
SPECIAL SECTION ON URBAN COMPUTING AND INTELLIGENCE

Received August 29, 2019, accepted September 13, 2019, date of publication September 23, 2019, date of current version October 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943146

An SDNFV-Based DDoS Defense
Technology for Smart Cities
CHUANFENG XU 1,2,3, (Student Member, IEEE), HUI LIN 1,2,3, (Member, IEEE),
YULEI WU 4, (Senior Member, IEEE), XUANCHENG GUO1,2,3, (Student Member, IEEE),
AND WENZHONG LIN2, (Member, IEEE)
1School of Mathematics and Information, Fujian Normal University, Fuzhou 350117, China
2Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350121, China
3Fujian Provincial Key Laboratory of Network Security and Cryptology, Fujian Nomal University, Fuzhou 350117, China
4College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.

Corresponding authors: Hui Lin (linhui@fjnu.edu.cn) and Yulei Wu (y.l.wu@exeter.ac.uk)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472008, in part by the Open Fund
Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, under Grant
MJUKF-IPIC201902, and in part by the Fuzhou Science and Technology Bureau Project under Grant 2017-G-79.

ABSTRACT A software defined networking (SDN)-enabled smart city is a new paradigm that can effectively
improve the cost efficiency and flexibility of data management through data-control separation. However,
it faces significant security threats such as distributed denial of service (DDoS) attacks which jeopardize
the security and availability of data and services by overloading the system with excessive traffic from
distributed sources. To improve the DDoS defense capability and enhance the security of data manage-
ment in SDN-enabled smart cities, this paper proposes a DDoS attack Defense strategy based on Traffic
Classification (DDTC). We use software defined network function virtualization (SDNFV) architecture and
traffic classification strategy, to improve the flexibility and reduce the load of SDN against DDoS attacks.
Experimental results show that the proposed DDTC can not only launch DDoS attacks detection quickly,
but also accurately track the sources of DDoS attacks. More importantly, it can reduce the risk of attack on
the controller of SDN and improve the effectiveness of the system.

INDEX TERMS Distributed denial of service, flow classification, smart city, software defined networking,
network function virtualization.

I. INTRODUCTION
The idea of the smart city has been widely discussed, due to
its promising capability of enhancing the safety and quality of
the life of urban citizens [1]. The smart city uses information
and communication technologies, such as sensors and het-
erogeneous network infrastructure, to manage various types
of data that require different kinds of processing techniques,
such as cloud computing, network physical systems, and big
data analytics [2]. In order to effectively utilize the collected
big data and perform real-time data analysis for smart city
services, software defined networking (SDN) paradigm is
used to simplify resource management and provide a feasible
solution for quality of service (QoS)-aware data transmission
in smart cities [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongxiang Li.

As an emerging technology, SDN has unique features such
as centralized control, programmability and flexibility. It sep-
arates the network into two planes: the control plane and the
data plane. The former acts as a brain to control the entire
network, and the latter forwards data through the network
according to the instructions of the control plane [4]. SDN
can manage data transmissions with diversified requirements
through the service interface provided by the SDN controller.

Although effective solutions can be achieved through SDN,
security vulnerabilities still exist [5]. The control plane acts as
the core of an SDN architecture, and therefore once a security
problem occurs on the control plane, it will affect, and may
even destroy the entire network [6].

Distributed denial of service (DDoS) attacks provide an
effective way for attackers to compromise the availability
of an SDN system. SDN environment is favorable for such
attacks since a DDoS attack only needs to destroy the con-
troller in an SDN architecture to achieve system crashes [7].

137856 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-5727-4553
https://orcid.org/0000-0003-1716-1399
https://orcid.org/0000-0003-0801-8443

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

When a packet comes from an unmatched flow to a switch,
it will be forwarded to the controller for processing. If the
source addresses of the incoming packets at the switch are
spoofed, which they usually are, the switch will not find a
matched rule and will forward the packet to the controller.
The massive DDoS spoofed packets can hold and exhaust
the resources of a controller, which will make the con-
troller unable to be accessed by the newly-arrived legitimate
packets [8]. Even if there is a backup controller, it may face
the same challenge [9].

Many solutions for DDoS attacks against the SDN archi-
tecture have been proposed, and they can be divided into two
categories: intrinsic and extrinsic solutions [10]. Extrinsic
solutions rely on the properties of traffic flows in the net-
work [11]–[13], whereas intrinsic solutions mainly rely on
the structural features of SDN environment [14], [15]. The
extrinsic solution helps SDN to accurately defend against
DDoS attacks by adopting high-precision methods, but the
use of these methods will also bring greater computation bur-
den to SDN [16]. However, the intrinsic solution can reduce
the load on the SDN-based DDoS attack defense system
compared to the extrinsic solutions. For example, when a
part of the SDN network faces a large number of DDoS
attacks, the network function virtualization (NFV) technol-
ogy concentrates on other parts of the SDN network to help
the attacked part defend against DDoS attacks by virtualizing
the SDN application and deploying it in the attacked part.
SDN realizes the dynamic allocation of resources through the
combination of NFV technology, and avoids the threat that
the attacked part of a network generates too much traffic load
and cannot handle normal traffic [17]. Therefore, a new archi-
tecture, software defined network enabled network functions
virtualization (SDNFV), is built in combination of NFV and
SDN [18].

SDNFV relies on the centralized control of SDN to pro-
vide convenient network-wide management while SDNFV
still allows network functions (NF) to perform local con-
trol for stateful packet forwarding [19]. SDNFV dynami-
cally instantiates well-defined NF in the network to han-
dle packet flow and reduces the burden on the SDN con-
troller [20]. Since an attacker can initiate multiple types of
attacks, and these attacks can be different in size for different
switches, priority should be given to solving the severely
affected part, so that the system can still maintain normal
operation. In addition, SDNFV can virtualize the application
in the severely affected part of a network to perform the
corresponding function [20]. Therefore, SDNFV brings new
opportunities for the system to achieve the defense of DDoS
attacks. Based on the SDNFV architecture, this paper pro-
poses an SDNFV-based traffic classification strategy (DDTC)
to implement a recoverable DDoS attack defense system.
It divides the risk of conviction and adopts appropriate strate-
gies. The main contributions of this paper are summarized as
follows:
1) We propose an SDNFV-based DDoS defense architecture

that is able to virtualize network functions for reducing

the load of an SDN controller and the system cost in the
event of DDoS attacks.

2) An enhanced random forest (RF) algorithm based on
mutual information and reinforcement learning is devised
for reducing the complexity of training a model and
improving the accuracy of detecting a DDoS attack.

3) Backtracking based on conditional entropy and traffic
classification for each suspicious and dangerous switch
is proposed, which reduces the time complexity of the
current backtracking method for traversing all switches
and improves the rate of traceability to the attack source.

4) We propose a flow classification strategy, named DDTC
that can handle the affected parts of a network as quickly
as possible to provide safer flow tables and accordingly
higher security. In addition, DDTC also contributes to the
resource layout of an SDNFV architecture.

The rest of the paper is organized as follows. Section II
introduces related work. In Section III, we provide the back-
ground knowledge. We present the proposed model and its
associated attack types in Section IV. The detailed intro-
duction of our approach is presented in Section V, and in
Section VI, the performance of our approach is confirmed
with extensive experiments. Section VII concludes the paper.

II. RELATED WORK
The frequency and magnitude of DDoS attacks have been
constantly increasing with detrimental impact on information
and communication systems [21]. Accordingly, there is a
booming body of research on this topic. In this section, we
focus on SDN and SDNFV related works and discuss it.
Firstly, the studies related to DDoS defense mechanisms in
SDN are examined. Then the security policies based on the
SDNFV architecture are reviewed to render the state-of-the-
art in the field of research for DDoS attacks.

A. DDOS DEFENSE MECHANISMS IN SDN
Bu et al. [20] proposed a novel security mechanism that
combines both the hybrid machine learning models and the
enhanced history-based IP filtering scheme. In this work,
detecting DDoS attack flow is through a combination of sup-
port vector machine (SVM) and self-organizing map (SOM),
which increases the accuracy of detecting DDoS attacks. In
addition, the history IP records can reduce the possibility of
DDoS attacks masquerading IP. However, the combination
of machine learning algorithms greatly increases the com-
putational complexity of the system. Given that most DDoS
attacks have the ability to disguise IP, if the attacker peri-
odically modifies the IP, the history-based detection method
will have a significant impact on the normal flow. The
authors in [22] proposed a DDoS attack detection scheme
based on the XGBoost algorithm to protect the SDN con-
troller, which can handle rapidly growing network traffic.
Castro-Ramos et al. [9] presented a DDoS attack detection
method based on the entropy change of a target IP address.
This work uses statistical methods to detect the presence

VOLUME 7, 2019 137857

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

of DDoS attacks when the entropy exceeds a pre-defined
threshold. This method requires less computation, but the
accuracy is not high; it is only effective for attacks without
forgery IP. Giotis et al. [23] discussed a modular archi-
tecture for the separation of the data collection process
from the SDN control plane with the employment of sFlow
monitoring data. Wang et al. [24] proposed a safe-guard
scheme (SGS) to reduce the impact of DDoS attacks on
the controllers, by deploying multiple controllers in the con-
trol plane through a clustering algorithm. Software-defined-
networking score (SDNScore) was proposed in [25] to make
switches smarter for implementing DDoS attack detection
schemes. However, the concept of ‘‘capable switch’’ is a
controversial issue in the literature, because it has a major
conflict with the concept of digital separation of SDN [26].
Piedrahita et al. presented FlowFence [13] in this work,
the network effectively mitigates the DDoS attacks by limit-
ing the bandwidth usage on the congested interface. However,
this mechanism is a rate limiting mechanism that does not
completely eliminate the effects of DDoS attacks.

B. SDNFV STRATEGIES FOR SECURITY
SDNFV proposes a new technology which takes advantage
of SDN and NFV to strike the right balance of efficiency,
flexibility, and ease of control [19]. It relies on the central-
ized control of SDN to provide convenient, network-wide
management, while it still permits local control by NF when
forwarding depends on packet state. SDNFV provides the
ability to dynamically instantiate well-defined functions in
the network to handle packet flows, while SDNFV reduces
the burden on the SDN controller. Several solutions have
been developed to overcome SDNFV security issues [17],
[18], [27]. Machado et al. [18] proposed a solution called
ANSwer which combines NFV and SDN architectures to
quickly identify and handle different anomalies in different
scenarios, by monitoring and analyzing the behavior of the
network infrastructure. Sampaio et al. [17] used NFV and
reinforcement learning to build an SDN detection and miti-
gation system. In this work, the system collects the evidence
of abnormal behaviors from network metrics and coordinates
the detection and the mitigation to maintain network oper-
ation by taking appropriate policies based on the reward of
reinforcement learning. The authors in [27] presented a decoy
chain deployment method against penetration attacks. This
work considers the security status of networks and deploys
the decoy chains with the resource constraints.

Aiming at the shortcomings in the above-mentioned stud-
ies, this paper proposes a scheme based on SDNFV architec-
ture and uses traffic classification for DDoS defense through
traffic classification technology, which can solve both the
overload problem of DDoS attacks and defense attacks faced
by SDN controllers.

III. PRELIMINARY
Before we elaborate our approach, some preliminaries need
to be presented to facilitate the understanding.

FIGURE 1. The OpenFlow forwarding process.

A. SDN PACKET FORWARDING MECHANISM
The OpenFlow protocol is one of the mainstream SDN
southbound interface protocols, which mainly regulates the
communication standard between the control plane and the
data plane. Its forwarding process is shown in Figure 1. The
OpenFlow switches use a flow table to match and forward
packets. When a packet arrives at a switch, if the flow table
in the switch has a flow entry that can match the packet, the
switch performs the corresponding action. If there is no flow
entrymatching the packet, the switch will pass the data packet
to the controller over the secure channel. The controller then
determines the operation for the unmatched packet, for exam-
ple, generating a new flow entry to the switch [10].

B. NFV
NFV is an emerging technology that uses software to imple-
ment network functions, which are implemented as vir-
tual machines running on commodity servers. NFV not
only provides the benefit of flexibility, but also reduces
the cost by running on commodity platforms like x86- or
ARM-based servers instead of specialized hardware [28].
Currently, the NFV architecture includes three key elements:
network function virtualization infrastructure (NFVI), virtu-
alized network function (VNF) and NFV management and
orchestration (NFV MANO) [29]. NFVI is a combination
of hardware and software resources, which constitutes the
environment for deploying VNF [30]. A VNF is an imple-
mentation of NF deployed on a virtual resource such as a
VM [31]. NFV MANO provides the functionality required
to configure a VNF, as well as related operations such as the
configuration of VNF and the infrastructure to run these func-
tions. It includes the orchestration and lifecycle management
of physical and/or software resources that support infrastruc-
ture virtualization, as well as VNF lifecycle management.
It also includes a database for storing information and data
models [32].

137858 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 2. The Enhanced learning schematic.

C. REINFORCEMENT LEARNING AND RANDOM FOREST
CLASSIFIER
1) REINFORCEMENT LEARNING
Reinforcement learning is a weakly supervised machine
learning method [33]. It can be trained autonomously without
giving annotated data in various states, and it has broad appli-
cation prospects for solving complex optimization decision
problems. Figure 2 depicts a typical reinforcement learning
process: at each moment, the agent observes the environment
and makes a decision Di based on state Si, while the agent
gains a reward Ri and takes the next decision Di+1 based
on the reward. After multiple iterative steps, the agent gains
decision-making experience and adjusts its decision-making
strategy based on the final cumulative reward after multi-step
decision makings.

2) RANDOM FOREST CLASSIFIER
Random forest is a combined classifier [34]. It uses boostrap
resampling method [35] to extract multiple samples from the
original sample and construct a sub-data set, and then uses
the sub-data set to form the basic decision tree and train it.
The classification result is eventually obtained by a voting
method. The training and classification processes of the ran-
dom forest algorithm [36] are shown in Figure 3. According
to the bootstrap idea, the original training sample set is sub-
jected to random sampling with reentry, and k training sample
subsets are obtained. The training sample subset has the same
number of samples as the original training sample set. Then,
a classification and regression trees (CART) is generated for
each training sample subset, and a total of k CART decision
trees are constructed. Next, test sample set is imported into
k CART decision trees for classification. Finally, through
the voting mechanism, the classification result of the largest
number of votes is selected as classification results of the
entire random forest. The detailed steps for random forest
classification are as follows.

Let the number of samples in the training sample set S
be N , and each sample has M attributes. The procedure of
establishing a random forest algorithm contains K decision
trees as follows [36]–[39]:

1) According to the boostrap resampling method, a new
training data subset di with a sample number n is randomly
selected from the original data set D. Then, the process is
repeated k times to obtain different training data subsets
d0, d1, d2, . . . dk−1 which are different from each other.

2) A CART decision tree is established on each training data
subset di, and a random feature vector is introduced in the

FIGURE 3. Random forest flow chart.

training process of the decision tree. The most common
method is to randomly select the F features in the original
feature set to split the decision tree nodes.

3) Predictive samples are used to build classification mod-
els, that is, to construct k CART decision trees. The
test sample set is then predicted by the predictive model
and the classification result is obtained. Finally, all
decision trees adopt a voting mechanism to vote for
the best classification results as the final classification
result.

IV. SYSTEM MODEL AND ATTACK MODEL
In this section, we will outline the system model and present
the proposed threat model.

A. SYSTEM MODEL
The proposed modules of the SDNFV architecture are illus-
trated as follows:

1) Control plane: The control plane includes an SDN con-
troller and an NFV-O controller coordinated by the
SDNFV application.The SDNFV application includes
flow table orchestration, service chain management, and
placement engine; NFV-O includes NFV orchestrator,

VOLUME 7, 2019 137859

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 4. An example of defense technology based on the SDNFV architecture.

VNFmanagement, and virtualized-infrastructure-manager
(VIM).

2) Data plane: The data plane includes multiple switches that
support the OpenFlow protocol.

3) Service function chain plane: The service function chain
plane is a virtual plane composed of multiple chains.Each
chain includes multiple VNF. In our DDoS defense solu-
tion, we consider only one chain used to implement the
attack backtracking function.
In order to describe the working principle of the system

model, an example is shown in Figure 4.In this example,
there are five switches, namely A, B, C, D, and E, in the
data plane. The service function chain plane has a chain of
virtualized attack backtracking functions. The control plane
has an SDN controller, an NFV-O controller,and an SDNFV
application. First, the SDN controller continuously monitors
the rate of packet arrivals from the switch to determine if there
is any abnormal. Once the controller observes an anomaly,
the corresponding suspicious switch is identified, for exam-
ple the switch D. Then, the controller advertises the entire
network and announces that the switch D is a suspicious
switch [40], [41]. The other switches reduce collaboration
with suspicious switches for packet forwarding, thereby indi-
rectly reducing the number of packets going through the sus-
picious switch. After an SDN controller detects a dangerous
switch, i.e., the switch D in this example, it requests the
SDNFV application to build a service function chain. Then,
the flow table orchestration, service chain management, and
placement engine in the SDNFV application work together
to build the attack backtracking service chain and map it to
switch D. Finally, the switch D and the final attack source
are cleared. In this way, the SDNFV architecture not only

effectively removes the hazard of the suspect switch to help
defend against DDoS attacks, but also provides higher secu-
rity and self-processing capabilities.

B. ATTACK MODEL
The SDN environment is vertically divided into two main
functional layers: the control layer and the data layer, and thus
they are usually the main targets of malicious DDoS attacks
[11]. The DDoS attacks of SDN can be classified into two
categories: control layer DDoS attack and data layer DDoS
attack, where our work focuses on the former one. The details
of the two attacks are described in Figure 5.

• Date layer DDoS attack:
1) The attacker constantly sends a large amount of new

traffic to the switch.
2) The switches detect the new packets and encapsulate

them into a large number of packet_in messages.
These messages are sent to the SDN controller, con-
suming the resources of the SDN controller.

• Control layer DDoS attack:
3) The attacker sends new traffic with more data to the

switch.
4) While the switch requests processing from the control

plane, the corresponding data packets are stored in the
local database, but it is easy to cause the database to
be overloaded and cannot handle normal traffic.

V. DDTC: A DDOS ATTACK DEFENCE STRATEGY BASED
ON TRAFFIC CLASSIFICATION
In this section, we propose a traffic classification solution for
the above-mentioned SDNFV architecture to defense DDoS
attacks, namely DDTC.

137860 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 5. The two types of DDoS attacks in SDN.

FIGURE 6. Flow classification process and the corresponding modules.

The proposed DDTC consists of three modules: an attack
detection trigger module, an attack detection module, and
an attack backtracking module. Figure 6 shows the flow
classification process and the corresponding modules. The
attack detection trigger module is responsible for real-time
detection of the system status. The attack detection mod-
ule is responsible for detecting the DDoS attack flow, and
the attack backtracking module is responsible for the path
backtracking to locate the attack source. When the attack
detection trigger module detects an abnormal condition, the
SDN controller immediately uses the attack detection module
to search the existing DDoS attack. When a DDoS attack is
found, the attack backtracking module starts to work imme-
diately. The attack backtracking module completes the path
backtracking to clean up the attack source.

Before going into the details of DDTC operation, we first
provide a higher-level description to render the overall
scheme as shown in Figure 7.

1) At the beginning of the system work, the first step is
to train the basic decision tree in the random forest.
First, we select the dataset to perform mutual informa-
tion feature preprocessing. Then, we construct multiple
sub-data sets by boostrap resampling, and build a basic
decision tree based on the sub-data set. Finally, the suspi-

cious stream is obtained after the attack detection trigger
module performs, and the DDoS attack detection is then
completed.

2) After the system constructs the basic decision tree in the
random forest, the switch starts to forward packets based
on the matching flow table. When the flow enters the
switch, if the match confirms that the flow is a new flow,
the switch sends a packet_in message to the SDN con-
troller. If a matching is found against the flow, the packet
will be forwarded accordingly.

3) When the SDN controller accepts the packet_in mes-
sage, it continues executing the attack detection trigger
module. That is, the SDN controller continuously detects
the packet_in message rate and compares it with the
pre-defined threshold. If the detected rate exceeds the
threshold in a normal case, the SDN controller performs
the attack detection module and locates the abnormal
switch. In addition, the SDN controller will notify the
entire network after T cycles. Otherwise, it will correct
the flow table for normal packet forwarding.

4) After forwarding the abnormal stream to the attack detec-
tion module, the system performs the attack detection.
If the classification result shows a flow of the DDoS
attack, the flow is then identified as a dangerous flow and
the switch in which the flow is located is considered to be
a dangerous switch. In addition, the SDN controller will
advertise the switch as a dangerous switch throughout the
network, so that other switches do not forward the flow
to the dangerous switch. Otherwise, the abnormal flow is
identified as a suspicious flow, and the switch in which it
is found is identified as a suspicious switch.

5) When the system detects a dangerous flow, the sys-
tem immediately performs an attack backtracking mod-
ule. That is, the SDN controller notifies the SDNFV
application and the NFV-O controller. Thus, the SDNFV
application builds a service function chain for attack back-
tracking, and the NFV-O controller allocates resources to
build a virtual backtracking module. After the deployment
completes, the attack backtracking module performs deci-
sions in the order of the dangerous switch, the switch
around a dangerous switch, the suspicious switch, and
the switch around a suspicious switch, and determines
whether the switch is conditional entropy on the attack
path. Finally, the attack backtracking is implemented.

6) The attack path completes the backtracking and clears the
attack source.

The relevant terms and parameters of DDTC are described
in Table 1, with the details explained in the following
subsections.

A. ATTACK DETECTION TRIGGER MODULE
As an important factor that affects the efficiency of detec-
tion and the performance of system, the trigger mechanism
of detection methods has not yet received much research
attention. Previously, periodic trigger is a common detection

VOLUME 7, 2019 137861

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 7. An overall operation of DDTC.

TABLE 1. System parameters.

mechanism in existing DDoS defense systems [42]. However,
the period in the periodic trigger mechanism is difficult to
determine. If the selection period is too long, the DDoS attack

cannot be detected in time. If too short, the detection will
start very frequently, which will waste resources such as CPU
and bandwidth. Therefore, in order to improve the problem of
periodic triggering, many existing solutions propose a trigger
based on packet_in messages, which is called a packet_in
trigger [14], [43]. The packet_in trigger mechanism has a
faster response to DDoS attacks than the periodic triggering
mechanism, reducing the workload of the controller and the
switch. Therefore, the DDTC attack detection trigger module
constructs a lightweight detection trigger mechanism through
the trigger mechanism based on packet_in messages.

The packet_in message is a special message in the SDN.
When the switch encounters a new flow, it will perform flow
table matching. If no matching flow entry is found, the data
packet is encapsulated into a packet_in message and sent to
the SDN controller. In addition, in order to avoid the problem
that it generates a large number of packet_in messages and
causes the controller to be overloaded by DDoS attacks,
we collect statistical information (IP address, Port number,
etc.) of header fields through packet_in messages without
collecting flow entries. Since the OpenFlow switch and
SDN controller exist in the SDNFV architecture, the attack
detection trigger module based on the packet_in message

137862 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

triggering mechanism can be naturally applied to the DDoS
attack detection trigger.

The packet_in message triggering mechanism can be used
for attack detection triggers, but there are still some disad-
vantages. For example, the static threshold in the packet_in
message trigger mechanism cannot handle the variable attack
size [10]. In the DDoS attack environment, the scale of DDoS
attacks is random. In order to solve the above problem,
we propose an improved packet_in trigger mechanism in
the DDTC attack detection trigger module. The improved
mechanism continuously adjusts the threshold by detection
results to adapt to the ever-changing DDoS attack scale. The
improved packet_in trigger mechanism consists of two mod-
ules: the packet_in message speed calculation module and the
self-adjustment threshold module. The former is configured
to calculate the rate of a packet_in message transmitted to the
SDN controller. The latter is used to dynamically adjust the
pre-defined threshold based on the detection result obtained
in the last detection cycle. In addition, the packet_in mes-
sage speed calculation module stores the packet_in mes-
sage counter and records the number of packet_in messages,
a predefined modulus, and a timer that records the arrival
time interval of the packet_in message. The self-adjustment
threshold module uses a self-adjusting threshold algorithm to
adjust the pre-defined threshold. The self-adjusting threshold
algorithm proposes a method of adjusting the threshold by
counting the number of abnormalitiesN and adjusting thresh-
old impact factor δ.
The detailed process of the packet_in trigger is shown in

Algorithms 1 and 2. When the packet_in message arrives,
the number of packet_in messages is called Pin_num and
will increase by one. num_threshold is defined as a threshold
and is initialized to a large number. Then, modulo operations
are performed on num_threshold and Pin_num repeatedly
until the resulting remainder is zero. At this time, the current
time is recorded and referred to as tlast . When the remainder
of the next modulo calculation is zero, the current time is
recorded and is referred to as tnext . Finally, T=tnext−tlast is the
time interval and the period of abnormal detection. Therefore,
the packet_in message rate can be calculated by Equation (1).

Vp=
num_threshold
tnext − tlast

(1)

After calculating the packet_in message rate is completed,
the rate is compared with the pre-defined threshold called
velocity_threshold to determine whether an abnormality is
detected. If the calculated rate is greater than the set threshold,
it is determined that there is an abnormality and the abnor-
mal number N is increased by one. Then, the self-adjusting
threshold module is performed before the abnormality detec-
tion of the next cycle is performed. num_threshold , T and
N will be sent to the Self-adjusting threshold module. The
module compares the combination of T and N to determine
the degree of risk of anomalies in the system. And the
pre-defined threshold is dynamically adjusted according to
the comparison result. If N is increased to a certain amount,

such as equal to 5, it indicates that the system has certain
risks and the threshold should be lowered accordingly to help
the system constantly detect abnormal conditions. When the
system does not have an abnormal situation for a period of
time, it proves that the system is currently not dangerous, and
accordingly, increases the threshold size.

Here, once we find that the calculated rate is greater
than the set rate threshold, it is determined that there is an
abnormal situation and locates the corresponding switch as a
suspicious switch.

Algorithm 1 Packet_in Message Abnormal Detection
Input: packet_in message
Output: whether the packet_in message is abnormal
1: initialize num_threshold velocity_threshold N
2: if a packet_in message arrives then
3: num= num+1
4: end if
5: if num mod num_threshold == 0 then
6: record the current time
7: calculate the time interval between the current time

and the last time and set it to T
8: the velocity of packet_in message is calculated by the

modulus dividing the time interval and set it to velocity
9: else
10: notify the network controller to handle the packet_in

message
11: end if
12: if velocity > velocity_threshold then
13: rocord the number of abnormalities and set it to

N=N+1
14: return suspicious switch;
15: else
16: notify the controller to process packet_in messages
17: end if

Algorithm 2 Packet_in Message Abnormal Detection
Input: packet_in message
Output: whether the packet_in message is abnormal
1: if N==5 then
2: Adjusted_threshold = threshold*δ
3: N=0
4: else
5: adjusted_threshold=threshold
6: end if
7: if N==0 in 30T then
8: adjusted_threshold =threshold /δ
9: end if
10: use adjusted_threshold for Algorithm 1
11: end

B. ATTACK DETECTION MODULE
After passing the attack detection trigger module, the traffic
is divided into normal flow and suspicious flow. However,

VOLUME 7, 2019 137863

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

the suspicious flow cannot be identified as a DDoS attack.
This is because attack detection trigger module also identifies
the flash event as an abnormal condition [42]. Therefore,
we use the attack detection module to detect the traffic gen-
erated by the DDoS attack.

Currently, many exiting researches focus on the DDoS
attack detection by machine learning algorithms.
Robinson et al. [44] ranked the machine learning algorithms
based on DDoS classification performance. Random forest
has good effects in many environments. Taking advantages
of RF, the attack detection module can distinguish between
benign flow entries generated by normal traffic and mali-
cious flow entries generated by DDoS attack traffic. In the
attack detection module, the SDN controller first obtains the
information of the flow entry. Then, it extracts the feature
value of the flow entry and sends to the trained base decision.
RF is generated to detect the received stream feature to
determine if it is a stream generated by a DDoS attack. So,
the attack detection can be generally divided into two steps:
the random forest training phase and the attack detection
phase. The random forest training phase is responsible for
constructing the basic decision tree for the training set. The
attack detection phase is responsible for attack detection of
the suspicious flow detected in the attack detection trigger
module, and determines the flow generated by the DDoS
attack. After the system is started, the RF training phase is
first executed. Initially, multiple samples are divided by the
Boostrap resampling method. Each sample then constructs
a basic decision tree in the form of a segmentation of ran-
domly selected attributes. Then the attack detection phase is
performed. The detection of DDoS attacks is accomplished
by generating predictions for each suspicious stream of each
basic decision tree and selecting the best predictions by voting
mechanisms [45].

Because of the integrated thinking of RF, there are good
classification effects for many types of DDoS attacks. But
there are still some shortcomings. On the one hand, the voting
mechanism of RF is unreasonable. Some malicious attackers
have the same voting weight, which will reduce the overall
classification effect of RF. On the other hand, data corre-
lation is an important factor that can affect the impact of
random forests [43]. The lower the data correlation result
in the better the RF construction. Therefore, in response
to the above problems and improvements, we propose an
improved RF algorithm for attack detection modules. In our
attack detection module, we improve the random forest by
combining reinforcement learning and mutual information.
Specifically, we divide the attack detection module into three
phases: feature preprocessing phase, decision tree improve-
ment phase, and attack flow classification phase. The fea-
ture preprocessing phase filters the data set through mutual
information. The decision tree improvement phase improves
the classification ability of the decision tree through rein-
forcement learning. The attack flow classification phase is
responsible for determining the flow of DDoS attacks from
the suspicious flow classification. Firstly, k different training

data subsets d0, d1, d2, . . . dk−1 are obtained from the original
data set D. Then, the feature preprocessing algorithm is used
to remove the highly correlated features in the k data sets.
The feature preprocessing phase cites Amiri et al.’s mutual
information feature selection algorithm feature preprocessing
stage [46]. In mutual information feature selection algorithm,
each single input feature is added to select features set based
on maximizing mutual information (MI) between selected
input and output. This approach reduces the data correlation
of the training set and train a random forest classifier with
better classification results.

At present, there are two main methods to improve the
performance of the random forest algorithm: one is to adjust
the voting weight according to the decision performance, and
the other is to improve the classification performance of a
single decision tree. In the improvement stage of the decision
tree, based on the idea of reinforcement learning, we improve
the performance of the random forest algorithm by proposing
the classification benefit (CB) coefficient and adding the CB
coefficient to the decision tree attribute selection process.
By improving the classification efficiency of each split node,
the classification effect of a single decision tree is improved.
For example, when considering the splitting of the i-th layer,
the optimal splitting property is selected by evaluating the
CB of the i − 1 layer and combining Gini coefficient . First,
the decision tree algorithm in our work selects the CART
algorithm [47]. The algorithm splits by selecting the attribute
of the smallest Gini coefficient until the end of the split.
Gini coefficient is a probability that the samples in the sample
set are misclassified. Gini coefficient for the data set S is:

Gini(S)=1−
n∑
i=1

p2i (2)

where p2i is the probability that the sample i is correctly
divided.

Suppose that the data set S is divided into S1 and S2
by attribute A, and Gini coefficient for attribute A can be
expressed as:

GiniA(S) =
|S1|
|S2|

Gini(S1)+
|S2|
|S|

Gini(S2) (3)

For a single CART decision tree, this work assumes that
the root node of the decision tree has level 1. The node level
of the next level is the level of the parent node plus one. This
work defines the CB of the i-th node obtained by F1-Score
and ACC , F1-Score takes into account both the accuracy and
the recall rate, which can achieve the best results. Accuracy
considers the classifier’s ability to classify the overall sample.
Therefore, CB can be calculated from Equations (3)-(8) as
follow:

F1-Score =
2 ∗ P ∗ R
R+ P

(4)

P =
TP

TP+ FP
(5)

R =
TP

TP+ FN
(6)

137864 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

TABLE 2. Category information.

ACC =
TP+ TN

TP+ TN + FP+ FN
(7)

CB = ACC*F1-Score (8)

As shown in Table 2, TP represents the number of samples
that are actually positive and are correctly predicted to be
positive. TN denotes the number of samples that are actually
negative and are correctly predicted to be negative. FP is
the number of samples that are actually negative but are
incorrectly predicted to be positive. FN shows the number of
samples that are actually positive but are incorrectly predicted
to be negative.

After calculating CB, Gini∗ coefficient is defined to select
the best attribute of the decision tree in a single split.
Gini∗ coefficient is calculated by Equation (9), which is
composed of Gini coefficient and CB. The smaller the
Gini coefficient attribute and the larger of CB, the better the
attribute splitting effect. Therefore, the attribute correspond-
ing to the minimum value of Gini∗ coefficient is selected as
the best split attribute of the current node during each split.
According to this method, the optimal splitting attribute is
selected in each split node to generate a decision tree, so as
to improve the performance of decision tree classification.

Gini∗ =
Gini
CB

(9)

After improving the classification effect of a single deci-
sion tree, it is necessary to construct a more flexible voting
mechanism to alleviate the reaction of the malicious decision
tree or the useless decision tree to vote for the best classifi-
cation result. In the attack flow classification phase, by CB,
the optimal attribute of a single decision tree can be found.
According to the ratio of CB of the optimal attribute of each
decision tree to other decision trees, it can be determined
whether the decision tree has better classification effect.
Therefore, in the attack flow classification phase, the best
classification model is selected by updating the voting weight
of each decision tree. Firstly, the total CBt* for the best
attribute of a single decision tree is calculated from Equa-
tions (11) and (12). For example, let the decision treeM with
c layers randomly select an attribute, then A collection of all
CBs in a single decision tree is called CBt. The CBt of the
optimal attribute in the decision treem is CBt*. Suppose there
are v attributes in the decision tree. The equation below holds

CBt = CB1 + CB2 + CB3 + . . .CBm (10)

CBt* = max
{
CBt1,CB

t
2,CB

t
3, . . .CB

t
n
}

(11)

where the value of m is m = 1, 2, 3, 4 . . . c-1, the value of n
is n = 1, 2, 3v

Therefore, the voting weight ϕ(i) of a single decision tree
is calculated by CBt*

ϕ(i) =
CBt∗i

CBt∗1 + CB
t∗
2 + CB

t∗
3 + . . .CB

t∗
k

(12)

After completing the decision tree improvement phase,
the predictive model generate multiple basic decision trees
with better classification effects. Next, the attack detection
phase is performed. The detection phase performs attack
detection by passing the suspicious flow through the above
basic decision tree. Suspicious flow detection is completed
to generate multiple test results. Finally, all decision trees
vote and select the results with the most votes. That is,
the attack detection module completes the attack detection
of the suspicious flow through the improved random forest.
In addition, we provide a high-level description to present the
attack detection module as follows:

1) The system starts to perform the Boostrap sampling on the
training set, and selects k training subsets.

2) Apply mutual information feature selection algorithm for
k training sets to remove redundant features.

3) Generate a CART decision tree from the training set and
calculate the CB of each decision tree before classifica-
tion.

4) Select the attribute of the minimum Gini∗ coefficient to
split the process in a single decision tree splitting and
construct an improved decision tree to enhance the classi-
fication performance of the decision tree.

5) Calculate the CB sum of the random attributes in a deci-
sion tree and compare it with the CB sum of the other
attributes to select the largest CB sum in the decision tree.

6) The ratio of the best attribute CBt* to all attributes CBt is
used as the voting weight of decision tree ϕ(i).

7) Suspicious flow enters the above basic decision tree and
performs attack detection. Finally, by voting weights,
multiple decision trees ultimately select the final test
results.

8) Therefore, through the random forest, the suspicious flow
is divided into normal flow and malicious flow caused by
DDoS attacks.

Consider the time complexity of the random forest algo-
rithm of this scheme, let E be the size of the sample, F denote
the number of attributes, and L represent the depth of the
tree. For the improved random forest classifier in the CART
decision tree stage, all attributes are used as split candidates,
and an evaluation index Gini coefficient is calculated for it,
and each layer needs to consider the upper layer of BC when
splitting. So the time complexity of each layer isO(E ∗F ∗L),
and the time complexity of the L layer tree is O(E ∗ F ∗ L2).
Therefore, the time complexity of the improved random forest
algorithm is O(E ∗ F ∗ L2).

C. ATTACK BACKTRACKING MODULE
In order to improve the practicability of the defense sys-
tem, the DDoS attack defense system needs to trigger the

VOLUME 7, 2019 137865

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 8. The flow chart for attack detection module.

automatic mechanism to retrieve and recover the damaged
service and resources to provide services that meet the ser-
vice level agreement (SLA). Therefore, DDTC builds an
attack backtracking module to clear the attack source and
restore the system to a normal state. After passing the attack
detection trigger module and the attack detection module,
the DDTC divides the switches into normal switches, suspi-
cious switches, and dangerous switches. In a normal system,
the closer the switch is to the attack source, the higher the
risk of becoming a dangerous switch. So, it is preferable to
determine whether the switch with high dangerous level is
on the attack path, and the attack backtracking effect is more
obvious and takes up less load. Therefore, the DDTC attack
backtracking module proposes a lightweight path backtrack-
ing mechanism.

Most of the existing attack backtracking schemes deter-
mine whether all switches are on the attack path, which
increases the possibility that the defense system cannot han-
dle a large number of attacks [14]. Since our work has clas-
sified the switches in the system, we only need to determine
whether it is on the attack path according to the dangerous
switches, and do not need to backtrack all the switches to
complete the attack backtracking. Through the abovemodule,
we define the switch in which the dangerous flow is located
as Sdi(i = 1, 2, 3 . . .) and define the switch in which the
suspicious flow is located as Ssi(i = 1, 2, 3 . . .). The attack
tracing method is described in detail below.

The specific steps of the lightweight attack backtracking
module are as follows: when a DDoS attack is detected,
the controller notifies the SDNFV application and the NFV-O
to allocate resources to build a virtual backtracking mod-
ule. The packet extraction header feature received by the
suspicious switch port includes: the source IP address, the
destination IP address, and the destination port, which are
transmitted to the virtual backtracking module. First, we need
to determine the switch in which the dangerous flow is

located. We choose the information entropy to determine if
the switch is on the attack path. The definition of conditional
entropy is given below.

For the random variables X and Y , the conditional entropy
of X for Y is defined as:

H (X |Y) =
∑
y

p(y)H (X |Y = y)

= −

∑
y

p(y)
∑
x

p(x|y)log2p(x|y) (13)

Then we calculate one conditional entropies H1 where
H1 is conditional entropy of the source IP address with
respect to the destination IP address. Firstly, we calculate the
conditional entropy on Sdi and analyze the existing results
according to the set upper and lower thresholds δ1 and δ2 as
follows:

1) When the conditional entropy is between δ1 and δ2,
the switch is not on the attack path. Then, we judge
the conditional entropy of other Sdi. Until all dangerous
switches are found, the judgment of the suspicious switch
will be made.

2) When the conditional entropy is not between δ1 and δ2,
we check its neighbors and record the attack path.We con-
tinuously determine whether the condition entropy of the
surrounding switch is normal, until the condition entropy
of all the switches around the switch is normal and the
next Sdi judgment is performed.

After the judgment of Sdi, the judgment ofM is performed,
and the method is the same as Ssi. Finally, the attack path
of all Sdi and Ssi records are counted, and the attack path is
backtracked to find the attack source. The flow diagram of
the attack backtracking module is shown in Figure 9.

In addition, before the attack backtracking, the system’s
attack mitigation function is also implemented by flow
classification. The system’s attack mitigation function is

137866 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 9. Attack backtracking module flow diagram.

implemented by reducing the interaction with dangerous
switches through normal switches. When the flow is divided
into normal flow and suspicious flow, the controller delays the
T cycles and notifies all switches that there is a suspicious
switch and marks the suspect switch. Other switches in the
forwarding process identify the forwarded switch as a suspi-
cious switch by identifying the tag. Because all switches are
preferentially forwarded to the normal switch, this approach
limits the rate of suspicious switches, which helps reduce the
risk of suspicious switches. Moreover, once the SDN con-
troller detects dangerous traffic, the controller immediately
marks the switch where the dangerous flow is located as a
dangerous switch and prohibits other switches from forward-
ing. Therefore, this method stops the access of dangerous
switches. Ultimately, this approach effectively mitigates the
risk of DDoS attacks.

VI. SIMULATIONS AND PERFORMANCE EVALUATION
In this section, the performance evaluation of the pro-
posed defensive strategy DDTC is presented. The dataset,
simulation environment, attack types, performance metrics
and comparative analysis are presented in the following
subsections.

A. DATASET
Due to the complexity of the DDoS attack environment, dif-
ferent defense DDoS attack scenarios have different focuses.
In DDTC, data sets that favor the simulation of real-world
environments with multiple flooding DDoS attacks show

better defense in DDTC. To evaluate the performance of
DDTC, we use the UNB ISCX dataset [48]. The UNB ISCX
dataset is a dataset that is more in line with real network
characteristics. It contains streams such as TCP, UDP, ICMP,
etc. Therefore, the UNB ISCX data set satisfies the con-
ditions of multiple DDoS attack types and marks DDoS
attack network traffic. To analyze the characteristic of flows,
13 basic flow features are extracted to detect DDoS, i.e., the
probability of source IP address, probability of destination
IP address, length of each packet, protocol type, total packet
byte, the average packet byte, variance of packet byte, stan-
dard deviation of packet byte, average of bandwidth, average
of packet number, variance of packet number, the non-zero
fragment of flow, the maximum fragment of flow, and the
number of packets in first time fragment. We divide the
entire data set into ten data sets with the equal size. The first
partition and the last partition are used as training data and
test data, respectively, while the other eight parts are used for
the online model update process.

B. SIMILATION ENVIRONMENT
In this paper, we refer to the literature [17], [26], [49], [50]and
build a simulation environment to verify the performance of
the proposed DDTC. We use Mininet [51] as the network
emulator to create a realistic virtual network, running real
kernel, switch and application code. It is also a great way to
develop and experiment with OpenFlow and SDN systems.
Our Mininet environment is integrated with Ryu [52] as the

VOLUME 7, 2019 137867

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 10. The network topology used in the experiment.

SDNcontroller. In addition, the network functions of theNFV
and service chain are implemented inDocker [53] containers;
they share the kernel with the host system, but isolation
is provided between applications, as in virtual machines.
The experiments are conducted on a computer with Intel
i7-4710MQ 2.5 GHz (4 cores) processor and 8G RAM.

Figure 10 depicts the topology used for the experiment.
There are two switches (S1, S2) that are managed by the
controller (C1). The switches are controlled by the controller
and forwarded through the forwarding server. Each switch
is connected to three hosts. One of the hosts (A1) on the
S1 switch was attacked by a malicious user and began DDoS
attacks against C1, causing the controller to fail to process
other hosts named Victims (V1). There are also four hosts
(H1,H2,H3,H4) that are neither victims nor attackers, gen-
erating legitimate traffic on the network. An attacker in this
topology simulates a real DDoS attack by generating a mali-
cious packet flow from a different IP address. Although this
is not a large-scale topology, an attacker can generate mali-
cious packet streams that appear to come from different IP
addresses. Therefore, the environment can simulate a larger
topology in practice. In addition, the experimental setup
makes it easier to measure and evaluate performance-related
phenomena to more accurately determine the effectiveness of
our approach.

C. ATTACK TYPES
In the experiment, we suppose that multiple hosts try to
attack one host using TFN2K [54] with IP Spoofing. TFN2K
is a well-known DDoS attack tool, which has been widely
used to attack several large famous sites. At the same time,
TFN2K can produce most types of attacks: UDP flood attack,
DNS Amplification attack, NTP attack, and mixed attack
containing various kinds of attack.

TCP SYN Flood Attack: The protocol type of an attack
packet is TCP, and the TCP flag is set to SYN flag. Other
attributes are randomized.

DNS Amplification Attack: The protocol type of attack
packets is DNS, and the destination port is set to 53. Attack
packet size is 60 bytes. Other attributes are randomized.

NTP Attack: The protocol type of attack packets is NTP,
and the destination port is set to 123. Attack packet size is
90 bytes. Other attributes are randomized.

Generic Attack: All attributes are selected randomly in
their respective ranges. This can be stated as an unfamiliar

type of attack since packet characteristics do not manifest a
statistical coherence.

In DDTC, we mainly study DDoS attacks against SDN
controllers. The most common DDoS attacks for SDN
controllers are flooding DDoS attacks such as TCP/SYN
flooding, UDP flooding, and ICMP flooding and hybrid
attacks [21]. Therefore, we simulate a flooding DDoS attack
in a simulated environment.

D. PERFORMANCE METRICS
Different performance metrics measured by different mod-
ules in DDTC. In the attack detection trigger module, when
DDTC faced with DDoS attacks, the following performance
indicators are used for evaluation.

Mean response time: the mean time interval from the
attack’s starting time to the detection module’s starting time.

Mean utilization ratio of CPU:An indicator for assessing
network load by averaging the CPU load when no attack
occurred and the CPU load at the time of the attack.

In the attack detection module, the indicators in the infor-
mation retrieval are often used for evaluation.

True Positive (TP): the number of attacks correctly
detected as attacks.

True negative (TN): the number of normal traffic correctly
detected as normal

False Negative (FN): the number of attacks incorrectly
detected as normal

False Positive (FP): the number of normal traffic incor-
rectly detected as attack

True Positive Rate (TPR): TPR = TP
TP+FN

False Positive Rate (FPR): FPR = FP
FP+TN

Accuracy (ACC): ACC = TP+TN
P+N

In the attack backtracking module, the conditional entropy
H(Source IP | Destination IP) is usually used for evaluation.

H (Source IP | Destination IP): uncertainty of source IP
under known destination IP conditions.

E. COMPARATIVE ANALYSIS
It is important to compare the performance of each module in
the proposed DDTC with the latest or classic related mecha-
nisms. In order to achieve this purpose, we ensure that the
other modules remain unchanged during each experiment.
Each of our experiments only changes the modules that need
to be evaluated.

1) EVALUATING OVERALL PERFORMANCE
First, we study how DDTC works under normal conditions
and in a DDoS attack environment. In a normal environment,
all CPUs run at a lower utilization rate. In a DDoS attack
environment, the total CPU runs at an average utilization rate
of 50% when the detection trigger module detects a DDoS
attack. In addition, we compare DDTC with the SD-Anti-
DDoS [14] of the SDN architecture.

The CPU utilization of DDTC in a normal environment
is shown in Figure 11(a). In this simulation, we determine

137868 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 11. Utilization ratio of CPU of controller over time.

the defensive effect of DDTC by observing the change in
utilization of the two CPUs over time. In the experiment
we chose the time period of 10:17:56 10:19:10. The results
show that the traffic classification strategy makes the DDTC
CPU utilization lower in the normal environment, only 8%.
Therefore, it is proved that DDTChas a lower load in a normal
environment.

We also analyze the CPU utilization in the attack envi-
ronment and compare the results in Figure 11(b) with Fig-
ure 11(a), demonstrating that the DDTC is effective against
DDoS attacks and has self-healing capabilities. The specific
time of each module in the DDTC is described in Table 4.
At the beginning of the initial state, the random forest model
is first trained using a training data set, starting at 10:18:01 for

VOLUME 7, 2019 137869

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

TABLE 3. Actions of each module over time in simulation.

TABLE 4. Attack backtracking module result.

FIGURE 12. Utilization ratio of CPU of controller over time.

8 seconds. At 10:18:45, the attack detection trigger module
finds that the speed of the packet_in message is abnormal,
and generates a start command for the attack detection mod-
ule. The attack detection module starts at 10:18:45. The test
is completed at 10:18:55. After that, the attack backtrack-
ing module starts at 10:18:55 and successfully tracks the
attack path at 10:19:07. After the attack backtracking module
is completed, the system clears the dangerous switch and
returns to normal.

The CPU utilization comparison between DDTC and
SD-Anti-DDoS is shown in Figure 11(c). In this simulation,
we compare the average CPU utilization of DDTC with
SD-Anti-DDoS. The results show that DDTC with SDNFV
technology has lower CPU utilization, which is between 5%
and 51%. First, in DDTC, not all functions require SDN
controllers for allocation management, which increases the
security of DDTC attacks against DDoS. Secondly, based on
the traffic classification strategy, the idea of priority process-
ing according to risk is realized, so that it is not necessary
to process all switches at the same time, and the load of the
SDN controller is alleviated. Thirdly, the improvements in

the various module methods also help reduce CPU utiliza-
tion during DDTC operation. Moreover, the random forest
training phase and attack detection trigger module of DDTC
are earlier than the corresponding functional modules in the
SD-Anti-DDoS mechanism. However, DDTC also has prob-
lems such as long attack detection processes. This is due to the
large time complexity of the algorithm in the attack detection
module.

2) PERFORMANCE TEST OF THE ATTACK DETECTION
TRIGGER MODULE
In what follows, we analyze the attack detection trigger
module in the DDTC system and compare it with the com-
mon attack detection trigger mechanism, especially the peri-
odic trigger mechanism and the existing packet_in trigger
schemes. Our attack detection trigger mechanism is com-
pared with the literature [23] and SD-anti-DDoS [14].

The mean response time comparison of the cycle trigger,
the packet_in trigger, and the improved packet_in trigger is
shown in Figure 12(a). The results show that the packet_in
trigger response time is much smaller than the periodic

137870 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 13. Comparison of detection accuracy of the algorithm.

trigger. However, the improved packet_in trigger response
time is slightly higher than the existing packet_in trigger.
The self-adjusting threshold algorithm needs to continuously
increase its own threshold according to system changes. Since
the self-adjusting threshold algorithm obtained less feedback
at an early stage, the improved packet_in trigger was not
as effective as the existing solution in the early days of the
system.

In addition, the mean utilization of the CPU of the periodic
trigger and the packet_in trigger is shown in Fig 12(b). The
results show that the packet_in triggers CPU utilization much
less than the periodic trigger. Furthermore, the improved
packet_in trigger has a better performance in CPU utilization.
The improved packet_in trigger has a better performance in
CPU utilization. Since the packet_in trigger in thework attack
detection trigger module has a lower CPU load and network
load, due to continuous adjustment of the detection threshold.
No additional determination relative to the existing packet_in
trigger is required.

Therefore, the packet_in trigger can significantly reduce
the response time of the attack while having less controller
load. Experimental results show that the improved packet_in
flip-flop can achieve lower load and shorter response time.
The improved packet_in trigger can thus be used to detect
DDoS attacks against SDN controllers.

3) PERFORMANCE TEST FOR ATTACK DETECTION
We also evaluate the random foresting algorithm based on
reinforcement learning (RL-RF) in DDTC and the existing
attack detection algorithm by comparing the performance
indicators ACC and ratio of TPR to FPR. The selected attack
detection algorithms include random forest, Bayesnet, and
SVM.

The accuracy comparison of various algorithms is shown
in Figure 13(a). The results show that the RL-RF algorithm
has the highest accuracy, reaching 99.54%. Compared with
the random forest algorithmwithout combined reinforcement
learning, it has better effect.

VOLUME 7, 2019 137871

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

FIGURE 14. Comparison of ports on the attack path and ports not on the attack path.

In addition, the ratio of TPR to FPR of various attack
detection algorithms is shown in Figure 13(b). The results
show that multiple detection algorithms have better results
with increased detection time. Specifically, the RL-RF algo-
rithm has a higher ratio in the initial state than the other
detection algorithms, about 85%. That is, when the detec-
tion time is short, the RL-RF algorithm performs the detec-
tion of the DDoS attack well, compared to other detection
algorithms.

Thus, the RL-RF algorithm is used in DDTC and can
accurately detect DDoS attacks against SDN controllers.

4) ATTACK BACKTRACKING EFFECT TEST
Finally, we assess whether DDTC can trace back to the source
of the attack. The result proves that the attack backtracking
module in DDTC can complete the attack path backtracking.
Table 4 describes the traceability results of the DDTC defense
process used in Figure 11(b).

First, it is known that V1 is the victim host, and then the
attack path is determined by conditional entropy. Therefore,
it is found that S1, S2 and A1 are on the attack path. At this
point, the complete attack path is A1→ S1→ S2→ V1.
The conditional entropy of the switch S1 port in the

absence of attack and the presence of attack S1 port is shown
in Figure 14. The results show that the variation of conditional
entropy on the attack path is very large, while the change of
conditional entropy on the non-attack path is small, and the
corresponding value is also small.

Therefore, the attack backtracking module in the DDTC
can complete the path backtracking, thereby accurately clear-
ing the DDoS attack source in the system.

VII. CONCLUSION
In this work, the DDTC based on the SDNFV architecture
has been proposed for DDoS attacks in an SDN environ-
ment. The DDTC has three modules, namely attack detection

137872 VOLUME 7, 2019

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

trigger, attack detection, and attack backtracking. In the attack
detection trigger module, the packet_in message trigger algo-
rithm has been improved. The attack detection trigger mod-
ule reduces the load by continuously adjusting the defined
threshold. The results have shown that the algorithm only
accounts for about 86% of the load of the existing packet_in
message trigger algorithms. In the attack detection module,
the random forest classifier has been improved by introducing
reinforcement learning, so that the accuracy of the classifi-
cation module reaches 99.54%. In addition, it has also been
very effective for unfamiliar attack types. But we analyzed
that the algorithm has a high time complexity which needs
to be further improved. In addition, we have verified that the
attack backtracking module can perform path backtracking
well without causing a large load.

REFERENCES
[1] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,

M.Wachowicz, G. Ouzounis, andY. Portugali, ‘‘Smart cities of the future,’’
Eur. Phys. J. Special Topics, vol. 214, no. 1, pp. 481–518, Nov. 2012.

[2] S. R. Bhavani, J. Senthilkumar, A. G. Chilambuchelvan, D. Manjula,
R. Krishnamoorthy, and A. Kannan, ‘‘CIMIDx: Prototype for a cloud-
based system to support intelligent medical image diagnosis with effi-
ciency,’’ JMIR Med. Informat., vol. 3, no. 1, p. e12, 2015.

[3] A. Volkov, A. Khakimov, A. Muthanna, R. Kirichek, A. Vladyko, and
A. Koucheryavy, ‘‘Interaction of the IoT traffic generated by a smart
city segment with SDN core network,’’ in Proc. Int. Conf. Wired/Wireless
Internet Commun., 2017, pp. 115–126.

[4] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[5] M. C. Dacier, H. König, R. Cwalinski, F. Kargl, and S. Dietrich, ‘‘Secu-
rity challenges and opportunities of software-defined networking,’’ IEEE
Security Privacy, vol. 15, no. 2, pp. 96–100, Mar./Apr. 2017.

[6] A. Shoeb and T. Chithralekha, ‘‘Resource management of switches and
Controller during saturation time to avoid DDoS in SDN,’’ in Proc. IEEE
Int. Conf. Eng. Technol. (ICETECH), Mar. 2016, pp. 152–157.

[7] J. Cui, M. Wang, Y. Luo, and H. Zhong, ‘‘DDoS detection and defense
mechanism based on cognitive-inspired computing in SDN,’’ Future
Gener. Comput. Syst., vol. 97, pp. 275–283, Aug. 2019.

[8] H. D. Zubaydi, M. Anbar, and C. Y. Wey, ‘‘Review on Detection Tech-
niques against DDoS attacks on a software-defined networking controller,’’
in Proc. Palestinian Int. Conf. Inf. Commun. Technol. (PICICT), 2017,
pp. 10–16.

[9] S.M.Mousavi andM. St-Hilaire, ‘‘Early detection of DDoS attacks against
SDN controllers,’’ in Proc. Int. Conf. Comput., 2015, pp. 77–81.

[10] X. You, Y. Feng, and K. Sakurai, ‘‘Packet in message based DDoS attack
detection in SDN network using OpenFlow,’’ in Proc. 5th Int. Symp.
Comput. Netw. (CANDAR), 2017, pp. 522–528.

[11] Q. Yan, R. Yu, Q. Gong, and J. Li, ‘‘Software-defined networking (SDN)
and distributed denial of service (DDoS) attacks in cloud computing
environments: A survey, some research issues, and challenges,’’ IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, 1st Quart., 2016.

[12] K. Kalkan, G. Gur, and F. Alagoz, ‘‘Defense mechanisms against DDoS
attacks in SDN environment,’’ IEEE Commun. Mag., vol. 55, no. 9,
pp. 175–179, Sep. 2017.

[13] A. F. M. Piedrahita, S. Rueda, D. M. F. Mattos, and O. C. M. B. Duarte,
‘‘Flowfence: A denial of service defense system for software defined
networking,’’ in Proc. Global Inf. Infrastruct. Netw. Symp. (GIIS), 2015,
pp. 1–6.

[14] Y. Cui, L. Yan, S. Li, H. Xing, P. Wei, Z. Jian, and X. Zheng, ‘‘SD-Anti-
DDoS: Fast and efficient DDoS defense in software-defined networks,’’
J. Netw. Comput. Appl., vol. 68, pp. 65–79, Jun. 2016.

[15] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, ‘‘AVANT-GUARD: Scal-
able and vigilant switch flow management in software-defined networks,’’
inProc. ACMSIGSACConf. Comput. Commun. Secur., 2013, pp. 413–424.

[16] S. Murtuza and K. Asawa, ‘‘Mitigation and detection of DDoS attacks in
software defined networks,’’ in Proc. 11th Int. Conf. Contemp. Comput.
(IC3), 2018, pp. 1–3.

[17] L. S. R. Sampaio, P. H. A. Faustini, A. S. Silva, L. Z. Granville, and
A. Schaeffer-Filho, ‘‘Using NFV and reinforcement learning for anomalies
detection and mitigation in SDN,’’ in Proc. IEEE Symp. Comput. Commun.
(ISCC), Jun. 2018, pp. 432–437.

[18] C. C. Machado, L. Z. Granville, and A. Schaeffer-Filho, ‘‘ANSwer: Com-
bining NFV and SDN features for network resilience strategies,’’ in Proc.
Comput. Commun., Jun. 2016, pp. 391–396.

[19] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang, K. K. Ramakrishnan,
and T. Wood, ‘‘SDNFV: Flexible and dynamic software defined control of
an application-and flow-aware data plane,’’ in Proc. 17th Int. Middleware
Conf., 2016, p. 2.

[20] C. Bu, X. Wang, M. Huang, and K. Li, ‘‘SDNFV-based dynamic net-
work function deployment: Model and mechanism,’’ IEEE Commun. Lett.,
vol. 22, no. 1, pp. 93–96, Jan. 2018.

[21] S. T. Zargar, J. Joshi, and D. Tipper, ‘‘A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,’’ IEEE Com-
mun. Surveys Tuts., vol. 15, no. 4, pp. 2046–2069, 4th Quart., 2013.

[22] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, ‘‘XGBoost
classifier for DDoS attack detection and analysis in SDN-based cloud,’’
in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp), Jan. 2018,
pp. 251–256.

[23] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, ‘‘Combining OpenFlow and sFlow for an effective and scal-
able anomaly detection andmitigationmechanism on SDN environments,’’
Comput. Netw., vol. 62, no. 5, pp. 122–136, 2014.

[24] Y. Wang, T. Hu, G. Tang, J. Xie, and J. Lu, ‘‘SGS: Safe-guard scheme
for protecting control plane against DDoS attacks in software-defined
networking,’’ IEEE Access, vol. 7, pp. 34699–34710, 2019.

[25] K. Kalkan, G. Gür, and F. Alagöz, ‘‘SDNScore: A statistical defense
mechanism against DDoS attacks in SDN environment,’’ in Proc. IEEE
Symp. Comput. Commun. (ISCC), Jul. 2017, pp. 669–675.

[26] K. Kalkan, L. Altay, G. Gür, and F. Alagöz, ‘‘JESS: Joint entropy-based
DDoS defense scheme in SDN,’’ IEEE J. Sel. Areas Commun., vol. 36,
no. 10, pp. 2358–2372, Oct. 2018.

[27] A. Mohammadkhan, G. Liu, W. Zhang, K. K. Ramakrishnan, and
T.Woodv, ‘‘Protocols to support autonomy and control for NFV in software
defined networks,’’ in Proc. IEEE Conf. Netw. Function Virtualization
Softw. Defined Netw. (NFV-SDN), Nov. 2015, pp. 163–169.

[28] B. Rashidi, C. Fung, and M. Rahman, ‘‘A scalable and flexible DDoS mit-
igation system using network function virtualization,’’ in Proc. IEEE/IFIP
Netw. Oper. Manage. Symp. (NOMS), Apr. 2018, pp. 1–6.

[29] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
‘‘Network function virtualization: State-of-the-art and research chal-
lenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 236–262,
1st Quart., 2016.

[30] R. Mijumbi, J. Serrat, and J.-L. Gorricho, ‘‘Self-managed resources in net-
work virtualisation environments,’’ in Proc. IFIP/IEEE Int. Symp. Integr.
Netw. Manage. (IM), May 2015, pp. 1099–1106.

[31] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, ‘‘VNF-FG design
and VNF placement for 5G mobile networks,’’ Sci. China Inf. Sci., vol. 60,
no. 4, 2017, Art. no. 040302.

[32] M.-A. Kourtis, M. J. McGrath, G. Gardikis, G. Xilouris,
V. Riccobene, P. Papadimitriou, E. Trouva, F. Liberati, M. Trubian,
J. Batallé, H. Koumaras, D. Dietrich, A. Ramos, J. Ferrer Riera, J. Bonnet,
A. Pietrabissa, A. Ceselli, and A. Petrini, ‘‘T-NOVA: An open-source
MANO stack for NFV infrastructures,’’ IEEE Trans. Netw. Service
Manage., vol. 14, no. 3, pp. 586–602, Sep. 2017.

[33] L. Busoniu, R. Babuska, and B. De Schutter, ‘‘A comprehensive sur-
vey of multiagent reinforcement learning,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[34] G. Fanelli, J. Gall, and L. Van Gool, ‘‘Real time head pose estimation with
random regression forests,’’ in Proc. CVPR, 2011, pp. 617–624.

[35] M. Chen, C. Zhang, and S. Chen, ‘‘Semantic event extraction using neural
network ensembles,’’ in Proc. Int. Conf. Semantic Comput. (ICSC), 2007,
pp. 575–580.

[36] X. Xu and W. Chen, ‘‘Implementation and performance optimization
of dynamic random forest,’’ in Proc. Int. Conf. Cyber-Enabled Distrib.
Comput. Knowl. Discovery (CyberC), 2017, pp. 283–289.

[37] M. P. Paing and S. Choomchuay, ‘‘Improved random forest (RF) classifier
for imbalanced classification of lung nodules,’’ in Proc. Int. Conf. Eng.,
Appl. Sci., Technol.(ICEAST), 2018, pp. 1–4.

VOLUME 7, 2019 137873

C. Xu et al.: SDNFV-Based DDoS Defense Technology for Smart Cities

[38] A. Hau, P. Zhang, Z. Zheng, M. Zhu, Y. He, Q. Li, B. Zhang, F. Huang,
G. Zhau, and J. Li, ‘‘Land price prediction based on random forest,’’
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2018,
pp. 2948–2951.

[39] S.-H. Choi, D. Hwang, and Y. Choi, ‘‘Wireless intrusion prevention system
using dynamic random forest against wireless MAC spoofing attack,’’ in
Proc. IEEE Conf. Dependable Secure Comput., Aug. 2017, pp. 131–137.

[40] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
‘‘Towards an elastic distributed SDN controller,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, Oct. 2013.

[41] C. Liang, R. Kawashima, andH.Matsuo, ‘‘Scalable and crash-tolerant load
balancing based on switch migration for multiple open flow controllers,’’
in Proc. 2nd Int. Symp. Comput. Netw., 2014, pp. 171–177.

[42] G. Garg and R. Garg, ‘‘Detecting anomalies efficiently in SDN using
adaptive mechanism,’’ in Proc. 5th Int. Conf. Adv. Comput. Commun.
Technol., 2015, pp. 367–370.

[43] J. Mirkovic, G. Prier, and P. Reiher, ‘‘Attacking DDoS at the source,’’ in
Proc. IEEE Int. Conf. Netw. Protocols, Nov. 2002, pp. 312–321.

[44] R. R. R. Robinson and C. Thomas, ‘‘Ranking of machine learning algo-
rithms based on the performance in classifying DDoS attacks,’’ in Proc.
IEEE Recent Adv. Intell. Comput. Syst. (RAICS), Dec. 2015, pp. 185–190.

[45] Y. Feng, H. Akiyama, L. Lu, and K. Sakurai, ‘‘Feature selection for
machine learning-based early detection of distributed cyber attacks,’’ in
Proc. IEEE 16th Int. Conf. Dependable, Autonomic Secure Comput., 16th
Int. Conf. Pervasive Intell. Comput., 4th Int. Conf. Big Data Intell. Com-
put. Cyber Sci. Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech),
Aug. 2018, pp. 173–180.

[46] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani, ‘‘Mutual
information-based feature selection for intrusion detection systems,’’
J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1184–1199, 2011.

[47] B. Choubin, H. Darabi, O. Rahmati, F. Sajedi-Hosseini, and B. Kløve,
‘‘River suspended sediment modelling using the CART model: A compar-
ative study of machine learning techniques,’’ Sci. Total Environ., vol. 615,
pp. 272–281, Feb. 2017.

[48] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374,
2012.

[49] Computer Networks Group. Reinforcement-Containernet. Accessed:
Apr. 2018. [Online]. Available: https://github.com/ComputerNetworks-
UFRGS/reinforcement-containernet

[50] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes, ‘‘Integrated nfv/sdn
architectures: A systematic literature review,’’ACMComput. Surv., vol. 51,
no. 6, pp. 1–39, 2018.

[51] Mininet. Accessed: Oct. 2017. [Online]. Available: http://mininet.org/
[52] Ryu. Accessed: Dec. 2016. [Online]. Available: https://osrg.github.io/ryu/v
[53] Docker. Accessed: Dec. 2016. [Online]. Available: https://osrg.github.

io/ryu/v
[54] CERT, ‘‘TFN2K causes denial-of-service attack,’’ Netw. Secur., vol. 2000,

no. 2, pp. 1–2, 2000.

CHUANFENG XU received the bachelor’s degree
in optoelectronic information science from the
Changshu Institute of Technology, in China, in
2017. He is currently pursuing the master’s degree
in computer application technology with the
School of Mathematics and Information, Fujian
Normal University. His research interests include
wireless and mobile computing systems, computer
networks, information and network security.

HUI LIN received the B.S. degree in com-
puting science from Fujian Normal University,
China, in 1999, and the M.E. degree in com-
munication and information engineering from the
Chongqing University of Posts and Telecommuni-
cations, China, in 2007. He is currently an Asso-
ciate Professor with the School of Mathematics
and Information, Fujian Normal University, China.
He is currently pursuing the Ph.D. degree with the
College of Computer Science, Xidian University.

His research interests include software-defined networking, network func-
tion virtualization, and information and network security.

YULEI WU received the B.Sc. degree (Hons.) in
computer science and the Ph.D. degree in com-
puting and mathematics and from the University
of Bradford, U.K., in 2006 and 2010, respectively.
He is currently a Senior Lecturer with the Depart-
ment of Computer Science, University of Exeter,
U.K. His expertise is in networking. His research
has been supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC) of U.K.,
the National Natural Science Foundation of China,

University’s Innovation Platform, and industry. His main research interests
include intelligent networking technologies, network slicing and softwariza-
tion, the future Internet architecture and technologies, green networking,
wireless networks, network security and privacy, and analytical modeling and
performance optimization. He is a Fellow of the Higher Education Academy
(HEA). He contributes to major conferences on networking as various roles
including a steering committee chair, a general chair, a program chair,
and a technical program committee member. He is an Editor of the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, Computer Networks
(Elsevier), and IEEE ACCESS.

XUANCHENG GUO received the bachelor’s
degree in computer science from the Fujian Insti-
tute of Engineering, China, in 2017. She is cur-
rently pursuing the master’s degree in computer
application technology with the School of Math-
ematics and Information, Fujian Normal Uni-
versity, China. Her research interests include
software-defined networking, and information and
network security.

WENZHONG LIN received the M.E. degree
in electrical engineering from Fuzhou Univer-
sity, China, in 1990, and the Ph.D. degree from
Nagasaki University, Japan, in 2016. He is cur-
rently a Professor with Minjiang University,
China. His research interests include the Internet
of Things, computer control technology, and servo
drive technology.

137874 VOLUME 7, 2019

