
section III.A.
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Therefore, compared to the studies mentioned, the major
contributions of this paper are as follows:

1. The calculation of the constraints of the total SOC of
the PEVs is achieved through an iterative methodology which
allows for obtaining a feasible region in the optimization
problem. It improves the simple summation of individual
constraints used in other works, which would not be suitable
in cases where the available power of the aggregator is not
enough to charge all of the connected PEVs at a certain time
interval.

2. The distribution of the assigned power of each aggrega-
tor among the PEVs, after the calculation of optimum power
under DSO coordination, is performed through a methodol-
ogy which maximizes the feasible region of the optimization
problem and the final energy charged. In this sense, this
methodology includes in the feasible region the most severe
power profile that could cause a PEV charging scenario, from
the perspective of the DSO. Moreover, the methodology dis-
tributes the total power among the aggregators, considering
their energy requirements and the influence on their energy
costs.

3. Finally, the proposed methodology formulates the opti-
mization problem of the power of charging of PEVs with a
reduced number of variables independent of the number of
aggregators and PEVs, decreasing the computational burden
in applications of large distribution.

lll. METHODOLOGY

The proposed methodology calculates the optimum charging
power profiles of groups of PEVs that are directly controlled
by aggregators which are coordinated by the DSO. The aim of
the DSO is to constrain the total power supplied by the PDT,
i.e. the baseload power (BL) and the power demanded by PEV
chargers, to its rated value, while the profit of the aggregators
is maximized. A scheme of the components involved in the
charging coordination is presented in Fig. 1.

)
KSDT 1
\

@SDTZ
| ‘ s
I 1

)

PEVs BL PEVs BL PEVs BL
Aggregator A

Aggregator 1  Aggregator 2

FIGURE 1. Components involved in the charging coordination.

The proposed methodological scheme is shown in Fig. 2.
In the first block, input data defines the PEV charging sce-
nario to be optimized by the methodology. However, it is
necessary to note that some of the inputs related to the
problem are only known with uncertainty, e.g. PEV energy
requirements associated with SOC; 4(t)), Bia, hi" pler

i,a’> ""i,a’

and the BL which affect P;"(#j). To deal with this issue,
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j=1

.| Calculation of the upper and lower
SOC limits (see section II1.4)

v

Calculation of the upper and lower
power limits (see section II1.B)

v v
Optimization with Optimization
coordination without coordination
(see section III.C) (see section II1.D)
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Distribution of the total power

among the aggregators
(see section IILE)

v

Set of the charging power of PEVs
(see section III.F)

no
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FIGURE 2. Block diagram of the proposed methodology for the
coordination of PEV aggregators.

Monte Carlo simulations (MCSs) are performed. Each MCS
requires the use of the complete methodology illustrated
in Fig. 2, by using as inputs a set of random numbers gener-
ated from the probability density functions of the stochastic
variables in order to create a deterministic charging scenario.

Once the set of random input parameters is generated,
it is used to calculate the coupling constraints among all
PEVs in the optimization stage, i.e., SOC and power limits,
which are presented in Sections III.A and IIL.B, respectively.
Then, the optimization problem formulated in Section III.C is
solved to obtain the optimum total power of the system under
coordination, in the jth time interval. In parallel, the opti-
mum power of each aggregator without coordination, in the
jth time interval, is obtained individually, as is highlighted
in Section III.D. The results obtained from both optimiza-
tion blocks are used to evenly distribute the total optimum
power among the aggregators, as is shown in Section IILE.
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Finally, the power assigned to each aggregator is distributed
among the PEV chargers, using the method presented in
Section III.F, and the new SOC reached by the PEVs is
computed. The iteration ends and the total problem decreases
in a time interval.

The entire methodology is repeated for the next time inter-
val, i.e. j + I, and so on until the calculation of the output
variables of the entire time frame, i.e., the N time intervals,
is completed. The block corresponding to outputs contains the
control variables of the methodology, which are the optimum
total power profile, the optimum power profile of the aggrega-
tors and the optimum power profile of the PEV chargers under
DSO coordination. These control variables are stored after
each MCS in order to finally be able to analyze the results
statically.

A. CALCULATION OF THE UPPER AND LOWER SOC LIMITS
This step consists of the calculation of the upper and lower
SOC constraints required to optimize PEV charging. These
constraints are obtained through simulation of both early and
late charging, respectively. Since the available power of each
aggregator is limited, the calculation of the early and late
charging power profiles requires distributing the available
power among the PEVs in each time interval. In addition,
such distribution must suitably consider which PEVs are
selected to be charged in each time interval.

Considering the above information, the proposed algo-
rithm first calculates the non-deferrable charging power, i.e.,
the energy that cannot be supplied to the PEV batteries in
future time intervals and assigns the available power to this
demand. Then, the rest of the available power is assigned to
charge a part of the flexible demand, which is referred to as
deferrable charging power. Through the proposed algorithm,
such assignation is performed in a way that allows for increas-
ing the maximum feasible charging power of the aggregator
in future time intervals, thus maximizing the feasible zone of
the stored energy in the PEV batteries. These energy limits
are expressed in terms of SOC variables. Those variables are
expressed in per unit terms instead of in percent terms in order
to abbreviate the equations.

1) UPPER SOC LIMITS

In [5], early charging is computed assuming that energy is
supplied to each PEV immediately at its time of arrival and
the process is continued until all PEV batteries complete
their full charge (or desired final SOC). However, this way
of computing early charging fails if the power limit at each
aggregator (the difference between the rated power of the
SDT and the base load supplied by it) is not considered. In this
paper, in order to simulate early charging in a suitable man-
ner, a three-step methodology, shown in Fig. 3, is proposed.
The calculation processes involved in each block, noted as
(1.1), (1.2), and (1.3) in Fig. 3, are described in detail in the
numerals /.1, 1.2, and 1.3, respectively.
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FIGURE 3. Block diagram of the proposed methodology for the
distribution of aggregator power among PEVs.

a: CALCULATION OF THE MAXIMUM CHARGING POWER

OF THE PEVS

The maximum charging power of the PEVs at the kth time
interval is calculated according to (1). It is considered that
the maximum power of charging of a PEV is the minimum
value among the charger power, the available power of the
aggregator and the power needed to reach the final feasible
SOC in one interval. The power of the PEV charger can be
considered to be constant during charging time. However,
in this work it is expressed as a time function so as to consider
the real charging curves.

PV (1) = min (P;;’;(tk), P& (1),

socCt () — SOC (1 1)

Bi,a) ey

Nia At
where
0 ifn<hy )
Ph(n) = 3 f) if WY <t < WT )
0 if h?:ff <1t

SOCfa(tk) = min [1, SOC;TZ(tk—l)

IN
Ni,a At . ch
+ Tm;mm (Peho. PZ”(t))} 3)

b: CALCULATION OF THE TOTAL CHARGING POWER OF THE
AGGREGATOR

The next step is to define the total charging power of PEVs
for each aggregator in the kth time interval, according to (4).
It aims at charging the maximum feasible power in the time
interval.

Va
PAG (1) = min <PZV () ZPTZ”EV(tk)> “)
i=1

c: CALCULATION OF THE CHARGING POWER OF THE PEVS
In this step, the total charging power of the aggregator
in the kth time interval is distributed among the PEV
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chargers, in such a way as to reach the maximum fea-
sible upper SOC limit in the total period of charging.
The proposed methodology consists of two sub-stages:
a) assignation of non-deferrable charging and b) assignation
of deferrable charging. The first consists of defining the
energy that cannot be charged in later time intervals, i.e., the
difference between the energy required to complete battery
capacity and the energy that could be charged during the
rest of the optimization time window, considering the power
limits of the PEV charger and the aggregator. The power
required to charge the total of that energy, or the maximum
feasible charging, of each PEV in a time interval is calculated
as shown in (5).

P (1)
SOCt, () — SOC" (1)
Ni,a At

= min |:P;-"Z‘XEV (t) , max <0,

N
Big— Y PEY (r))} )

1=t

Then, those values are adjusted evenly according to the
total charging power, as is shown in (6).

, ) PmaxAG (tk)
Plo" () = | min | 1, 2 Pl () (6)
IARCY
=

After that, the SOC and the power of each PEV are
recalculated using (7) and (8), respectively, as is the total
charging power of the aggregator by using (9). These vari-
ables, together with those calculated in (10), are needed for
the assignation of deferrable charging. The algorithm shown
in Fig. 4 is then performed to calculate the deferred charging
power of each PEV.

non (t) Ni,a At

SOC (1) = SOC (tr_1) + WB— M
i,a
PEY (1) = PIEY (1) — PO (1) ®)
Va
PG (1) = PG (5) = " PR (1) ©)

i=1

Ei o(tx) = (SOC{, (1) — SOC}") (t))Bia  (10)

Finally, the final values of the SOC and the charging power
of early charging in the kth interval are obtained according
to (11) and (12).

def
' P (1) nia At
SOC" (1) = SOC" (1) + % an
i,a

/ d
PEY (t) = P (i) + P () (12)

2) LOWER SOC LIMITS
To obtain the lower limit of the SOCs, delayed charging must
be simulated. For that purpose, the methodology presented for
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i

P[;naxAG (lk)(—P[;naXAG (tk)_upaux
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def([k) « pdef([k) + paux Vb e[l,u]

PmaxEV )

o Prrfz‘zszV'([k)_Paux

R4 =0

V,
Z PmaxEV(tk) 0

Output
Pdef(tk) ViellV,]

FIGURE 4. Block diagram of the proposed methodology for the
calculation of deferrable PEV charging.

early charging can be simply adapted to calculate the charging
power of the PEVs starting from the N'th time interval.

B. CALCULATION OF THE UPPER AND LOWER

POWER LIMITS

In this step, the power constraints, which are used in the
optimization stage, are calculated. For that purpose, the
individual maximum charging power and the feasible final
SOC of the PEVs are recalculated according to (1) and (3)
respectively, but using SOC; ,(tj—1) instead of SOC: Z(tk_l).
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Then, the maximum power constraints PZ’“XAG(tk) are recal-
culated according to (4). The minimum power constraints
of the aggregators are considered null for any time interval,
as V2@ is not considered in the proposed methodology.

C. OPTIMIZATION WITH COORDINATION

In this step, the optimization problem corresponding to coor-
dinated charging is formulated as a linear programming
model, as shown in (13). It minimizes the total charging
costs of the aggregators, limiting the total power through
a penalization for exceeding the rated power of the PDT.
It can be noted that as the proposed model in this section is
formulated as the optimization of the total charging power
profile, the number of control variables depends only on the
length of the time span of each iteration, i.e., it is independent
of the number of aggregators and PEVs. Thus, the size of
the optimization problem is reduced significantly, and it can
be easily solved with a basic algorithm, e.g. simplex, which
enables the optimization of PEV charging of large distribu-
tion systems.

N N
min Y C (1) P (1) At + Cy Y H (1)
k=j k=j
k A Vg
5.1, ZP"P’(t,)At < Z (SOCZZ (%)

r=j a=l1 i=1
_SOCIa(t/ 1))B alMials

ZP"”’(t YAt > Z

—_

A
PP (1) < ZPZ"”XAG(tk);
a=1
PP (tr) > 0;
PP (tx) + L (1x) — H (1) < Sg;
kelj,N] and r €l]j, k] (13)

The first and second constraints define the upper and lower
limits of the SOC, respectively, calculated in Section IIL.A.
The third and fourth constraints define the upper and
lower limits of the total power, respectively, calculated in
Section III.B. The last defines the excess of charging power,
H (1), above the rated power of the PDT.

Since the controllable variables of the optimization prob-
lem are the total power of all PEVs supplied by the primary
distribution system in each time interval, i.e., P (t;.), it is
not possible to consider the finalization of the charging of an
individual PEV battery in the calculation of the upper limit of
the total power. As such, the feasibility of the solution cannot
be ensured for all time intervals j + 1 to N. Because of this,
the methodology considers the solution of an optimization
problem for the entire assessed remaining period, to then store
only the optimum power obtained at the jth time interval,
which is in addition distributed among the PEVs. After this
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first optimization, a second reformulated optimization prob-
lem, reduced in time interval, i.e., from, the j 4+ I th to the
N time intervals, is calculated, and the optimum power at
the j + 7 th time interval is again stored. This procedure is
repeated until it completes the solution to the N reformulated
optimization problems and obtains the N optimum powers to
be supplied to the PEVs.

D. OPTIMIZATION WITHOUT COORDINATION

In this step, the optlmum power of charging of each aggre-
gator, i.e. Py opiA (tk) is calculated, minimizing their charging
costs without considering coordination among them. The cor-
responding optimization problem is presented in (14), which
is formulated and solved individually for each aggregator.

t)‘l
min Z PPAG C(1) At

1=ty
k Ve
s.t. ZPZ’”AG(tr)At < Z [
r=j i=1
—SOCiq (ti-1)) Bi.a/Mi.a
k Ve
P OIED |
r=j i=1

—SOCiq (ti-1)) Bi.a/Mi.a
PP < PR (a);
PP (1) = 0;
kelj,N]l and r € j, k] (14)

SOC (1)

La

)

SOC% (1)

(
)
(
)

The first and second constraints define the upper and
lower limits of the SOC, respectively. The third and fourth
constraints define the upper and lower limits of the total
power. Once (15) is solved for each aggregator, the obtained
optimum powers of the jth time interval are used to distribute
the optimum total power obtained under DSO coordination,
as is shown in section III.E. It can be noted that the optimum
power profiles of the aggregators obtained in this section
could be defined externally from the methodology, e.g. being
calculated daily or hourly for the aggregators and reported to
the DSO.

E. DISTRIBUTION OF THE TOTAL POWER AMONG THE
AGGREGATORS

After the optimization stages have been performed, the next
step is to distribute the total optimum power, obtained by
using the coordination strategy, evenly among the aggregators
by considering their optimum power profiles. This even dis-
tribution of the total optimum power is computed by using a
direct proportion between the deviation of power assigned to
the aggregator from its optimum value and its maximum fea-
sible deviation, as it is expressed in (15) and (16). The max-
imum feasible deviation is defined as the difference between
the optimum power of the aggregator and its power limit
PZm(tj), which would be the upper or the lower limit depend-
ing on the need to increase or decrease the total power PP (1)),
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respectively, from the sum of the optimum individual powers
of the aggregators P{’ tAG(tj). Additionally, a power flow cal-
culation is performed to verify the system stability. In this
stage, the values of P°P'(#;) and Pg‘””AG(tj) are modified to
satisfy the power flow constraints by using the methodology
shown in Fig. 5. As a first step, if the current constraints are
violated in one or more lines, the values of PZ””’AG(IJ-) of the
aggregators supplied by each saturated line d are adjusted
according to the criteria defined in (15) and (16), but by using
PI*(1j) instead of P°P'(t) and considering the subset Ay
of aggregators supplied by the saturated distribution line d,
instead of A. Secondly, if the voltage constraints are not
satisfied, P°7'(t;) is adjusted using the variable w defined
in (17). Then, the values of PZOO’AG(tj) are recalculated and
the power flow is verified again.

Va

> [sockr ) - $0Cia-n)]

i=1

B; 4;
Ni,a At b
A
if PP (1) < > PPAC ()
P = 1 v, “=! (15)
[soct ) - S0C,att-1)]

,a

M<

—

B 4;
Ni,a At b
A
if PP () > Y P51
a=1
PZOWAG(I‘]') _ PZPIAG(IJ')
Plin(y) — PO 1)

A
PP (1) — 3 PPt
1

A aZA (16)
> Plimi) — 3 P01
1

a=1 a=

max [U()] — U™"
max [U(#)] — min [U()]
if min [U(t))] < U™
max [U(tj)] — min [U(tj)]
Umax — min [U(#)]
if max [U(@t)] > U™

7

F. DISTRIBUTION OF AGGREGATOR POWER AMONG

THE PEVS

Finally, to complete the jth iteration, the charging power
and the new SOC of each PEV are calculated using the
methodology presented in step /.3 of Section III.A. For each
aggregator, the value of k£ and the power to distribute among
the PEVs are defined as shown in Fig. 6.

IV. CASE STUDIES

A. CASE STUDY I

We have tested the same case study presented in [5], com-
posed of four aggregators which manage PEV charging in
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FIGURE 5. Block diagram of the proposed methodology for the
distribution of total power among the aggregators.

four low voltage distribution systems powered by a medium
voltage grid. The same stochastic variables and the same
system have been used, with the aim of comparing the cited
work and the methodology proposed in this paper. The TOU
tariff defined in the cited work is shown in Table 1.

TABLE 1. TOU tariff.

TOU price ($/kWh) Time
Peak 0.138 (8:00-12:00] and (17:00-21:00]
Shoulder 0.109 (12:00-17:00] and (21:00-24:00]
Off-peak 0.058 (0:00-8:00]

B. CASE STUDY II

1) POWER SYSTEM

The IEEE 33-bus test distribution system [25] has been
adapted to this case study. A total of 32 SDTs of
12.66/0.38 kV have been added, connecting the base load and
the PEV chargers to the medium voltage grid. Additionally,
the main grid is supplied through a PDT of 5 MVA. It is
considered that in each of the SDTs a unique aggregator
manages the PEV chargers connected to it. A standard base
load profile of 24 hours from San Juan, Argentina was used.
The same TOU tariff from case study I has been used. A per-
missible voltage deviation of 5% from the rated value has
been considered.
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FIGURE 6. Block diagram of the proposed methodology for the set of PEV
charging power.

2) VEHICLE FLEET

A total of 450 hybrid PEVs were considered, which are
connected to the SDTs by chargers of 7 kW. The battery
capacity of the PEVs varies between 40 and 60 kWh, taken
from real models available on the market, e.g., Tesla Model S,
Nissan Leaf and BMW i3. To calculate the initial charging
capacities, travelling distance was estimated using a Gaussian
distribution N (50,152) (km). It was assumed that the arrival
time and departure time of the PEVs to the charging sta-
tions follow Gaussian distributions N (20:00, (1 h)?) and
N (7:00, (1 h)?), respectively.

V. RESULTS

A. CASE STUDY I

Monte Carlo simulations were performed for this case, with
a total of 500 randomly generated charging scenarios (which
satisfies the convergence diagnosis method of Gelman and
Rubin [26]). The total power profiles obtained with and
without coordination are shown in Fig. 7. The obtained mean
power profiles of the four aggregators are shown in Fig. 8.
The charging strategies with and without coordination are
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FIGURE 8. Power profiles of the (a) aggregator 1, (b) aggregator 2,
(c) aggregator 3, (d) aggregator 4.

referred to respectively as WC and WOC for abbreviation.
The baseload power is referred to as BL.

No significant differences in the graphs of the total power
profiles can be observed as compared to the cited work.
On the contrary, significant differences can be noted in the
individual power profiles of the aggregators. This is mainly
because the third aggregator benefits under the proposed
methodology since it demands a lower fraction of its total
available energy for PEV charging. This makes sense because
the aggregator costs are less affected by increases in energy
demanded by the other aggregators.
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In [5] the total profits of the aggregators are 900 $/day
and 901 $/day, with and without coordination respectively.
The total and individual profits obtained with the proposed
methodology are shown in Table 2.

TABLE 2. Profits in [$/day].

Charging

strategy Agg. 1 Agg.2  Agg.3  Agg. 4 Total
X 15401 20551 25623  307.85 923,62
WwOoC
o 4.953 5.482 6.180 6.778 11.753
we X, 15355 202.82 25562 303.73 915.74
o,  4.666 4.064 5.884 4.637 7.281
0.2984  1.3046  0.2369  1.3397  0.8524

(X1- %2)/%; [%)]

Regarding the computational complexity of the problem,
it must be noted that, in the case of the proposed method-
ology, the maximum number of controllable variables and
constraints in the DSO optimization problem are indepen-
dent of the number of aggregators, which are 2N and 5N
respectively, i.e. 192 and 480 for the case study. In the case
of the methodology presented in [5], the maximum num-
ber of controllable variables and constraints are 2 NV, and
N4V, + 1) respectively, i.e. 768 and 1632 for the case study.

In this regard, the computational complexity theory states
that the expected number of iterations in the solution of a lin-
ear programming problem is at least polynomial, i.e. O(n%),
with & > 3.5, depending on the algorithm, e.g. interior point
method, dual-simplex method, etc., [27], and, in the worst
case, the complexity has behaves exponentially, i.e. O(2" —1),
as is the case for the simplex method, [28], where n is directly
related to the number of control variables and the number
of constraints. Thus, the number of constraints and variables
of the LPs are those that determine the increase or decrease
in computational complexity. Therefore, with the proposed
approach, the total profit increased by 15.74 $/day, while
the computational complexity decreased at least VS'S times,
i.e., 128 times in the case of only four aggregators.

B. CASE STUDY Ii

Monte Carlo simulations of 1000 randomly generated charg-
ing scenarios have been performed for this case (which satis-
fies [26]). The mean power profiles obtained with and without
coordination are shown in Fig. 9. In all cases, the total power
profile has been limited to the rated power of the PDT, which
is 5 MW. A boxplot of the SOC evolution of the complete fleet
of PEVs of the 32 aggregators during the 24-hour period is
shown in Fig. 10. It can be noted that, all the PEV batteries are
fully charged at the end of the period. In addition, a boxplot
of the voltage magnitudes of the IEEE 33-bus test distribution
system with and without coordination during the 24-hour
period is shown in Fig. 11. It has been verified that in all time
intervals the voltage magnitudes are within the permissible
range. In both boxplots, the box represents the interquartile
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FIGURE 11. Boxplot of the voltage magnitudes of the IEEE 33-bus test
distribution system (a) with coordination, (b) without coordination.

range of 68%, while the whiskers are given by 95% of each
data distribution.

In Fig. 12 the power loss profiles with and without coor-
dination during the 24-hour period are shown. In the coordi-
nated scenario, the maximum power losses during the hours
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FIGURE 12. Power losses of the IEEE 33-bus test distribution system.
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of PEV charging are 30% lower than in the uncoordinated
case. The daily energy losses are 4.33 and 4.47 MWh (4.16%
and 4.3% of the total supplied energy, respectively) for the
coordinated and the uncoordinated charging, respectively.

The loss of life has been calculated for the case with and
without coordination, using the Susa thermal model [29] and
the IEEE aging model [30]. Results are shown in Table 3.
The parameters used as the inputs of the transformer thermal
model, which correspond to a 5 MVA ONAN-cooled trans-
former, are shown in Table 4.

TABLE 3. PDT loss of life.

With coordination Without coordination

Mean value 9.2682 h 16.5243 h
Standard deviation 0.0923 h 0.2358 h
TABLE 4. Susa thermal model parameters.
R T 770 Abror Abyr Or
[min] [min] [°K] [’K] [°C]
10 7 125 55 20 35

The average cost of energy supplied to the PEVs
without coordination is 0.058045 $/kWh, increasing to
0.058325 $/kWh for the case with coordination. The percent-
age of variation is 0.48%, which indicates that the profits of
the aggregators are not significantly affected. The average
cost of energy and the ratio of the energy used to charge PEVs
and the available energy for each of the 32 aggregators are
shown in Fig. 13. It can be noted that both curves are shaped
similarly. This means that the aggregators which demand a
greater percentage of the local available energy have higher
energy costs. Once again, this makes sense because they are
contributing in a higher degree to the PDT overloading that is
being avoided through the charging coordination.

0.3 1{ —e— Energy ratio E

2 —— Mean cost c 1 0.06 Z
da “ S~
=~ 025t P Pebest pch
2 2
g 10059 &
= 02r =
= <
S

0.15 . 0.058 =

1 8 16 24 32
a

FIGURE 13. Comparison between the use of available energy and the
mean cost per unit of energy. Energy ratio is, for each aggregator,
the ratio of the energy used to charge PEVs and the available energy.

Results demonstrate that the proposed methodology allows
for the mitigation of the impact of the PEV charging on the
distribution grids. Such impact can be reflected in the system
operation savings, i.e. savings related to the transformer loss
of life, the energy losses, and the violation of the voltage
constraints, among others. The DSO can then compensate
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for the decrease in the aggregators’ benefit by using the
aforementioned savings. In addition, the obtained charging
strategy ensures the reliability of the system operation.

VI. CONCLUSION

In this paper, an improved methodology for optimizing PEV
charging through the coordination of aggregators is proposed.
This methodology minimizes energy costs of the aggregators
while constraining the power supplied by the PDT to the
medium voltage grid and the power supplied by the SDTs to
the aggregators.

The optimization problem of the power of charging of
PEVs has been formulated as a linear model, which is easily
solvable with the most widespread and simple optimization
algorithm, i. e. simplex algorithm. Additionally, the number
of variables of such an optimization problem is indepen-
dent of the number of aggregators and PEVs, decreasing the
computational burden in applications of large distribution
systems, as was concluded through the results of case study 1.

Moreover, the calculation of the constraints of the total
SOC of the PEVs has been achieved through an iterative
methodology that applies a proposed algorithm of assign-
ment of the aggregator power among the PEVs, improving
upon the simple summation of individual constraints used
in other works (e. g. [5], [22]-[24]). Such improvement can
be observed in the results obtained in case study I since an
increase of the total daily profits of the aggregators can be
noted in comparison with those obtained in [5]. This achieve-
ment is mainly related to the improvement of the mentioned
constraints of the optimization problem, thus allowing us to
obtain a more accurate solution in each iteration.
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