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ABSTRACT Deep learning has been widely studied in many technical domains such as image analysis
and speech recognition, with its benefits that effectively deal with complex and high-dimensional data.
Our preliminary experiments show a high degree of non-linearity from the network connection data, which
explains why it is hard to improve the performance of identifying network anomalies by using conventional
learning methods (e.g., Adaboosting, SVM, and Random Forest). In this study, we design and examine deep
learning models constructed based on Fully Connected Networks (FCNs), Variational AutoEncoder (VAE),
and Sequence-to-Sequence (Seq2Seq) structures. For the extensive evaluation, we employ a broad range
of the public datasets with unique characteristics. Our experimental results confirm the feasibility of deep
learning-based network anomaly detection, with the improved performance compared to the conventional
learning techniques. In particular, the detection model based on Seq2Seq with LSTM is highly promising,
consistently yielding over 99% of accuracy to identify network anomalies from the entire datasets employed
in the evaluation.

INDEX TERMS Network anomaly detection, traffic analysis, deep learning, neural networks, sequence-to-

sequence, performance evaluation.

I. INTRODUCTION

Keeping the network secure from cyber-attacks has long
been an important concern in computer networks. However,
we see a growing number of malware and cyber-attacks year
by year. In addition, new emerging attacks are much more
critical than ever showing greater impacts. For instance, a ran-
somware attack (“WannaCry’’) encrypted files in the victim
machines across 10,000 organizations causing a significant
financial loss in 2017 [1]. Another critical incident reported
in 2016 was by DDoS attacks which hit large datacenters, and
Twitter and Spotify temporarily closed down the sites due
to the attack [2]. Cyber-attacks could be more severe with
the increasing use of mobile and Internet of Things (IoT)
devices. An incident reported that hundreds of thousands of
compromised IoT devices were employed to make a DDoS
attack [3].
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Anomaly detection is one of the crucial functions in net-
work security, which identifies malicious and unexpected
activities from the network traffic. With the remarkable
advances in the past several years, machine learning has
been widely studied to identify anomalies in the network
[4]-[9]. However, our preliminary experiments showed that
conventional machine learning is largely limited with some-
times unacceptable accuracy in detection when analyzing
network data which are often complex and high-dimensional.
For example, we observed no better than 83% accuracy
with several machine learning techniques such as Adaboost-
ing, Support Vector Machine (SVM), and Random Forest
(RF), against the NSL-KDD dataset [10], which is widely
used for evaluating network anomaly detection functions [5],
[6], [11]-[16]. From the experiment against another public
dataset of UNSW-NB15 [17], the result shows less than 91%
of detection accuracy with the above learning methods.

The root reason of the limitation of conventional learning
is that such techniques are not effective to deal with the high
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complex data. In fact, we observed a significant degree of
non-linearity from public network data from our preliminary
experiments, which motivates us to explore deep learning
structures for network anomaly detection. Deep learning is
known to be powerful to deal with complex data with the
property of non-linearity [18], [19]. While deep learning has
been applied for a variety of applications such as image
processing and natural language processing [20], [21], it has
not been thoroughly examined for the application of network
anomaly detection. Our past survey work [22] also shows that
using deep learning for network data analysis is still in the
initial stage and the evaluation studies were limited with only
a few datasets such as NSL-KDD.

In this paper, we design and evaluate a set of deep
learning models established based on Fully Connected Net-
work (FCN) [23], Variational AutoEncoder (VAE) [24],
and Sequence-to-Sequence (Seq2Seq) [25]-[27] structures.
For thorough evaluation, we employ a variety of datasets
with different characteristics: NSL-KDD [10], Kyoto-
Honeypot [28], UNSW-NB15 [17], IDS2017 [29], and
MAWILab traces [30]. Our experimental results with the
aforementioned traces confirm the potential of the evaluated
deep learning models for network anomaly detection, with
the significantly improved performance compared to conven-
tional shallow learning techniques. In particular, the detection
model based on the Seq2Seq structure with LSTM cells
shows the highly promising performance, yielding over 99%
of detection accuracy against the datasets employed.

The main contributions of this paper are summarized as
follows:

+ We demonstrate the complexity of the network traffic
datasets, explaining why conventional shallow learn-
ing would not be adequate for identifying network
anomalies.

o« We present the deep learning models designed for
network anomaly detection based on FCN, VAE, and
Seq2Seq structures, with the basic concepts of the learn-
ing structures.

o We conduct extensive experiments for the thorough eval-
vation of the deep learning models with the various
datasets (NSL-KDD, Kyoto-Honeypot, UNSW-NBI15,
IDS 2017, and MAWILab), and report our observations
with the implications of the experimental results.

The organization of this paper is as follows. We first intro-
duce a summary of the past studies and the description of the
public datasets, along with the discussion of the motivation of
this work in Section II. In Section III, we present the design of
deep learning models based on the FCN, VAE, and Seq2Seq
structures. We next evaluate the deep learning models with
the extensive set of public network data in Section I'V. Finally,
we conclude our presentation in Section V.

Il. BACKGROUND

In this section, we discuss the complexity of network traffic
data that may eliminate shallow learning from the consid-
eration for the effective detection of anomalies. We then
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TABLE 1. Accuracy of conventional ML techniques (dataset: NSL-KDD).

Training  Testing | Adaboosting SVM RF
Train- Test+ 82.5% 79.6% 78.3%
Train- Test- 65.5% 56.5% 53.4%
Train+ Test+ 80.5% 791% 76.1%
Train+ Test- 58.7% 56.4%  50.3%

= Normal Traffic .
= Attack Traffic _'L, -~

(b) UNSW-NBIS5 dataset

FIGURE 1. Visualization using t-SNE for NSL-KDD and UNSW-NB15: The
distributions show the mixture of normal and attack data points sharing
the same feature space.

summarize the closely related studies and describe the
datasets employed in the evaluation.

A. WHY DEEP LEARNING FOR NETWORK ANOMALY
DETECTION?

In the preliminary experiment, we examined conventional
learning techniques including Adaboosting, SVM, and RF to
see how well they are working to identify network anomalies.
Table 1 shows the detection accuracy using the conventional
learning methods against the NSL-KDD dataset. For this
experiment, the default setting was used without fine-tuning.
The result shows less than 83% of accuracy, which may not
be acceptable in practice. Note that the description of the
datasets can be found in Section II-C.

To see why, we analyzed the distribution of the data
points using #-Distributed Stochastic Neighbor Embedding
(--SNE), a tool to effectively visualize high-dimensional data.
Figure 1 demonstrates the distributions of normal and
attack data points for different datasets of NSL-KDD and
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UNSW-NBI15. The -SNE plots in the figure show that the two
different classes of data (normal and attack) share the same
feature space. This indicates that discriminating attacks from
the normal data points would be significantly challenging.

Deep learning is powerful enough to deal with the data with
non-linearity [19], which motivates us to examine deep learn-
ing methods for network anomaly detection. In this work,
we will present the construction of deep learning models to
improve the detection performance with an extensive evalua-
tion with a diverse set of network traffic data.

B. RELATED WORK

Our past survey work [22] investigated the use of deep learn-
ing for network anomaly detection, and the conclusion was
that using deep learning in network traffic analysis is still
in the initial stage and the evaluation studies were limited
with only a few datasets such as NSL-KDD. In this section,
we briefly introduce the closely related studies employed
deep learning techniques for network anomaly detection.

The work in [11] utilized a Deep Neural Network (DNN)
for flow-based anomaly detection in a Software Defined
Networking (SDN) environment. Note that the main concept
of SDN is to decompose the architecture into the network
control and forwarding functions. By doing so, the network
control and underlying infrastructure can be programmable
and abstracted, respectively for applications and network
services. In the proposed SDN security architecture, the
intrusion detection module is implemented in the SDN con-
troller to monitor Open-Flow switches. The designed model
employs a simple deep neural network consisting of one
input layer, three hidden layers, and one output layer. The
evaluation was conducted using the NSL-KDD dataset. The
authors reported 75% of classification accuracy as the best
performance against the NSL-KDD dataset. One reason for
the poor performance would be from the use of a small subset
of the features (six out of 41 features) for training and testing.
Hyper parameters used in the experiments are: number of
inputs = 6 features, number of hidden nodes = {3, 6, 12},
number of outputs = 2, batch size = 10, learning rate =
{le-01, 1e-02, 1e-03, 1e-04}, and epochs = 100.

The authors in [15] combined spectral clustering and neu-
ral networks (DNN) for multi-classification for intrusion
detection. In the training phase, the clustering groups the
given dataset and the data points for each group are used to
train the associated DNN. Similarly, the clustering is applied
to the testing dataset and then the data points in each group
are fed into the DNN for that group. Finally, the output of
the DNNss is aggregated to make the final decision. Using the
KDDCup 1999 data with five classes (Normal, DOS, Probe,
U2R, and R2L), the authors show that the proposed technique
works slightly better than the conventional learning methods
including SVM and random forest. However, the reported
accuracy is not acceptable showing lower than 80% accuracy
for three classes (Probe, U2R, and R2L).

In [14], the authors set up an intrusion detection model
based on Convolutional Neural Networks (CNNs). Since
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CNN models often take two- or three-dimensional data as
input (e.g., images), the authors converted the NSL-KDD
connection record into a 8 x 8 gray-scale pixel image using
the one-hot encoding and binning technique. Then the authors
simply employed the existing CNN models, ResNet 50 and
GoogleNet, for learning and testing. The observed accuracy
against NSL-KDD is not that promising showing less than
82% of accuracy.

In addition, another work in [31] introduced a deep
learning approach based on a simple Recurrent Neural Net-
works (RNN) with forward and back propagations, for net-
work intrusion detection. The authors reported F-measure
of 68%—-99% as the binary classification accuracy against the
NSL-KDD datasets. A recent study [13] set up a deep learn-
ing model using Restricted Boltzmann Machines (RBMs)
for network anomaly detection. The authors evaluated their
deep learning model using NSL-KDD and reported 91%
of accuracy. Additionally, the RBM-based model has also
been evaluated with the UNSW-NB 15 dataset [17] containing
49 features with the class label, and the authors showed
their technique works slightly better than shallow learning
techniques (proposed = 95.8% and random forest = 94.4%
of accuracy).

Additionally, the authors in [32] examined the Restricted
Boltzmann Machine (RBM) with both Contrastive Diver-
gence (CD) and Persistent Contrastive Divergence (PCD)
algorithms for the purpose of network anomaly detec-
tion. This study evaluated the performance with the
IDS2012 dataset collected in 2010 [33], which is a pre-
decessor of the IDS2017 dataset employed in our evalua-
tion. The reported accuracy is ranged between 88—-89%. The
work in [34] presented an ensemble method by adopting
multiple learners using a variety of algorithms including
a Self-Organization Map (SOM) Artificial Neural Net-
work (ANN). The evaluation was conducted only with the
NSL-KDD dataset, and ANN does not show any better
performance than the other shallow learning techniques
employed.

As summarized, there were several past studies that utilized
deep learning techniques for network anomaly detection.
However, the past work simply introduced a single deep
learning model without extensive comparison. In this work,
we set up a set of deep learning models based on Fully
Connected Network (FCN) [23], Variational AutoEncoder
(VAE) [24], and Sequence-to-Sequence (Seq2Seq) [25]-[27]
structures. In addition, the previous studies largely relied on
the KDDCup 1999 and its variant (NSL-KDD) datasets only,
which would raise a question that their techniques can work
well in different environments. For this purpose, we employ
five different datasets with unique characteristics to make
thorough evaluation.

C. DESCRIPTION OF DATASETS
This section provides a brief description of the datasets used
in this research.
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1) KDD CUP 1999 DATASET [35] AND NSL-KDD [10]

The KDD Cup 1999 dataset was collected from a simu-
lated military network environment over nine weeks. It con-
tains various intrusions including R2L. (unauthorized access
from a remote machine), U2R (unauthorized access to local
root privileges), probing (surveillance and other probing),
and DOS (denial-of-service). Each data point in the dataset
includes the connection information with 41 features plus
the associated label, which can be used to distinguish attack
connections from the normal traffic.

NSL-KDD is a refined version of the KDD Cup 1999 data
that filters out a number of duplicated records to reduce
the bias in the classification. NSL-KDD contains two files
for training (““Train+” and “Train-"") and two other files
for testing (“Test+” and “Test-”’). Note that Train- and
Test- are subsets of Train+ and Test+, respectively, to give
different degrees of difficulty in classification. The size
of data files is as follows: Train+ (125,973 records),
Test+ (22,544 records), Train- (25,192 records), and Test-
(11,850 records). The distributions of normal and anoma-
lous connections are fairly well balanced in the range of
46% — 82% in the dataset.

2) KYOTO UNIVERSITY HONEYPOT DATASET
(KYOTO-HONEYPOT) [28]

Kyoto Honeypot is a daily-based evaluation dataset since
2009 for network anomaly detection. This dataset includes
a number of data points collected and analyzed through hon-
eypots. Due to this reason, it is highly unbalanced and the vast
majority of the data is for attacks (97% of the entire data). The
number of features is 24 in total (14 basic and 10 extended
features). For this dataset, we excluded 6 minor features
related to the host and port information in our experiments.

3) UNSW-NB15 DATASET [17]

Similar to KDD Cup 1999, the UNSW-NB15 dataset was
collected from a simulated environment in 2015. A set of
servers generate traffic in the network, and a set of routers
create pcap files as the capture of packets. Then Bro-IDS'
classifies the captured data to construct the label information.
The number of features is 49 for a single data point, with the
associated label information. The total number of records is
over two million in four CSV files, and the dataset also offers
a training set and testing set for the evaluation purpose.

4) 1DS2017 DATASET [29]

This IDS2017 dataset also provides the labeled connection
data for the network intrusion detection research. The data
was captured from Monday, July 3, 2017 to Friday July 7,
2017. from a testbed system with two networks, one for
attacks and the other for victims. The dataset contains a set of
attacks, including DoS, Web attack, infiltration attack, botnet
attack, port scan, and so forth, in addition to the normal traffic.
The first day data contains the normal traffic only, while the

1 https://www.bro.org/
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data for the other days have attacks. Each data point contains
85 features including the label, and the number of data points
is over 2.8 million.

5) MAWILAB DATASET [30]

MAWTI is a collection of network traffic traces captured from
a link between Japan and the USA since 2001 [36] [37]. The
MAWILab logs contain the attack information collected from
multiple intrusion detections systems against the captured
packets. In our previous work [38], we combined the captured
packet traces with the IDS logs to generate the labeled data for
network anomaly detection. A single day trace contains the
packets captured in the 15-minute interval, and the number
of data points for a day is tens of millions. For the day of
August 27, 2017, for example, a five-second data contains
roughly 400,000 data points on average.

Ill. DEEP LEARNING MODELS

In this section, we present a set of deep learning models
established based on the FCN, VAE, and Seq2Seq structures.
FCN is a simple form of neural networks. We also consider
VAE to see if the dimension reduction by the auto-encoding
function would be beneficial to deal with the network-related
data. In addition, we include Seq2Seq with LSTM cells with
the power to convert input features to context vectors as will
be described in detail next. Table 2 summarizes the symbols
and notations commonly used for the mathematical formulas
for machine learning models.

TABLE 2. Symbols and notations.

Symbol Description

H(x) Hypothesis of machine learning

x Input data

m Size of x

w Weights

b Bias

z® ¢-th input data

y(i) i-th output data

cost(W, b) | Cost function for a learning model
A. FCN MODEL

The fundamental concept of machine learning is based on the
following mathematical formula [39]:

H(x)=Wx +b (1

where H(x) is a hypothesis, x indicates input data, W and b
denote weights and bias, respectively. The main goal of learn-
ing a neural network using the above formula as a linear
regression model is to find a set of the optimized network
parameters which minimize a cost function. The most popular
algorithm used to minimize the cost function for the linear
regression model is gradient descent, and this can be denoted
as:

COS[(W, b) = % Z(H(x(l)) _ y(l))2 (2)
i=1
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FIGURE 2. Overview of the FCN model. The number of hidden units and layers are configurable, and the loss

function defined in this model is cross entropy.

where m is the total number of x input data, and x® and
y denote the i-th input data and i-th output (or prediction).
Note that two formulas above are the fundamental concept
of a multi-variable linear regression and multinomial logis-
tic regression. Yet, machine learning based on the concept
above results in one main issue which cannot linearly sepa-
rate the exclusive-OR (XOR) gate. To address this problem,
back-propagation was proposed as a solution, which is the
chain rule-based algorithm [23], [40]. Back-propagation is
the main idea of FCN. The basic concept of FCN is to
learn non-linear combinations of given data based on matrix
multiplications, and every neuron in fully connected layers is
connected to each other.

For network anomaly detection, we design a deep learn-
ing model based on the FCN structure. Figure 2 shows the
overview of our FCN-based anomaly detection model. The
first step in this model is data preprocessing for normalization
and transformation. Numerical features are normalized using
MinMax scaling, while categorical features are encoded as
a set of dummy numerical values using one-hot encoding.
The model then passes the pre-processed data to the fully
connected network for training. To overcome the vanishing
gradient problem, Rectified Linear Unit (ReLU) is used as
an activation function, and the Softmax layer with a cross
entropy cost function is added to produce two dimensional
outputs, i.e., either normal or attack.

B. VAE MODELS (WITH/WITHOUT A BACKEND FCN)
Autoencoder is a reconstruction-based neural network [24]
which is composed of encoder and decoder. If one hidden
layer is given, Eq. 3 indicates that the encoder maps the
original input vector x to the latent representation z:

z=0c(Wx +b) 3)

where o is an activation function such as sigmoid and ReL.U,
and W and b are the weight and bias, respectively.

The decoder maps z back to x’ for the purpose of
reconstruction:

x'=0'(Wz+0b) “

where o/, W/, and b’ are an activation function, weight, and
bias for the decoder.
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The main goal here is to minimize a reconstruction error
by finding the minimal difference between x and x’; that is,
the reconstruction error is computed by:

Ilx — x| &)

VAE is a variation of the basic auto-encoder structure. VAE
additionally refers to a generative, multi-layered, and directed
probabilistic graphical model. The key concept is to infer
q(zlx; ¢) and p(x’|z; 0), where g(z|x; ¢) is the likelihood of
the latent variable z given the data x, and p(x’|z; 6) is the
likelihood of the data x” given the latent variable z. Note that
z is the starting point of the generative process, and ¢ and 0
are the parameters updated in the training phase.

One of the important functions in VAE is to calculate
the marginal likelihood of data, which is the sum over the
marginal likelihood of individual data points, denoted as:

n
log px?; 0) =) log p(x?; 0) (6)

i=1

Alternatively, Eq. 6 can be denoted as Eq. 7:
log p(x"; ) = KL(q(zlx; ¢) || p(z; ) + L0, ¢; xD) (7

where ¢q(z|x; ¢) and p(z; 6) are the approximate poste-
rior and prior distribution of z, respectively, KL is the
Kullback-Leibler (KL) divergence, and L(6, ¢, 19y is the
variational lower bound on the marginal likelihood of the i-th
data point. Since the KL divergence is always higher than a
zero [24] [41] [42], it can be rewritten as follows:

L©, ¢; x7) = E 0.4 [log p(x'|2; 6)]
—KL(q(zIx?; ¢) || p(z; 6))  (8)

Here, E 1) describes the reconstruction error, and KL
(q(zIxD; ¢) || p(z; 0)) indicates the similarity between the
approximate posterior and prior distribution of z. One impor-
tant precondition here is that both q(z|x(i); ¢) and p(z; 6) have
a form of the normal distribution. Furthermore, if binary-
based data is given, Bernoulli distribution needs to be used
for the distribution of the likelihood p(x|z; 0).

With the VAE concept, we implement two models for net-
work anomaly detection: VAE-Pure is a simple VAE model
(Figure 3(a)), whereas VAE-FCN connects a VAE to a fully
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(b) VAE with FCN (VAE-FCN)

FIGURE 3. Overview of two VAE models. VAE-Pure is a model based on label inclusion and the labels are treated as an
independent feature. VAE-FCN does not utilize the label information, and runs in an unsupervised manner. The loss is
calculated by comparing the original input data (x) to the output data (x’).

connected neural network at the end (Figure 3(b)). For VAE-
Pure, the labels are treated as an independent feature in our
design. In detail, actual labels are included in the training
phase and the value of the label is randomly chosen to have a
form of the normal distribution (« = 0 and o = 1) in the test-
ing phase. This VAE model performs learning to regenerate
the labels out of the provided random values. The motivation
why the VAE-Pure model includes the labels in the training
phase is to see if it would be possible to predict the appropriate
label in the reconstruction phase as an independent feature by
the auto-encoder function.

VAE-FCN in Figure 3(b) is almost identical to the previous
one (Figure 3(a)) except that this VAE model performs learn-
ing in an unsupervised manner by regenerating the dataset
and learning through the loss function. A separate FCN with
1 hidden layer (ReLU activation) and 1 Softmax layer is
attached to this VAE model. This FCN receives inputs from
the probability distribution of z and produces label probabili-
ties as the output. Both of the VAE and the attached FCN are
trained together in this model.

C. SEQ2SEQ MODEL
Another model we establish for network anomaly detection
utilizes the Sequence-to-Sequence (Seq2Seq) structure which
is composed of two RNNs corresponding to the encoder and
decoder. Both encoder and decoder can have a single or multi-
ple cells, which could be Long Short-Term Memory (LSTM)
or Gate Recurrent Unit (GRU). We simply chose LSTM
for the memory cells in our Seq2Seq model since LSTM is
powerful to overcome the vanishing gradient problem [43].
Figure 4 shows the Seq2Seq model designed in this work.

In the Seq2Seq architecture, all the inputs are encoded into
a fixed-size vector, and the encoded vector is the only one

VOLUME 7, 2019

[Higri:;; output ] Normal @Q
LSTM / GRU cell LSTM/GRU cell | LSTM/GRU cell

A 4
i )

LSTM / GRU cell LSTM/GRU cell | LSTM/GRU cell
T 5 F

/::E:WD::) <Go> Om‘;:; :r' Lol
Enc_oder Decoder

FIGURE 4. Overview of the Seq2Seq model composed of the encoder and
decoder. There can be one or more cells for each LSTM stack and we set it
to three by default. The loss function used in this model is Mean Squared
Error.

which is passed to the decoder. Hence, the goal of Seq2Seq
is to yield a target sequence (y7+) and conditional probability
(p(y7’|xT)) through the architecture [25], [26]. The definition
of the notations is as follows:

« X is an input sequence, x = {x1, x2, ...x7} depending on
a time step (¢)

o ¢ is a fixed-length vector, ¢ = q({h, hy,...h1.}),
obtained by the last hidden state of the LSTM. Here g(-)
is a non-linear activation function.

« yis atarget (output) sequence, y = {y1, y2, ...y7’} which
is corresponding to x = {x1, X2, ...xT}.
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The main objective of the encoder is to read x =
{x1, x2, ...x7} into ¢ sequentially, and the first two conditions
refer to the encoder. Eq. 9 is applied to the encoder to update
the hidden state, and the LSTM as a non-linear function f'is
used:

he = fuw(hi—1, x1) ©))

where &, is a new state, f;,(-) is a function with the parameters
of h;—1 and x;. Here h;_1 is an old state and x; is an input
vector at a time step.

The decoder associated with the last condition trains a
model to predict y» with given ¢ and {y{, y2, ...ys—1}, and a
conditional probability P(y|x) is computed by the following
equation:

T/
PGIx) = [ [pGile, yi, y2, ye-1) (10)

t=1

where p(y¢lc, y1,¥2,...yr—1) is a distribution represented
with the Softmax function.

The LSTM cell shown in Figure 4 is basically composed of
three gates: input, forget, and output. The details about how
each gate is updated can be found from [44]. As mentioned,
GRU could be configured instead of LSTM, but we simply
chose LSTM for our Seq2Seq model.

Here are some details of the implementation of our
Seq2Seq model for network anomaly detection. As men-
tioned, we chose LSTM for the memory cells to construct
the Seq2Seq model. We considered one and three cells for
the LSTM stack in our experiments and observed that con-
figuring three cells works much better with little increase
of learning complexity. It is possible to add more cells in
the stack, but our observation tells that three cells would be
enough with the excellent performance (over 99% of accuracy
in detection). For this reason, we set it to three by default.
The output of the previous LSTM layer (denoted as ¢ — 1)
is supplied to the subsequent LSTM layer in the decoder at
time ¢. In the figure, the “Go” signal indicates the input in
the decoder as a tensor in TensorFlow. Once the LSTM stack
in the decoder is executed, it produces the probability for
normal and anomalous, and the model picks the greater one
as the classification decision. The loss function used is Mean
Squared Error.

IV. EVALUATION

We evaluate the deep learning models presented in the pre-
vious section. In this section, we report the experimen-
tal results performed with the public datasets: NSL-KDD,
Kyoto-Honeypot, UNSW-NB15, IDS2017, and MAWILab
datasets.

A. EVALUATION METRICS

We employ a set of metrics that are widely accepted in
practice for evaluating classification performance. The con-
fusion matrix is a table, in which the elements are referenced
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to measure the performance of a classification model. The
elements in the matrix are as follows:
o True Negative (TN): the number of normal instances
correctly identified
o False Negative (FN): the number of anomalies classified
into normal
o True Positive (TP): the number of anomalies correctly
classified
o False Positive (FP): the number of normal classified into
anomalies
Based on the confusion matrix, the following metrics are
defined:

TP + TN
Accuracy =
TP+ TN + FP + FN
.. TP
Precision = ——
TP + FP
TP
Recall = ——
TP + FN
precision X recall
F-measure = 2 -

precision + recall

F-measure is a harmonic mean of the precision and recall of
the test. While widely employed for evaluating classification
performance, F-measure might lead to a biased result if the
dataset is critically skewed. Alternatively, the measure of
Matthew Correlation Coefficient (MCC) is a useful tool to
estimate the quality of binary classification even for a biased
dataset [45], the value of which is ranged from —1.0 (poor)
to 1.0 (good). MCC is defined as follows:

B TP x TN—FP x FN
~ (TPt FP)(IP + EN)(IN + EP)(IN + FN)

We report our experimental results with the metrics defined
above. In particular, we use MCC to report the experimental
results conducted against the Kyoto-Honeypot dataset since
it is significantly skewed with only a small number of normal
instances (~3%).

Mcc

B. EXPERIMENTAL RESULTS AGAINST THE

NSL-KDD DATASET

In this first experiment, we report training time to measure
the learning complexity and F-measure for the performance
of classification. F-measure (also known as FI-score) com-
bines precision and recall and is widely used for measuring
classification performance.

We experimented with a set of hyper-parameter configura-

tions as follows and report the best result for each model:

o Number of hidden units = {25% of the entire features,
50% of the entire features, 75% of the entire features,
and 100% of the entire features }

o Number of hidden layers = {1, 3}

« Epochs = {10, 20, 40, 80}

o Learning rate = {le-02, 1e-03, 1e-04, 1e-05}

Figure 5 shows the measured training time and classifica-

tion performance in F-measure. To measure the training time,
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FIGURE 5. Experimental results against NSL-KDD: (a) training time for the
two training files (Train+ and Train-), and (b) F-measure for the
combinations of the training and testing files.

the experiment was conducted on a dedicated machine in the
Google cloud. Figure 5(a) shows the time taken (in seconds)
to construct the learning model for each of the training files.
The figure shows VAE-Pure < FCN < Seq2Seq, with respect
to the cost of learning. The Seq2Seq model shows a little
greater overhead than FCN and VAE-Pure, but the training
cost is quite manageable (i.e., less than 25 seconds for over
125K data points in Train4). Although not shown in the
figure, the Seq2Seq model with a single cell in the LSTM
stack shows a slightly smaller learning time compared to one
with three cells in the stack but the gap is not significant
(22% at max). Finally, VAE-FCN shows a high degree of
training overhead for Train+, whereas the overhead is less
than Seq2Seq for Train- (consisting of 25K data points).
This implies that VAE-FCN would be limited with respect
to scalability.

Figure 5(b) shows the performance for binary classifi-
cation. From the figure, the Seq2Seq model shows a very
promising performance (>99.9% of F-measure), regardless
of the combinations of the datasets. In fact, the results are
much better than what we observed from the experiment
with conventional techniques shown in Table 1. FCN shows
somewhat consistent results over 86% of F-measure, outper-
forming the conventional learning techniques. The VAE-class
models do not show better performance than FCN, yielding
72%-90% of F-measure.
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TABLE 3. Training and testing datasets selected from Kyoto-Honeypot.

Dataset Dates # records/day
Training January 1-7, 2014 268K
Testing  December 1-31, 2015 236K

TABLE 4. Experimental result against daily data (December 1st, 2016) of
Kyoto-Honeypot.

Model Precision Recall F-measure MCC
FCN 99.7% 87.4% 93.1% 0.37
VAE-Pure 97.5% 75.3% 85.0% 0.05
VAE-FCN 98.1% 90.1% 93.9% 0.19
Seq2Seq 100.0%  100.0% 100.0% 1.0

C. EXPERIMENTAL RESULTS AGAINST THE
KYOTO-HONEYPOT DATASET

As summarized in Section II-A, Kyoto-Honeypot contains a
large amount of daily connection data gathered through hon-
eypots since 2009. In our experiments, we selected a subset
of data without any preference other than the 2-year gap for
the training and testing datasets, not to choose too close data
temporally for the learning and actual classification. Table 3
shows the information of the data selected.

As discussed earlier, the data is significantly skewed and
97% of the records are the data points for attacks, as the col-
lection took place in honeypots. Due to this severe imbalance
with respect to the fractions of normal and attack data points,
we do not rely only on F-measure to measure the performance
because it could lead to a critical bias otherwise. For example,
if a model in evaluation simply classifies all the data points
into attack, the resulted F-measure would still be around 97%.
For this reason, we employ MCC to report the experimental
results conducted against this highly skewed dataset.

The hyper-parameter configurations used in the experi-
ments are as follows:

o Number of hidden units = {1 unit, 10% of the entire
features, 20% of the entire features, 40% of the entire
features, and 100% entire features}

o Number of hidden layers = {1, 3}

« Epochs =10

o Learning rate = le-02

We now report the experimental results against the
Kyoto-Honeypot data. We observed as follows for training
a one-day data (including 268K records): FCN (3.93 sec),
VAE-Pure (3.87 sec), VAE-FCN (6.54 sec), and Seq2Seq
(9.20 sec). We can see that the training cost is not much
expensive even with a single dedicated server. As shown
in Figure 5(a), Seq2Seq sometimes requires a greater amount
of time for training than VAE-FCN, but it does not show
a high degree of variance depending on input data unlike
VAE-FCN.

We next report the performance of the deep learning mod-
els. Table 4 shows the measured performance against a daily
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TABLE 5. Quality score (MCC) between December 1-31, 2015 in
Kyoto-Honeypot.

Model Best Worst Average
FCN 054 0.02 0.19
VAE-Pure 0.06 0.00 0.01
VAE-FCN 0.38  0.00 0.09
Seq2Seq 1.00  1.00 1.00

data (December 1st, 2016) with a set of measures. As can
be seen from the table, Seq2Seq consistently outperforms
showing almost perfect performance. The F-measure shows
that the models seem to be working well, but we can see
that the MCC values are far from 1.0 other than the Seq2Seq
model. In particular, the VAE models show less than 0.2 for
MCC, which is unacceptable. VAE-FCN works better than
VAE-Pure, but it still shows a significantly high FP rate
(55.2%, not shown in the table due to space reasons). FCN
outperforms the VAE models. The F-measure of FCN is quite
high (0.93), but it shows a low score of MCC = 0.37.

We also conducted a set of experiments against the entire
data collected in December 2015 on a daily basis, and Table 5
reports the measured MCC values over the month. Here,
“Average” is the aggregated MCC over the 31 days, while
“Best” and “Worst” are the best/worst result out of 31 days.
The Seq2Seq model works consistently, and Worst is still 1.0
(perfect). Overall, FCN works better than the VAE models as
observed in the previous section.

D. EVALUATION WITH UNSW-NB15 AND
IDS2017 DATASETS
We next report the experimental results conducted with
the UNSW-NB15 [17] and IDS2017 [29] datasets. UNSW-
NB15 provides a pair of training and testing data files, the size
of which are training = 82K and testing = 175K, in terms of
the number of data points. The IDS2017 dataset consists of
5-day traces from Monday to Friday, and daily trace records
include no or only a subset of attacks selectively. There-
fore, for example, if we use the first day trace for training,
we cannot build a model for any attack because it does not
contain any attack record at all. The second day trace contains
FTP and SSH attacks but nothing about DoS/DDoS, Web,
and infiltration attacks that are found in the rest of the days.
For this reason, we sampled ten sets of 100K data points
at random, out of which five files are used for training and
the other five files are for testing. The data files were then
pre-processed for the normalization for the numeric features
and for the one-hot encoding for the categorical features.
Table 6 shows a summary of the results. The table com-
pares the performance of the deep learning models (FCN
and Seq2Seq) and the shallow learning methods (SVM and
RF). Due to the poor performance, we discarded the VAE
models for the subsequent experiments. For UNSW-NB15,
we can see that the Seq2Seq classifier consistently outper-
forms the other learning methods. However, FCN shows a
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FIGURE 6. Performance comparison with the MAWILab data: the deep
learning models work better than the shallow learning models, and
Seq2Seq significantly outperforms the others.

worse performance than SVM and RF in F1-score; it shows a
higher accuracy but also shows a high degree of false positive
rate, degrading the overall performance. RF works better than
SVM and FCN with this dataset.

The result for IDS2017 is averaged out from the five inde-
pendent experiments, as mentioned above. Similar with the
result collected using UNSW-NB15, Seq2Seq outperforms
the other methods for IDS2017. FCN works pretty well with
the higher performance in Fl-score than RF and SVM; it
shows a higher rate for Recall than Precision like the result
with UNSW-NB15, which indicates that this classifier tends
to strictly classify the samples in testing into anomalies. For
RF and SVM, we observed a very high degree of variations
from the individual experiments, and the standard deviation is
16.9% (SVM) and 4.7% (RF), while it is less than 0.11% for
both FCN and Seq2Seq. This implies that the deep learning
models work more in a consistent manner.

E. EVALUATION WITH A MAWILAB TRACE

Finally, we report our experimental results against the MAW-
ILab data. We chose the trace collected on August 27th,
2017 without any preference. A daily trace contains
15-minute packet data collected on that day. We split the
trace chosen into a set of small files in a disjoint manner,
each of which contains the packets for five seconds, and we
used the first five sub-data for our experiments. As shown
in Table 7, the first file is used for training and the subsequent
four files were utilized for testing. The table also provides the
information about the fraction of normal and anomaly data
points.

For learning and testing, we considered the following five
features: protocol, TCP flags, number of packets, number of
bytes, and duration. The total number of features after one-hot
encoding is 23. We assumed epochs = 20 and learning rate =
le-02 as the default setting in the experiments.

In this experiment, we focused on the performance of the
Seq2Seq model to see if it consistently yields a high degree of
detection accuracy. Figure 6 compares the performance of the
shallow learning models (SVM and RF) and the deep learning

VOLUME 7, 2019



R. K. Malaiya et al.: Empirical Evaluation of Deep Learning for Network Anomaly Detection

IEEE Access

TABLE 6. Experimental results with UNSW-NB15 and 1DS2017 datasets.

Dataset Classifier

Accuracy Precision

Recall

F1-score

UNSW-NBI5 SVM 0.819
RF 0.853
FCN 0.857

Seq2Seq 1.000

0.973
0.975
0.701
1.000

0.756
0.805
0.938
1.000

0.821
0.882
0.807
1.000

IDS2017 SVM 0.742
RF 0.954
FCN 0.834

Seq2Seq 1.000

0.567
0.952
0.834
1.000

0.782
0.763
1.000
1.000

0.608
0.846
0.910
1.000

TABLE 7. MAWILab dataset from August 27, 2017.

# normal
266,593
291,488
327,413
261,426
300,759

File # data points
Train 383,615
Test1 407,807
Test2 472,654
Test3 423,984
Test4 425,994

# anomaly
117,022
116,319
145,241
162,558
125,235

% anomaly
30.5%
28.5%
30.7%
38.3%
29.4%

N 1e-01
I 1e-02

E 1e-03
0 le-04

[ 1e-05

=
=)

F-measure
o o
[=)] ©

©
N

o
[N]

0.0

Testl Test2 Test3 Testd

FIGURE 7. Impact of learning rate for the Seq2Seq model: the model
works consistently over the different testing datasets if the learning rate
is not too small.

models (FCN and Seq2Seq) against the MAWILab dataset.
As can be seen from the figure, the deep learning models work
better than the shallow learning models. While FCN produces
77%—-84% of F-measure, Seq2Seq works consistently across
the testing sets showing 100% accuracy.

Figure 7 shows the impact of the learning rate for the
Seq2Seq model against the MAWILab data. As can be
seen from the figure, Seq2Seq works highly consistently
if the learning rate is not too small. However, it degrades
significantly with the very small learning rate of 1e-05.
We also measured the impact of epochs with a set of
epochs = {10, 20, 40, 80}, and observed no significant
impact.

In sum, the deep learning model based on the Seq2Seq
structure with LSTM works very well for network anomaly
detection, consistently yielding over 99% of detection accu-
racy over the diverse datasets with different characteris-
tics. For cross-validation, the implementation of the deep
learning models presented in this paper is available at
https://github.com/dcstamuc/NetworkAnomaly.
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V. CONCLUSION

While machine learning has widely been applied to vari-
ous applications in different domains, few studies exist that
examined deep learning for the study of network anomaly
detection in depth. In this work, we claimed why deep learn-
ing would be a good choice for effective network anomaly
detection by showing the non-linearity of network traffic
data. To evaluate the potential of deep learning, we estab-
lished a set of deep learning models based on FCN, VAE,
Seq2Seq structures, and examined the constructed models
with a diverse set of public traffic datasets including NSL-
KDD, Kyoto-Honeypot, UNSW-NB15, IDS2017, and MAW-
ILab. Our experimental results are interesting and the model
based on the Seq2Seq structure shows the highly promising
performance yielding over 99% of accuracy to identify net-
work anomalies across the entire datasets.

In this study, we reported the best performance for each
model from the results obtained with a set of hyper-parameter
configurations. How to tune the parameters is an important
task and we plan to investigate to address this problem as
one of the future tasks. This study also assumed a relatively
small number of hidden layers (1 or 3) for the deep learning
structures, and extensive evaluations with a greater number
of layers will be one of the interesting future tasks. In addi-
tion, this evaluation study does not include the Convolutional
Neural Network (CNN) structure, and examining the feasi-
bility of CNNs for network anomaly detection would also be
interesting for future investigation.
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