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ABSTRACT The large-scale tasks processing for big data using cloud computing has become a hot
research topic. Most of previous work on task processing is directly customized and achieved through
existing methods. It may result in relatively more system response time, high algorithm complexity and
resource waste, etc. Based on this argument, aiming at realizing overall load balancing, bandwidth cost
minimization and energy conservation while satisfying resource requirements, a novel large-scale tasks
processing approach called TOPE (Two-phase Optimization for Parallel Execution) is developed. The deep
reinforcement learning model is designed for virtual link mapping decisions. We treat whole network as a
multi-agent system and the whole process of selecting each node’s next hop node is formalized via Markov
decision process. We train the learning agent by deep neural network to store parameters of deep network
model while approximating the value function, rather than tons of state-action values. The virtual node
mapping is achieved by designed distributed multi-objective swarm intelligence to realize our two-phase
optimization for task allocation in topology structure of Fat-tree. We provide experiments to show the
ability of TOPE in analyzing task requests and infrastructure network. The superiority of TOPE for large-
scale tasks processing is convincingly demonstrated by comparing with state-of-the-art approaches in cloud
environment.

INDEX TERMS Large-scale tasks, big data, two-phase optimization, reinforcement learning, fat-tree.

I. INTRODUCTION
The problem of large-scale tasks processing for big data
[1]–[3] has become a hot issue. Aiming at achieving the effi-
cient task execution, the large-scale tasks processing based on
cloud computing [4]–[8] has been utilized to relieve the work-
load of computing and data transmission for big data learning.
An efficient task processing approach can achieve the rea-
sonable task allocation and improve the resource utilization
rate. On the contrary, the load imbalance of systemmay occur
since there are limitations of some conventional approaches
and the performance variation of resource in heterogeneous
system environment, which results in the decrease of resource
utilization rate and performance of data center. Thus it is
necessary to explore an effective large-scale tasks processing
approach in the course of big data learning.

Some separate domains have attracted much attention and
developed rapidly. Nowadays, with the rapid growth and
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diversification of user requirements, the combination of var-
ious domains has become a trend. The motivation of this
work is to achieve the combination of multiple domains in
right of combining the distributed swarm intelligence [9] and
reinforcement learning [10] to complete reasonable task allo-
cation in large-scale tasks processing for big data learning.
We aim to develop an effective task processing approach,
which can achieve the efficient parallel execution of massive
tasks with high resource utilization rate, low bandwidth cost
and energy consumption.

Based on this motivation, we have proposed a novel large-
scale tasks processing approach for big data learning. The
architecture of fat-tree [11], [12] has been introduced to
reduce the load of some links with less bandwidth resource
and make the topology more stable. The full connection pat-
tern significantly increases the throughput of system, which
benefits to the raise of overall system performance. And this
work takes advantage of the idea of ‘‘divide-and-conquer’’
to achieve the combination of distributed swarm intelligence
and the deep reinforcement learning to allocate tasks onto
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proper physical nodes in the substrate network, which con-
duces to the tons of tasks processing in big data learning.
It has realized the overall load balancing and minimization of
bandwidth cost as well as energy saving in cloud data center.

Our main contributions are as follows:
(1) Based on the situation of rapid growth and diversifica-

tion of user requirements, a two-phase optimization method-
ology for large-scale task processing in big data environment
is proposed;

(2) This work presents a virtual network mapping
based large-scale tasks processing approach combining the
deep reinforcement learning with distributed multi-objective
swarm intelligence while reducing the additional computa-
tional overhead and energy consumption;

(3) The capability of TOPE in analyzing task requests and
infrastructure network has been shown in the experiments.
Comparing with state-of-the-art approaches, it convincingly
demonstrates the superiority of TOPE for large-scale tasks
processing in distributed environment.

The rest of this paper is organized as follows: the related
work of the current methods achieving tasks processing for
big data is introduced in Section II. And in Section III,
the proposed problem is described. In Section IV, we for-
malize the proposed problem in this work and describe the
optimization problem. In Section V, the design and imple-
mentation of the main algorithm are introduced in detail.
Moreover, the origin of the idea of this work is expounded
in Section VI. In Section VII, the experimental results are
obtained by experiments, demonstrating that the proposed
approach can effectively overcome the problem presented
herein. Finally, we draw the conclusion of this paper and
specify some future work in Section VIII.

II. RELATED WORK
In recent years, efforts are invested to mitigate the var-
ious problems in task processing for big data. In [13],
Jin Xiaohong et al. have introduced the task allocation tech-
niques with clustering and load balancing in the field of
Internet to the field of image processing job allocation of
alternative big data. Researchers design and realize a load
balancing cluster architecture for the alternative big data.
Moreover, an improved load balancing algorithm applicable
to large-scale image processing has been proposed. In [14],
Tsuguhito Hirai et al. have taken the efficiency of backup
tasks into consideration. The task-scheduling server is mod-
eled as a single-server queue, in which the server consists
of a number of workers. The task has been split into sub-
tasks, and each subtask is served by its own worker and
an alternative distinct worker in the case that a task enters
the server. It is explicitly derived that the task processing
time distributions for the two cases that the subtask process-
ing time of a worker obey Weibull or Pareto distribution.
Jian-Hua Gu et al. [15] have proposed a cross-domain work-
flow scheduling system namedArana. In right of moving pro-
gram close to data and integrating popular big data processing
platform, this system enables users to complete computing

with cross-domain data without transferring. In [16], an inter-
mediary framework by using multiple cloud environments
has been presented to provide streaming big data computing
service with lower cost per load. In this framework, a pricing
strategy has been presented to maximize the revenue of the
multiple cloud intermediaries. In the extensive simulations,
it can be observed that the proposed pricing strategy can
bring higher revenue than other pricing methods. In [17],
researchers seek to propose a predictive approach to task
scheduling with the aim of reducing the overhead incurred
in case of processing big data based on the cloud. A method
of using classification in machine learning is presented as a
tool for scheduling tasks and assigning them to VMs in the
cloud environment. A comparative study has been undertaken
to explore which brand of classifiers perform optimally in
the given scenario. And then a number of classification algo-
rithms such as Naive Bayes, Random Forest and K-Nearest
Neighbor are then used to predict the VM best suited to a
task in the test dataset. In [18], a Parallel Random Forest
(PRF) algorithm is proposed for big data processing on the
Apache Spark platform. It achieves optimization based on
a hybrid approach combining data parallel and task-parallel
optimization. From the perspective of data-parallel optimiza-
tion, a vertical data-partitioning method has been performed
to reduce the data communication cost effectively, and a
data-multiplexing method is performed to allow the training
dataset to be reused and diminish the volume of data. From
the perspective of task-parallel optimization, a dual parallel
approach is carried out in the training process of RF, and a
task Directed Acyclic Graph (DAG) is created according to
the parallel training process of PRF and the dependence of
the Resilient Distributed Datasets (RDD) objects. Hereupon
different task schedulers are invoked for the tasks in the DAG.
Experimental results indicate the superiority and notable
advantages of the PRF algorithm over the relevant algorithms
implemented by SparkMLlib and other studies in terms of the
classification accuracy, performance, and scalability. With
the expansion of the scale of the random forest model and the
Spark cluster, the advantage of the PRF algorithm becomes
more obvious. In [19], a model of computation partitioning
for stateful data in the dynamic environment is proposed that
will improve performance. First, a model of stateful data
streaming is constructed, and the method of computation
partitioning in a dynamic environment is studied. A definition
of direction and calculation of the segmentation scheme is
developed, including single frame data flow, task scheduling
and executing efficiency. Second, a computation partitioning
method for single frame data flow has been proposed. The
data parameters of the application model, the computation
partitioning scheme, and the task and work order data stream
model have been determined. Finally, the research verifies the
effectiveness of single frame data in the application of the data
stream.

Recent advances in reinforcement learning and even
deep reinforcement learning have improved the effective-
ness of task processing for the big data. In [20], researchers
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investigate the cost minimization problem of big data ana-
lytics on geo-distributed data centers connected to renew-
able energy sources with unpredictable capacity. They
propose a job scheduling algorithm by combining reinforce-
ment learning with neural network. What’s more, two tech-
niques are developed to enhance the performance of the
proposal. Specifically, Random Pool Sampling (RPS) is pro-
posed to retrain the neural network via accumulated training
data, and a novel Unidirectional Bridge Network (UBN)
structure is designed for further enhancing the training speed
by using the historical knowledge stored in the trained neu-
ral network. In [21], a new model for large-scale adaptive
service composition is proposed. The model integrates the
knowledge of reinforcement learning for the problem of
adaptability in a highly-dynamic environment and game the-
ory used to coordinate agents’ behavior for a common task.
In particular, a multi-agent Q-learning algorithm for service
composition based on this model is also proposed herein.
In [22], Fanyu Bu has proposed a reinforcement learning-
based intelligent scheduling algorithm for big data analysis
by increasing the utilization and reducing the energy con-
sumption of the processors. A reinforcement learning model
has been designed to select an appropriate dynamic voltage
and frequency scaling technique for configuring the voltage
and frequency according to the current system state, which
can improve the utilization and optimize the energy consump-
tion effectively. Furthermore, a learning algorithm has been
implemented to train the parameters of the reinforcement
learning model. The proposed scheduling approach is able
to improve the resource utilization and save the energy for
big data analysis in communication systemswhen performing
tasks on mobile computing devices with embedded systems.
In [23], Ying He et al. have considered realistic time-varying
channels as well as the channel is formulated as a finite-
state Markov channel (FSMC). They propose a novel big
data reinforcement learning approach since the complexity
of the system is very high. Deep reinforcement learning
is used herein to obtain the optimal interference alignment
user selection policy in cache-enabled opportunistic inter-
ference alignment wireless networks. In this work, the deep
reinforcement learning model based on deep Q-network is
trained to approximate the value function as well as make
reasonable virtual link mapping decisions. The virtual node
mapping can be determined by the designed distributedmulti-
objective swarm intelligence method to achieve the two-
phase optimization for large-scale tasks allocation in cloud
environment.

III. THE PROPOSED PROBLEM
As shown in Fig. 1, the fat-tree topology structure has been
introduced to construct the system model of the proposed
TOPE approach in the distributed environment. It can relieve
the workload of interaction between master nodes and users,
as well as ease the workload of direct interaction between
master nodes and slave nodes. Specifically, parallel tasks are
allocated to the master nodes in the core layer in order to

FIGURE 1. The proposed problem.

accomplish the task allocation and management for the slave
nodes. The sub-master nodes in the edge layer are divided into
k independent zones. Based on the characteristic of fat-tree,
each of sub-master nodes in the edge layer possesses k/4 link
connected to the master node in the core layer. Meanwhile
it also connects to other two nodes in this zone. The failure
of certain sub-master node in the zone will not results in
the offline of a large number of servers since the sub-master
nodes in each zone are interconnected, which contributes to
normal operation of the data center. For each of zones in the
edge layer, there are multiple connections to the master nodes
in the core layer. The whole network failure will not occur in
case of the breakdown of certainmaster node thus the network
connectivity can be guaranteed to a great extent.

On the whole, with this pattern of fully connected net-
work in this work, the overall throughput of system can
be improved. The efficient parallel execution for big data
processing can be achieved in virtue of using the multiple-
branching tree construction. By using the cooperation of the
core layer and edge layer, which consists of master nodes
and sub-master nodes respectively, the requested tasks could
be allocated into corresponding slave nodes successfully and
that the reliable transmission of data can be guaranteed in case
of certain processing infrastructure going down. Furthermore,
taking advantage of the fat-tree based construction, we are
able to achieve the load balancing of nodes and links in the
case that tons of parallel tasks need to be addressed for big
data.

As is well-known, numbers of physical nodes and links
in this structure possess the capability of service for task
requests. It is noting that different task allocation strate-
gies may lead to different load distribution and cause dif-
ferent execution efficiency and external service capability.
It is undoubtedly that an optimal large-scale tasks allocation
approach should possess capabilities to achieve a proper
task assignment, avert the overload of nodes and links, and
thus improve the resource utilization rate of system. What’s
more, the overhead of computing in nodes and data transmis-
sion via links should be decreased while the overall energy
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consumption should be decreased as much as possible, which
contributes to efficient task processing in the overall system.
Thus it is necessary to design and implement a reasonable and
efficient task allocation approach in the cloud environment.

IV. PRELIMINARIES
A substrate network can be denoted as a weighted undirected
graph Gsub = (Nsub,Lsub,Ansub,A

l
sub), Nsub represents the

set of related physical nodes, and Lsub represents the set of
physical links in the substrate network. nsub is an element of
Nsub (nsub ∈ Nsub), and lsub is an element of Lsub (lsub ∈ Lsub).
nsub and lsub are associated with attributes Ansub and Alsub.
In this paper, the attributes of a substrate network are usu-
ally the available CPU capability (CPU(nsub)) and network
bandwidth (BW(lsub)).
Similar to the substrate network, a virtual network request

can also be denoted as a weighted undirected graph Gvir =
(Nvir ,Lvir ,Rnvir ,R

l
vir ), Nvir is the set of virtual nodes (nvirs)

(nvir ∈ Nvir ) and Lvir is the set of virtual links (lvirs) (lvir ∈
Lvir ). nvir and lvir are associated with the resource constraint
set Rnvir and R

l
vir . Generally, R

n
vir consists of the CPU request

(CPU(nvir )) of each virtual node and Rlvir consists of band-
width request (BW(lvir )) of each virtual link.
Based on the previous work [6], in this paper, the standard

deviation of CPU utilization rate is employed to represent
load balancing degree, ε. The load balancing effect can be
reflected by the load balancing degree. U i

vir represents the
current CPU utilization rate of the ith available node and n
represents the total number of available nodes. The formula
for the average resource utilization rate at can be defined as:

Avg(U ) =
n∑
i=1

U i
vir/n. (1)

Then the load balancing degree can be obtained, and the
formula is as follows:

ε(Gvir ) =

√
1
n

n∑
n=1

(U i
vir − Avg(U ))2. (2)

Hereupon, the problem of node energy conservation can be
defined as two major aspects: the node energy consumption
of virtual network mapping process itself and accomplish-
ing parallel tasks of a virtual request. Based on previous
work, we analyze and quantify node energy consumption of
mapping process for accepting a virtual request in virtue of
calculating the integral of electricity price and power loss
in time. The node energy consumption 1En herein can be
defined as follows:

1En =
∑
v∈Nvir

∑
n∈Nsub

xvn1Pn
v
n

∫ tj

ti
Prn(t)dt. (3)

where xvn represents the current status of mapping a vir-
tual node v ∈ Nvir onto the physical node n ∈ Nsub.
If the node v has been successfully mapped onto the node n,
xvn = 1, or xvn = 0. 1Pnvn represents the additional energy
consumption of mapping the virtual node v onto the physical

node n. Aiming at accurately representing the electricity price
of node n at time t , we construct a discrete time model Prn(t)
with the time window [24].

For the phase of accomplishing the parallel tasks of the
virtual request accepted, we can define the node energy con-
sumption in unit time of virtual network mapping process for
accepting Nvir as follows:

Eut (Nvir ) =
∑
n∈Nsub

αn(pn − qn)+
∑
n∈Nsub

wnCPU (n). (4)

where αn is defined to represent the basic node energy con-
sumption in unit time under the work. pn and qn are defined
as the operation status of the node n after accepting Nvir and
before it respectively, and if the node n is under the work, their
values are set to 1, or they are set as 0. wn is defined as the
power consumption of unit CPU utilization of node n in unit
time. Here, we can define the node energy consumption for
accepting Nvir during T (Nvir ) which represents the lifetime
of finishing the parallel tasks of a virtual request:

E (Nvir ) = Eut (Nvir )∗ T (Nvir ) . (5)

In consideration of minimizing bandwidth cost, according
to the given DAG of tasks, the bandwidth cost value of each
link in the whole available given path can be defined as
BW(lvir ). Assume that there are p available links in the whole
path, and the sum of total bandwidth cost can be defined as
follows:

C(Lvir ) =
∑

lvir∈Lvir

∑
lsub∈Lsub

BW (lvir ). (6)

Similar to the problem of node energy conservation,
the link energy conservation issue is also defined as two
major aspects: the link energy consumption during virtual
network mapping process and completing the parallel tasks
for the accepted virtual request. In this work, we can define
the former as follows:

1El =
∑

lvh∈Lvir

∑
lno∈Lsub

yvhno1Pl
vh
no

∫ tj

ti
Prn(t)dt. (7)

where yvhno represents the current status of mapping the virtual
link lvh onto the physical link lno. If the virtual link lvh has
been successfully mapped onto the physical link lno, yvhno = 1,
or yvhno = 0. We use 1Plvhno to represent the energy con-
sumption of mapping the the virtual link lvh onto the physical
link lno.

Aiming at completing the parallel tasks of the virtual
request accepted, the link energy consumption in unit time
of virtual network mapping process for accepting Lvir can be
defined as follows:

Eut (Lvir ) =
∑

(n,o)∈Lsub

βno(yno − xno). (8)

where βno represents the basic link energy consumption in
unit time under working. yno and xno are defined as the
operation state of the link no after accepting Lvir and before it
respectively, and if the link no is under working, their values
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are set as 1, or they are set as 0. The link energy consumption
of completing the parallel tasks after accepting Lvir during the
lifetime T (Lvir ) can be expressed as follows:

E(Lvir ) = Eut (Lvir )∗T (Lvir ). (9)

We define the optimization problem in this work with the
objective function of minimizing the overall load balancing
degree, energy consumption and bandwidth cost for virtual
network mapping in distributed environment. The constraints
are also defined in detail as follows according to the objective
conditions.

Optimization Problem:
Minimize:

f1=

√
1
n

n∑
n=1

(U i
vir−Avg(U ))2. (10)

f2=
∑
v∈Nvir

∑
n∈Nsub

xvn1Pn
v
n

∫ tj

ti
Prn(t)dt

+ (
∑
n∈Nsub

αn(pn−qn)+
∑
n∈Nsub

wnCPU (n))∗T (Nvir ) . (11)

f3=
∑

lvir∈Lvir

∑
lsub∈Lsub

BW (lvir ). (12)

f4=
∑

lvh∈Lvir

∑
lno∈Lsub

yvhno1Pl
vh
no

∫ tj

ti
Prn(t)dt

+ (
∑

(n,o)∈Lsub

βno(yno − xno))∗T (Lvir ). (13)

Subject to:
Resource capacity constraint:

∀v ∈ Nvir , ∀n ∈ Nsub,

{
xvn×CPU (v)≤CPU (n)
xvn×Dis(Loc(n),Loc(v))≤D

(14)

∀(n, o)∈Lsub, ∀(v, h)∈Lvir , yvhno×BW (lvh)≤BW (lno)

(15)

Connectivity constraint:

∀n ∈ Nsub, ∀(v, h) ∈ Lvir ,∑
(n,o)∈Lsub

yvhno −
∑

(o,n)∈Lsub

yvhon =


1, if xvn = 1
1, if xhn = 1
0, otherwise

(16)

Variable range constraint:

∀n ∈ Nsub,
∑
v∈Nvir

xvn ≤ 1

∀v ∈ Nvir ,
∑
n∈Nsub

xvn = 1 (17)

∀n ∈ Nsub, ∀v ∈ Nvir , xvn ∈ {0, 1}

∀(n, o) ∈ Lsub, ∀(v, h) ∈ Lvir , yvhno ∈ {0, 1} (18)

V. THE PROPOSED SCHEME
Aiming at the efficient parallel execution of large-scale tasks
for big data learning, a novel approach TOPE has been pre-
sented in this work, which is used to explore an optimal
task allocation scheme to realize the overall load balancing,
energy conservation and minimization of bandwidth cost
in distributed environment. TOPE combines the distributed
multi-objective PSO (Particle SwarmOptimization) and deep
reinforcement learning herein. It has achieved massive tasks
allocation in virtue of virtual network mapping. In order to
explore the optimal virtual node mapping decision, an effi-
cient virtual node mapping method based on the distributed
multi-objective PSO has been proposed. Subsequently, we
employ the Q-learning with deep neural network for the vir-
tual link mapping decision. Taking advantage of the continual
interactions with the surroundings and tryouts, Q-learning
preferentially selects the better linkmapping scheme. Eventu-
ally, the optimal virtual networkmapping scheme is achieved.
The large-scale tasks are allocated onto proper physical nodes
for efficient parallel execution for big data.

FIGURE 2. Architecture of the distributed multi-objective PSO method.

A. VIRTUAL NODE MAPPING SCHEME
Aiming at tackling the multi-objective problem of overall
load balancing and the node energy conservation, differ-
ent from previous work, we have proposed a virtual node
mapping method based on distributed multi-objective PSO
(Particle Swarm Optimization). Based on the idea of using
distributed methods for large-scale tasks, V physical nodes
in the substrate network are grouped into U sets, with each
one corresponding to a PSO population for fitness evaluation.
Fig. 2 describes the construction of the proposed distributed
method. Similar to master-slave framework, V populations
in the ‘Population Layer’ can be implemented on parallel
hardware, which are controlled by the master node Pc. P indi-
cates a population as well as PNi in the ‘Individual Layer’ is
the available physical nodes. The ‘Individual Layer’ allocates
the individual evaluations of each PSO population onto a
corresponding set of slave physical nodes to maximize the
benefits.

In respect of the velocity and position update of parti-
cles, taking advantage of the non-dominated sorting and the
crowding degree comparisonmethod, we can attain the global
optimal solution which represents the optimal virtual node
mapping scheme. In the meantime, the idea of non-uniform
mutation is employed to improving the diversity of solutions
and avoiding the local optimum, thus it accelerates the con-
vergence of our approach.
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Specifically, particles aggregate to the personal best posi-
tion vector and global best position vector at a certain rate
to iterate to search the optimal solution. Herein, each particle
represents a potential solution of the proposed problem and
it corresponds to a fitness value. Thus we need to define
some critical parameters for the following optimization. The
particle position vector Xi =

[
x1i , x

2
i , . . . , x

H
i

]
is defined as

the ith possible mapping scheme. H represents the number
of nodes in the virtual network. x ji is a positive integer and
it represents the serial number of substrate node that the jth
virtual node selects from the list of candidate substrate nodes.
The particle velocity vector Vi =

[
v1i , v

2
i , . . . , v

H
i

]
is defined

as the adjustment decision of mapping schemes which is
employed to prompt the current mapping scheme to adjust
to better one. vji is a binary variable and in the case vji = 0,
the jth virtual node needs to reselect a node from substrate
network for the virtual node mapping.

The complete method is illustrated as follows. First, we
initialize the solution set. The values of objective function f1
and f2 of each virtual node mapping scheme can be calcu-
lated. For the multi-objective optimization problem of node
load balancing and energy conservation, we can’t ensure
that each of the candidate optimal mapping schemes will
bring sufficient performance revenue from parallel execution.
Based on this fact, aiming at not only fully meeting the
resource requests of virtual network but also realizing the
overall load balancing and energy conservation, we define
each node mapping scheme as personal best solution for the
non-dominated sorting in the solution set. By this means,
the solutions which are divided into c levels (p1, p2,..., pc) can
be attained. Thenwe select the solutions belonging to the non-
dominated solution set for crowding degree comparison. The
solution with largest crowding degree is the current global
best solution. The detailed process of non-dominated sorting
and crowding degree comparison can be found in [9].

The process of exploring the global best solution is as
follows. We define k as the number of iterations and the
maximum number of iterations is set to K .

1. Based on the current personal best solutions and the
global best solution, we can attain a node mapping scheme
set pop(k) according to the following velocity and position
updating formulas:

Vi+1 = wVi + c1r1(Xpb − Xi)+ c2r2(Xgb − Xi). (19)

Xi+1 = Xi + Vi+1. (20)

where Xgb refers to the global best position vector and
Xpb represents the personal best position vector. w is the
inertia weight, c1 and c2 are learning factors. r1 and r2
are both random numbers which are uniformly distributed
from 0 to 1.

2. The non-dominated comparison is carried out in each
solution of node mapping scheme sets pop(k) and pop(k-1).
We update the solutions dominated in pop(k-1) to the better
solutions in pop(k). Thus the personal best node mapping
scheme set pbpop(k) is obtained.

3. The non-dominated sorting and crowding degree com-
parison are performed after combining pop(k) and pbpop(k).
Thus we can get the gbpop(k), and then we can get the global
best solution.

4. The non-uniform mutation is introduced into gbpop(k)
for avoiding the local optimum. A probability is generated
randomly herein. According to the probability, the global
best solution is interchanged with any personal best solution.
Detailed process can be found in [25].

5. Repeat the above steps 1-4.

B. VIRTUAL LINK MAPPING SCHEME
In this work, we minimize the cost of link between each two
adjacent nodes while satisfying the virtual requests. Based on
this argument, we employmulti-agent reinforcement learning
to implement virtual link mapping We can treat the whole
network as a multi-agent system (MAS). Each node can
be treated as an agent with independent learning capability.
It is able to take the information about various aspects into
account in case of selecting an adjacent node as the next
hop node. We can describe the whole mathematical model
in virtue of Markov decision process (MDP) herein. More-
over, we employ the distributed value function (DVF) based
Q-learning for the virtual linkmapping decisions in this work.
The updating rule of DVF based Q-learning is as follows:

Q(si, ai)← (1− α)Qi(si, ai)+ α(ri(si, ai)

+β
∑
j∈Nb(i)

ωi(j)Vj(sj)). (21)

where α is the learning rate and ri(si, ai) represents the
immediate cost that the state si receives from the environment
by taking the action ai. β represents a discount factor andωi(j)
represents a weighted value. Vj(sj) is the value function of the
adjacent node j of node i.
The specific steps of the MDP for virtual link mapping can

be described as follows:
State Space. The state of node i can be defined as:

sni =
{
(bnij, e

n
ij) | j ∈ Nbi

}
. (22)

where bnij represents the link quality between node i and its
adjacent node j, and enij represents the queue size of adjacent
node j. Nbi is defined as the adjacent node set of node i. The
set of all possible values for sni can be defined as Si
Action Set. For the action ani (s

n
i ) ∈ Ai that the node i takes,

it is only related to its own current state. And we can define
Ai as follows:

Ai =
{
slj, j ∈ Nbi

}
. (23)

where slj refers to that the node i selects the node j as the next
hop node.

Immediate Cost. The immediate cost is employed to reflect
the current operation state and the efficiency of virtual link
mapping. To minimize the objective functions f3 and f4,
we introduce the following cost function. The node i with a
failed mapping on the link between node i and j receives a
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cost Kfail . Otherwise, a cost is assigned to the node i based
on its successful link mapping. Specifically, the cost of node
i is defined as:

rni (s
n
i , a

n
i (s

n
i ))=

{
Kfail, mapping failed;
K1 · f3+K2 · f4, success.

(24)

where K1 and K2 are both positive weights. The cost function
is suitable for minimizing f3 and f4 in a distributed way due to
the fact that it takes bandwidth cost and consumed link energy
into consideration.

Q-value Update. After obtaining the immediate cost of
node i, we update the Q-value of an action a on state s in
manner of DVF based Q-learning:

Qn+1i (sni , a
n
i (s

n
i ))

= (1− α)Qni (s
n
i , a

n
i (s

n
i ))+α(r

n
i (s

n
i , a

n
i (s

n
i ))

+βω(i, j) min
snj ∈Sj,a

n
j ∈Aj

Qnj (s
n
j , a

n
j (s

n
j ))

+β
∑

i′∈Nbi,i′ 6=j

ω(i, i′) min
sn
i′
∈Si′ ,a

n
i′
∈Ai′

Qni′ (s
n
i′ , a

n
i′ (s

n
i′ ))). (25)

where ω(i,j) refers to the weight of long-term cost that the
node i receives from the selected node j. ω(i,i’) is the weight
of long-term cost that the node i receives from its adjacent
node.

It is noting that ‘‘curse of dimensionality’’ may occur when
MDP possesses the huge state space and action space. Based
on this argument, the deep neural network is introduced to
approximate the value function Q(s, a).

The neural network consists of input layer, hidden layer
and output layer, and the front layer and the back layer are
connected by weights. The network model can turn to the
back propagation in case of an error between the actual output
and the expected output in the output layer. It adjusts the
weights of each layer in right of gradient descent method to
approach the minimum of output error (OE). For the model
learning, the forward propagation and back propagation alter-
nate until the error reaches an excepted range.

For the neural network based reinforcement learning pro-
cess, at time t , the agent tasks action at and receives the
immediate cost r(st , at ). Then the system inputs the current
state-action pair (st , at ) and the immediate cost r(st , at ) of
MDP into the neural network. The neural network approxi-
mates the value function according to the input and immediate
cost. And then it outputs the estimated value of the value
function to the agent. The agent employs the estimated value
to carry out the iteration of the value function. The weight
vector adjustment can be achieved by the back propagation
of the learning resultQ(st , at ). The designed model no longer
stores and updates the value function estimation tableQ(s, a).
It only needs to store the weights of each neuron in the neural
network. The storage scale is only related to the construction
of the designed neural network model.

In order to avoid the interaction caused by simultaneous
computation and training of Q-network, we have trained two
neural networkswith identical parameters, including themain

network and the target network. The main network is used to
update the weight in real time, while the target network keeps
the weight unchanged temporarily. The weight of the main
network is assigned to the target network after a period of
time. It effectively avoids the instability caused by frequent
weight updates.

The main steps of the deep Q-network are as follows:
1. Initialize the weights of the main network and make the

values randomly distributed within [−1,1]. And then assign
the weights of the main network to the target network. Ini-
tialize the experience-replay memory Sp to make its capacity
reach the set number C .
2. The current environmental state s is detected for the

tryout of model.
3. The selection of current action a should be carried out,

which is determined by the method of ε-greed, where ε is
the exploratory utilization rate. The probability of randomly
selecting action a depends on ε. The maximal Q-value is
used as the selection criterion to select the action value a.
Generally, the value of ε is designed to decrease gradually.
It is mainly because more different actions are needed to
explore the impact to the environment in the initial stage, so as
to avoid the overall system falling into the local optimum. The
model is able to select the action with the maximal Q-value to
achieve good results after a period of time. Thus we increase
the probability of selecting the action values that have been
learned before.

εx = 1−
x
Y
. (26)

where x is the current training step number and Y is the total
step number at the initial setting.

4. The reward value r can be obtained. Store< s, a, r , s′ >
into Sp with the updated state s′. Hereupon the initial sample
will be replaced by the latest sample.

5. The sample< s, a, r , s′ > is randomly selected from Sp.
The target Q-value zj can be calculated as follows:

zj =


rj, if the episode ends at

the state sj+1;
rj + γ maxa′

Q(s,, a,, ω,), otherwise.

(27)

where Q(s′, a’, ω′) is the Q-value of the target network. The
parameters of the convolutional neural network are updated
according to the gradient descent method. Herein, the loss
function Lj is used for the parameter update of the Q-network.
We sample in batches from Sp and update network parame-
ters. The values of the main network weight are assigned to
the target network weight every W steps.

Lj =
1
m

m∑
j=1

(zj − Q(s, a, ω))2. (28)

6. Repeat the above steps2-5.
For the application of the deep network model, the cor-

responding action, namely the optimal virtual link mapping
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decision will be output when the current state including the
link quality and the queue size of adjacent nodes is input.

The learning agent runs on the training data set for
2000 epochs. With the training going, the random sampling
allows the learning agent to explore different possibilities.
The learning agent may receive a good solution occasionally
and a decent reward which helps the main network to learn to
make better decisions. Herein we randomly sample 200 times
from the experience-replay memory for training and update
the gradient after each training.

In our neural network model, the first convolutional layer
includes 32 convolution kernels. The size of each convolution
kernel is 5 × 5. We set the size of stride to 1. The matrix
size of max-pooling layer is 2 × 2 and its stride size is set
to 2. The second convolutional layer includes 64 convolution
kernels and other parameters are same as those of the first
layer. Our training period often lasts 2-3 hours. What’s more,
the learning rate of model is set to 0.001. The optimization
method Adam is utilized to achieve the dynamic updating of
strides.

VI. DISCUSSION
In this paper, depending on the cooperation of master nodes
and sub-master nodes in the fat-tree, each node can transmit
data through other paths in case of certain central processing
equipment going down. Meanwhile, it contributes to reduce
the load of some links with less bandwidth and makes the
topology more stable. The full connection pattern signifi-
cantly increases the throughput of systems, thus it accelerates
the information interaction and benefits to the raise of overall
system performance.

In order to improve the efficiency of big data processing,
a two-phase optimization to parallel execution methodology
has been proposed, and it mainly solves the proposed prob-
lem which is a NP-hard combination optimization problem.
Generally, the previous work tends to ignore the resource
requirement of nodes or links, omit the access control of
virtual cluster requests and only take some special topology
structures into consideration. Thus, it may result in high algo-
rithm complexity, load imbalance, and overmuch bandwidth
cost. Based on the above, different from the previous point
of view, a ‘‘divide-and-conquer’’ strategy has been utilized.
We have proposed a two-phase methodology TOPE to con-
duct the large-scale tasks processing instead of solving it all
at once. Fundamentally, TOPE has ingeniously solved the
combination optimization problem by a combination of a
distributed method and deep reinforcement learning. Eventu-
ally, we have accomplished the optimization for the problem
of load balancing, bandwidth cost minimization and energy
conservation simultaneously.

During the virtual node mapping stage, based on the idea
of using distributed methods for large-scale tasks, V physi-
cal nodes in the substrate network are grouped into U sets,
with each one corresponding to a PSO population for fitness
evaluation. Hereupon, we formalize each feasible solution
(nodemapping scheme) as a kinetic particle in the population.

It explores and modifies the optimal position vector by con-
tinuously moving in the domain of definition. Herein, for our
multi-objective combinatorial optimization, we have intro-
duced the multi-objective PSO. By using the non-dominated
sorting and the crowding degree comparison method, we can
obtain the global optimal solution which represents the opti-
mal virtual node mapping scheme. In the meantime, the idea
of non-uniform mutation is employed to improving the diver-
sity of solutions and avoiding the local optimum, thus it
accelerates the convergence of our approach. The process
of searching the optimal node scheme in TOPE is in line
with idea of heuristic algorithm. It is mainly because that
the solution obtained by the heuristic algorithm after each
iteration search may not be the optimal solution. But taking
advantage of unceasing searching and correcting the obtained
solution in several iterations, the optimal solution can be
gradually approached. And this process conforms the target
of the proposed TOPE, the optimal scheme of node mapping
can be obtained to achieve the overall load balancing and
energy conversation eventually. It relieves the workload of
some nodes with weaker processing capability. Furthermore,
it improves the utilization rate of computing resource and the
energy efficiency.

During the virtual link mapping phase, we have found that
the issue of virtual link mapping can be transformed into the
problem of optimal link selection. And it can be transformed
into a kind of problem of MDP. Based on the multi-agent
reinforcement learning theory, each node treated as an agent
is able to employ the unceasing interactions with environment
and tryouts to evaluate the feedback from the surroundings
for optimizing the future decision-making. During the big
data processing, it is noting that "curse of dimensionality"
may occur when MDP possesses the huge state space and
action space. Based on this argument, the deep neural network
is introduced to approximate the value function Q. Besides,
in order to avoid the interaction caused by simultaneous
computation and training of Q-network, we have trained two
neural networkswith identical parameters, including themain
network and the target network. The main network is used
to update the weight in real time, while the target network
keeps the weight unchanged temporarily. The weight of the
main network is assigned to the target network after a period
of time. The parameters of the neural network are updated
by using gradient descent method through back propaga-
tion. One of the advantages in the designed model is to
use experience-replay memory. It randomly and uniformly
samples in experience-replay memory, the correlation among
training samples is broken. At the same time, by averaging
several samples in the past, it not only smooths the distribu-
tion of training samples, but also alleviates the problem of
sample distribution variation. It effectively avoids the insta-
bility caused by frequent weight updates. Once the Q-value
converges, the target value can be found, that is, the deter-
ministic strategy has been obtained. To sum up, the optimal
virtual link mapping decision with low bandwidth cost and
energy consumption can be obtained.

143706 VOLUME 7, 2019



Y. Cheng, G. Xu: Novel Task Provisioning Approach Fusing Reinforcement Learning for Big Data

TABLE 1. Comparison of the task request datasets.

FIGURE 3. Performance comparison among different approaches on the
synthetic task dataset with the task scale of 1250 task requests.

VII. EXPERIMENTS
In this section, we will compare TOPE with the existing
approach FIFO, SpreadOut and Non-SpreadOut [26], Fair
Scheduler [27] and Naïve Bayes Scheduler [28] through the
following aspects: bandwidth resource cost, load balancing
effect and energy consumption.

We exploit the OpenStack [29] to create virtualization sce-
narios for deployment of the big data processing framework
Spark [30]. All the experiments are performed on the same

FIGURE 4. Performance comparison among different approaches on GoCJ
with the task scale of 1950 task requests.

Linux workstation with an Intel Xeon with three 3.4 GHz
CPUs and 256GB memory. Herein 40 processing nodes with
different configuration are created. Herein the latest ver-
sion of Spark 2.3.0 is used, which needs to be built on the
basis of Hadoop. And the Zookeeper is high-availability of
the master. We use spark-2.3.0-bin-hadoop2.6.tgz since the
Hadoop version is 2.6. As shown in Table 1, 35 batches of
task requests containing 4250 requests with different resource
requirements continuously getting to cloud data center com-
pose the synthetic task dataset. We also conduct tests on
Facebook Hadoop workload and Google Cloud Jobs Dataset
(GoCJ) [31] to validate TOPE’s capability on large-scale
tasks processing.

As shown in Fig. 3(a), we can observe that TOPE always
possesses less bandwidth cost on our synthetic task dataset.
From the perspective of the bandwidth economy, the TOPE
approach can decrease additional consumption of the band-
width resource in the substrate network in the long run.
In Fig. 3(b), it can be observed that with time changing,
the standard deviation value of TOPE is always lower than
those of other approaches, which indicates it possess better
load balancing effect.

As shown in Fig. 4(a) and 4(b), TOPE always has less
bandwidth cost and lower standard deviation values on
GoCJ dataset. It indicates that our approach can maintain the
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FIGURE 5. Performance comparison on Facebook Hadoop workload with
the task scale of 5894 task requests.

superiority though the task scale mushrooms in cloud envi-
ronment. Fig. 5(a) and 5(b) show the performance of different
approaches on Facebook Hadoop workload. It can be seen
that TOPE still possesses the advantages of task processing
in case of doubling the task scale. Although our approach
doesn’t perform better in comparison at a certain time, we still
can conclude that TOPE can achieve comparatively better
performance for large-scale tasks processing in the long term.
It is mainly because that TOPE is able to simulate the particles
in multi-objective PSO to take the global optimal position
vector obtained from each iteration as the leader in the pro-
cess of exploring the optimal solution. With the unceasing
adjustment of velocity vector and position vector of each par-
ticle, the proper physical nodes for the corresponding virtual
request can be selected from the substrate network in data
center. It guarantees a high resource utilization of the system.
The proposed TOPE approach considers not only the satis-
faction for bandwidth request, but also the minimization of
the total bandwidth cost. In the later stage, its growth rate
of bandwidth cost gradually decreases. From the perspective
of the bandwidth economy, the TOPE approach can decrease
additional consumption of the bandwidth resource in the
substrate network in the long run.

TABLE 2. Comparison in energy consumption on the synthetic task
dataset, GoCJ with the task scale of 1950 task requests and Facebook
Hadoop workload with the task scale of 6638 task requests. (E1 and E2
refer to node and link energy consumption during virtual network
mapping process for accepting virtual request respectively; E3 and E4
represent node and link energy consumption of completing parallel tasks
for accepted virtual requests respectively.).

Aiming at validating the energy conservation capability of
TOPE, we conduct three sets of experiments. Herein, we eval-
uate the energy consumption of virtual network mapping
process and completing the parallel tasks for the accepted
virtual request. We conduct several tests for different virtual
requests and take the mean as the experimental result. The
experimental results on different task datasets are illustrated
in Table 2. It effectively demonstrates energy conservation
capability of TOPE in large-scale tasks processing. Spread-
Out and Fair Scheduler both possess low consumption, but
TOPE attains much better results under the same condition.
It is mainly because that our approach TOPE simultaneously
takes load balancing, bandwidth cost and energy consump-
tion into account via reasonable task allocation while satisfy-
ing virtual requests, the excess energy consumption of nodes
and links is decreased to a great extent. The energy efficiency
of whole system can be achieved.

VIII. CONCLUSION
This paper has proposed a novel approach TOPE, which aims
at exploring the optimal task allocation scheme for big data
processing. Herein, 1) a two-phase optimizationmethodology
for large-scale task processing in big data environment is
proposed; 2) the critical section of task processing problem
in cloud computing is formalized by using multi-agent rein-
forcement learning. The deep reinforcement learning model
is trained using deep neural network to approximate the value
function, save parameters of the deep network model instead
of state-action values as well as make reasonable virtual link
mapping decisions. The virtual node mapping is achieved
by designed distributed multi-objective swarm intelligence
to realize the two-phase optimization for task allocation in
the introduced fat-tree structure; 3) the superiority of TOPE
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for large-scale tasks processing is evaluated in compari-
son with state-of-the-art approaches in cloud environment.
Experimental results show that TOPE can minimize band-
width resource cost, realize overall load balancing and
decrease energy consumption simultaneously.

In the future, it is necessary to increase the number of
algorithm iterations in course of searching the optimal task
allocation scheme, since the selection ofmaximum number of
iterations is an open problem. A larger scale of experiments
on TOPE is also one of our next research work. Moreover,
the large-scale tasks processing more deeply combining with
deep learning and reinforcement learning for big data is an
important research direction in our following work.
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