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ABSTRACT The set-membership information fusion problem is studied for general multi-sensor dynamic
systems. Based on set-membership theory, three centralized state fusion estimation algorithms in the
presence of bounded disturbances are proposed, namely augmented algorithm, combined measurement
filtering algorithm and pseudo-sequential filtering algorithm. Theoretical discussions on the convergence
and boundedness of the proposed fusion algorithms are provided and their stability is proved. The estimate
accuracy, computational complexity and flexibility of these three fusion algorithms are compared through
theoretical analysis and simulation. And their exchanging property ofmeasurement update order is discussed.
Results show that these algorithms are functionally equivalent in terms of the estimation accuracy and the
exchangeability of the measurement update order can be guaranteed as long as the parameters satisfy certain
conditions. Meanwhile the simulation results prove the role of the proposed algorithms in improving state
estimation accuracy. In addition, the combined measurement filtering algorithm has the highest calculation
speed due to lower dimension. But it is less flexible because the sensor measurement matrices need to satisfy
some additional conditions. These conclusions are valuable in applications.

INDEX TERMS Centralized fusion, state estimation, ellipsoidal state bounding, multi-sensor system,
set-membership estimation, unknown but bounded noise.

I. INTRODUCTION
In recent years, the functional requirements of the large com-
plicated systems are rapidly improving, especially the high
performance estimation requirements for the system state.
Due to noticeable defects in measurement accuracy, range,
stability and reliability when using single sensor, the multi-
sensor system and related data fusion technology have drawn
more and more attention recently. And they are widely
applied in many civil and defense fields, including sensor net-
work[1], [2], target tracking[3], [4], navigation[5], [6] and big
data[7]. The problem ofmulti-sensor estimation fusion is how
to provide more useful and accurate state estimation results
by fusing measurement data from multiple sensors [8], [9].

Most existing information fusion algorithms are
probability-based and need accurate statistical knowledge of
the noises. Many results for this kind of fusion method have
been obtained (see e.g., books [10], [11]). And in recent years,
it is still developing rapidly. Z. Duan and X. R. Li proposed
lossless linear transformation of the raw measurements of
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each sensor for distributed estimation fusion [12]. A. Fatehi
and B. Huang studied the state estimation for a system with
irregular rate and delayed measurements and a modified track
to track Kalman filter fusion method was improved to handle
this problem [13]. An unscented Kalman filter was used to
combine the data coming from sensors to solve the problem
of wheelchair position estimation in indoor environments
with noisy measurements [14]. To realize robust weighted
state fusion estimation problem for a class of time-varying
multi-sensor networked systems with mixed uncertainties
including uncertain-variance multiplicative and linearly cor-
related additive white noises, and packet dropouts, the origi-
nal system was converted into one with only uncertain noise
variances by augmented state method and fictitious noise
technique. And finally a robust weighted state fusion Kalman
estimator was proposed in [15].

Apparently, the probability-based fusion algorithms have
been widely applied, and have excellent fusion estimation
results under certain conditions. However, accurate statis-
tical knowledge of process and measurement noise should
be known for most probability-based algorithms and such
idealized assumptions are difficult to satisfy in certain
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practical situations, and this may lead to poor performance
for the state estimation [16], [17]. But in many engi-
neering applications, it is easier to obtain the bounds of
unknown noises. So the set membership (SM) algorithms
offer an interesting alternative and draw increasing atten-
tion recently since the noises of their models are assumed
only to be bounded [18]–[21]. SM methods have wide
applications in automatic control [22], [23], simultaneous
localization, mapping (SLAM) [24], faulty detection [25]
and so on. For multi-sensor SM fusion in bounded set-
ting, Becis-Aubry proposed a hierarchical SM estimation
method for multi-sensor systems equipped with a local pro-
cessor [26]. Afterwards the method was extended for non-
linear models with potentially failing measurements [27].
Wang converted the SM information fusion problem into
a semi-definite programming problem, and proposed cor-
responding fusion algorithms [28]. The algorithms perform
well in terms of the fusion accuracy, but they have heavy
computational burden. F. Farina et al. addressed the dis-
tributed estimation problem in a set membership frame-
work [29]. And in their work two distributed algorithms
were considered and such algorithms were proved to be
asymptotic interpolatory estimators. In addition, the covari-
ance intersection (CI) algorithm [30] and ellipsoidal intersec-
tion algorithm [31] has a lot of similarities with SM fusion
algorithms. Now the SM-based fusion estimation methods
have been successfully used in sensor networks [32]–[35] and
location [36]–[38].

There are two traditional architectures for estimation
fusion, centralized fusion and distributed fusion. For the cen-
tralized fusion, the raw data of each sensor is sent to the fusion
center to be processed. The characteristics of the centralized
fusion are high performance and complex computation, while
the distributed fusion with loss of accuracy has advantages
in the system survivability and computation burden [8]. For
multi-sensor linear dynamic system in probabilistic setting,
there exist three typical centralized fusion methods, namely
augmented method, pseudo-sequential filtering method, and
combined measurement filtering method. And many conclu-
sions of the centralized point estimation fusion have been
drawn [39], [40], i.e., 1) when observation matrices are iden-
tical, the augmented method and the combined measurement
filtering method are functionally equivalent in terms of esti-
mation accuracy; 2) the estimate accuracy of the pseudo-
sequential filtering method and augmented method are
equivalent; 3) the estimate accuracy of the three method
remains unchanged when the measurement update order
changes.

However, similar research on the multi-sensor fusion in
bounded setting has not received enough attention and few
conclusions are drawn. Even the detailed process of the three
typical centralized fusion algorithms with bounded distur-
bances is not yet fully presented. Further, it is interesting to
find out that whether the conclusions and properties 1)∼3)
can be maintained in bounded setting. These facts motivate
us to further research the SM centralized fusion problems for

multi-sensor dynamic systems with bounded disturbances.
And the following objects are focused on:

1) To design three centralized fusion algorithms for multi-
sensor system with bounded disturbances based on
ellipsoidal bounding estimation;

2) To analyze the properties of the proposed algorithms,
including the stability, convergence, computation com-
plexity, the exchangeability of measurement update
order and the equivalence between different algo-
rithms.

The remainder of this paper is presented as follows.
The centralized fusion problem for multi-sensor system
with bounded disturbances for linear model is introduced
in Section II. The state evolution analysis is presented in
Section III. Then three centralized SM fusion algorithms
with selection of optimal parameters are derived in Section
IV. Some properties of the proposed algorithm are given
and proved in Section V. In Section VI, the effectiveness
and properties of the algorithms are demonstrated through a
numerical example. Section VII concludes this paper.

II. PROBLEM FORMULATION
The Definition of the bounded ellipsoid E of Rn is given
by [19].

Consider the following N-sensor dynamic linear time-
varying (LTV) system with unknown but bounded noises

xk = Fk−1xk−1 + Gk−1wk−1 (1)

zi,k = Hi,kxk + vi,k , i = 1, 2, · · · ,N (2)

where xk ∈ Rn is the state vector at time k , and zi,k ∈ Rmi

is the observation vector of the ith sensor. Fk−1 is the state
transition matrix, Gk−1is process noise input matrix, and
Hi,k is the observation matrix with full row rank. wk−1 ∈
Rl and vi,k ∈ Rmi are modeling process and observation
noises, which are assumed to be of unknown distribution, but
bounded by the following ellipsoids

Wk−1 = {wk−1 : wT
k−1Q

−1
k−1wk−1 ≤ 1} (3)

Vi,k = {vi,k : vTi,kR
−1
i,k vi,k ≤ 1} (4)

where Qk−1 and Ri,k are known positive definite matrices.
The initial state belongs to an ellipsoid given by

E
(
x̂0, σ0P0

)
= {x0 : (x0 − x̂0)TP−10 (x0 − x̂0) ≤ σ0} (5)

where x̂0 is the center and P0 is a positive definite matrix.
The variable σ0 ∈ R is a positive scalar variable. All above
matrices have appropriate dimension in accordance with the
state and observation vector. Then the problem of interest can
now be stated as follows.

Given the model and the observations zi,k from different
sensors, it is desired to calculate the smallest set which must
contain the true but unknown state xk at time k .

III. THE STATE EVOLUTION ANALYSIS
Under unknown but bounded noise assumptions, the cen-
tralized SM estimation fusion problem can be formulated as
follows.
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Assume x0 belongs to the given bounding ellipsoid
E
(
x̂0, σ0P0

)
. At time k-1, the ellipsoid containing the state

xk−1is described by Ek−1 = E
(
x̂k−1, σk−1Pk−1

)
, then it can

be derived from equation (1) that

xk ∈ Fk−1Ek−1 ⊕ Gk−1E
(
0,Qk−1

)
=
{
x+w : x ∈ Fk−1Ek−1 and w ∈ Gk−1E

(
0,Qk−1

)}
(6)

where ⊕ stands for the Minkowski sum.
Thus the objective in prediction step is to find an ellipsoid

Ek|k−1 ⊇ Fk−1Ek−1 ⊕ Gk−1E
(
0,Qk−1

)
(7)

where Ek|k−1 = E
(
x̂k|k−1 , σk|k−1Pk|k−1

)
.

According to the observation equation (2) and (4), xk
belongs to the bounding sets

Xk={x : (zi,k−Hi,kx)TR−1i,k (zi,k−Hi,kx)≤1, i=1, 2, · · ·N }

(8)

Thus in the fusion update step, the objective is to find
an ellipsoid Ek = E

(
x̂k , σkPk

)
which contains the state

set consistent with the time-updated ellipsoid Ek|k−1 and
the current observations from multiple sensors with bounded
noise, i.e., the ellipsoid Ek ⊇ Ek|k−1 ∩ Xk is the result of the
fusion update.

IV. THE CENTRALIZED SM ESTIMATION FUSION
ALGORITHMS
In this section, we design three centralized SM fusion algo-
rithms and each includes prediction and fusion update step.

A. THE AUGMENTED ALGORITHM
The core of the augmented fusion algorithm is to expand the
low-dimensional measurements from multiple sensors into
a single high-dimensional measurement vector. Then, this
high-dimensional vector is filtered once at time k to achieve
the purpose of multi-sensor fusion. The following lemma is
given before the main results.
Lemma 1: Given two ellipsoids E (a1,M1) and E (a2,M2)

(a1, a2 ∈ Rn,M1,M2 ∈ Rn×n), then ∀p ∈ (0,+∞),
E (as,Ms) ⊇ E (a1,M1) ⊕ E (a2,M2), where as = a1 + a2
andMs =

(
1+ p−1

)
M1 + (1+ p)M2.

Proof: See the works of Maksarov and Norton [8].
Theorem 1: The recursive procedures of the augmented

algorithm for combining numerous sensors with bounded
disturbances are following equations.
Prediction Step: Given xk−1∈Eak−1=E

(
x̂ak−1, σ

a
k−1P

a
k−1

)
obeying (1) with wk ∈ E

(
0,Qk

)
and

x̂ak|k−1 = Fk−1x̂
a
k−1 (9)

σ ak|k−1 = σ
a
k−1 (10)

Pak|k−1 = (1+ p−1k )Fk−1Pak−1F
T
k−1

+
1+ pk
σ ak|k−1

Gk−1Qk−1G
T
k−1 (11)

then ∀pk ∈ (0,+∞), xk ∈Eak|k−1 =E
(
x̂ak|k−1 , σ

a
k|k−1P

a
k|k−1

)
.

Fusion Update Step: Given xk ∈ Eak|k−1 obeying (2) with
vi,k ∈ E

(
0,Ri,k

)
, i ∈ {1, 2, · · ·N } and

x̂ak = x̂ak|k−1 + qkP
a
k
(
Ha
k
)T (Rak )−1δak (12)(

Pak
)−1
=

(
Pak|k−1

)−1
+ qk

(
Ha
k
)T (Rak )−1Ha

k (13)

σ ak = σ
a
k|k−1 + qk − qk

(
δak
)T

×

(
qkHa

kP
a
k|k−1

(
Ha
k
)T
+ Rak

)−1
δak (14)

where

δak = zak −H
a
k x̂

a
k|k−1 ,

zak = [zT1,k , z
T
2,k , · · · z

T
N ,k ]

T,

Ha
k = [HT

1,k ,H
T
2,k , · · · ,H

T
N ,k ]

T,

vak = [vT1,k , v
T
2,k , · · · , v

T
N ,k ]

T,

(Rak )
−1
= diag

(
αi,kR−1i,k

)
,

with αi,k ∈ [0, 1],
N∑
i=1
αi,k = 1, then ∀qk ∈ [0,+∞), xk ∈

E
(
x̂ak , σ

a
k P

a
k

)
= Eak ⊇ Eak|k−1 ∩Xk , where Xk is given by (9).

Proof: In prediction step, based on Lemma 1 and
through some variable substitutions, we obtain the for-
mula (9) and

σ ak|k−1P
a
k|k−1 =

(
1+ p−1k

)
Fk−1

(
σ ak−1P

a
k−1

)
FT
k−1

+ (1+ pk)Gk−1Qk−1G
T
k−1 (15)

Here σ ak|k−1 is chosen to be equal to σ ak−1, and then (11) is
derived.
In fusion update step, after the dimension expansion,

the pseudo (generalized) measurement equation correspond-
ing to all measurements received from multiple sensors can
be expressed as

zak = Ha
kxk + v

a
k (16)

And vak is assumed to be bounded by

Vak = {v
a
k : (v

a
k )

T(Rak )
−1vak ≤ 1} (17)

It can be derived from (4) that vi,k satisfies
N∑
i=1
αi,kvTi,kR

−1
i,k vi,k ≤ 1, which is equivalent to

(vak )
Tdiag(αi,kR−1i,k )v

a
k ≤ 1. Then we obtain (Rak )

−1
=

diag(αi,kR−1i,k ).
According to the equation (16) and (17), xkbelongs to the

bounding set given by

X a
k = {xk :

(
zak −H

a
kxk

)T (Rak)−1 (zak −Ha
kxk

)
≤ 1}

= {xk :
N∑
i=1

αi,k (zi,k −Hi,kxk )TR−1i,k (zi,k −Hi,kxk ) ≤ 1}

(18)

It is obvious that X a
k ⊇ Xk . Then the state xk lying in Eak

which contains Eak|k−1 ∩ X
a
k must satisfy
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(xk − x̂
a
k|k−1 )

T(Pak|k−1 )
−1(xk − x̂

a
k|k−1 )

+ qk (zak −H
a
kxk )

T(Rak )
−1(zak −H

a
kxk )

≤ σ ak|k−1 + qk (19)

for any qk ≥ 0.
After some manipulations, (19) becomes(
xk − x̂

a
k|k−1

)T [(Pak|k−1 )−1 + qk (Ha
k
)T (Rak)−1Ha

k

]
×
(
xk − x̂

a
k|k−1

)
− 2qk

(
zak −H

a
kxk

)T (Rak)−1Ha
k

×
(
xk − x̂

a
k|k−1

)
≤ σ ak|k−1 + qk − qk

(
zak −H

a
k x̂

a
k|k−1

)T (Rak)−1
×
(
zak −H

a
k x̂

a
k|k−1

)
(20)

Let δak = zak −H
a
k x̂

a
k|k−1 and(

Pak
)−1
=

(
Pak|k−1

)−1
+ qk

(
Ha
k
)T (Rak )−1Ha

k (21)

then the equation (20) is equivalent to(
xk − x̂

a
k|k−1 − qkP

a
k
(
Ha
k
)T (Rak)−1 δak

)T (
Pak
)−1

×

(
xk − x̂

a
k|k−1 − qkP

a
k
(
Ha
k
)T (Rak)−1 δak

)
≤ σ ak|k−1 + qk − qk

(
δak
)T (Rak)−1 (δak)

+

[
qk
(
Ha
k
)T (Rak)−1 δak

]T
Pak
[
qk
(
Ha
k
)T (Rak)−1 δak

]
= σ ak|k−1 + qk − qk

(
δak
)T (qkHa

kP
a
k|k−1

(
Ha
k
)T
+ Rak

)−1
δak

(22)

Thus we obtain (12) and (15). From (19), it is obvious that
Eak ⊇ Eak|k−1 ∩ Xk .The proof is completed. �
Remark 1: This method does not require any external

condition of measurement equations for each sensor, and the
measurements can be directly processed by the centralized
processor. Thus it is flexible in applications. Here the flexibil-
ity means the augmented method could be used in any linear
multi-sensor systems with bounded disturbances because no
external condition of measurement equations for each sensor
is needed.

B. COMBINED MEASUREMENT FILTERING ALGORITHM
The combined measurement filtering algorithm always
obtains the fused measurement information by weighted
observations. Then, this fused measurement vector is filtered
once at time k to achieve the purpose of multi-sensor fusion.
Theorem 2: The recursive procedures of the combined

measurement filtering algorithm for combining numerous
sensors with bounded disturbances are following equations.
Prediction Step:Given xk−1∈Ebk−1=E

(
x̂bk−1, σ

b
k−1P

b
k−1

)
obeying (1) with wk ∈ E

(
0,Qk

)
and

x̂bk|k−1 = Fk−1x̂
b
k−1 (23)

σ bk|k−1 = σ
b
k−1 (24)

Pbk|k−1 = (1+ p−1k )Fk−1Pbk−1F
T
k−1

+
1+ pk
σ bk|k−1

Gk−1Qk−1G
T
k−1 (25)

then ∀pk ∈ (0,+∞), xk ∈Ebk|k−1 =E
(
x̂bk|k−1 , σ

b
k|k−1P

b
k|k−1

)
.

Fusion Update Step: Given xk ∈ Ebk|k−1 obeying (2)
with vi,k ∈ E

(
0,Ri,k

)
, i ∈ {1, 2, · · ·N }, and assuming that

N∑
i=1
αi,kHT

i,k (Ri,k )
−1Hi,k is positive definite, let

x̂bk = x̂bk|k−1 + qk (1− tk)P
b
k

(
Hb
k

)T
(Rbk )

−1δbk (26)(
Pbk
)−1
=

(
Pbk|k−1

)−1
+ qk (1− tk)

(
Hb
k

)T
(Rbk )

−1Hb
k

(27)

σ bk = σ
b
k|k−1 + qk (1− tk )− qk

(
δbk

)T
×

(
qkHb

kP
b
k|k−1

(
Hb
k

)T
+ (1− tk)−1 Rbk

)−1
δbk

(28)

where δbk = z
b
k−H

b
k x̂

b
k|k−1 , z

b
k =M

−1
k

N∑
i=1
αi,kHT

i,k (Ri,k )
−1zi,k ,

Hb
k = I, (Rbk )

−1
= Mk/ (1− tk),

Mk =

(
N∑
i=1
αi,kHT

i,k (Ri,k )
−1Hi,k

)
,

tk =
N∑
i=1

αi,kzTi,k (Ri,k )
−1zi,k

−

(
N∑
i=1

αi,kHT
i,k (Ri,k )

−1zi,k

)T

×M−1k

(
N∑
i=1

αi,kHT
i,k (Ri,k )

−1zi,k

)

with αi,k ∈ [0, 1],
N∑
i=1
αi,k =1, then ∀qk ∈ [0,+∞), xk ∈

E
(
x̂bk , σ

b
k P

b
k

)
= Ebk ⊇ Ebk|k−1 ∩ Xk , where Xk is given by

(8).
Proof: Proof of the prediction step is omitted because it

closely follows the corresponding proofs in Theorem 1.
In fusion update step, let

ϕi,k (x) = (zi,k −Hi,kx)T(Ri,k )−1(zi,k −Hi,kx),

then we have

Xk = {x : ϕi,k (x) ≤ 1, i = 1, 2, · · ·N }.

Of course, if x ∈ Xk , then ϕk (x) =
N∑
i=1
αi,kϕi,k (x) ≤ 1

for any αi,k ∈ [0, 1],
N∑
i=1
αi,k =1, and it is obvious that X b

k =

{x : ϕk (x) ≤ 1} ⊇ Xk .
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After some transformations, ϕk (x) can be written as

ϕk (x)= xTMkx−
N∑
i=1

αi,kzTi,kR
−1
i,kHi,kM−1k Mkx

− xTMkM−1k

N∑
i=1

αiHT
i,kR
−1
i,k zi,k +

N∑
i=1

αizTi,kR
−1
i,k zi,k

=

(
x−M−1k

N∑
i=1

αi,kHT
i,kR
−1
i,k zi,k

)T

Mk

×

(
x−M−1k

N∑
i=1

αi,kHT
i,kR
−1
i,k zi,k

)
+ tk (29)

Thus ϕk (x) ≤ 1 is equivalent to(
x−M−1k

N∑
i=1

αi,kHT
i,kR
−1
i,k zi,k

)T
Mk

1− tk

×

(
x−M−1k

N∑
i=1

αi,kHT
i,kR
−1
i,k zi,k

)
≤ 1

Assume

X b
k =

{
x : (zbk −H

b
kx)

T(Rbk )
−1(zbk −H

b
kx) ≤ 1

}
,

then we obtain zbk = M−1k
N∑
i=1
αiHT

i,k (Ri,k )
−1zi,k , Hb

k = I and

(Rbk )
−1
= Mk/ (1− tk).

X b
k can also be written as X b

k = {x : (z
b
k −H

b
kx)

TMk (zbk −
Hb
kx) ≤ 1 − tk}. Then the statexk lying inEbk which

containsEbk|k−1 ∩ X
b
k must satisfy

(xk − x̂
b
k|k−1 )

T(Pbk|k−1 )
−1(xk − x̂

b
k|k−1 )

+ qk (zbk −H
b
kxk )

TMk (zbk −H
b
kxk )

≤ σ bk|k−1 + qk (1− tk ) (30)

for any qk ≥ 0.
After some manipulations similar to (20),(21) and (22),

we can obtain (26), (27) and (28). And it is obvious that
Ebk ⊇ Ebk|k−1 ∩ Xk .The proof is completed. �
Remark 2: It should be noted that the use of combined

measurement filtering algorithm relies on the assumption that
N∑
i=1
αi,kHT

i,k (Ri,k )
−1Hi,k is positive definite. Thus this algo-

rithm is less flexible in applications than the augmented
algorithm.

C. PSEUDO-SEQUENTIAL FILTERING ALGORITHM
The main idea of the pseudo-sequential filtering algorithm is
that: After one-step prediction, the fusion center sequentially
updates the estimate of current state by using each sensor
measurement, and then a fusion estimate based on global
measurement information can be obtained.
Theorem 3: The recursive procedures of the pseudo-

sequential filtering algorithm for combining numerous sen-
sors with bounded disturbances are following equations.

Prediction Step: Given xk−1∈Eck−1=E
(
x̂ck−1, σ

c
k−1P

c
k−1

)
obeying (1) with wk ∈ E

(
0,Qk

)
and

x̂ck|k−1 = Fk−1x̂
c
k−1 (31)

σ ck|k−1 = σ
c
k−1 (32)

Pck|k−1 = (1+ p−1k )Fk−1Pck−1F
T
k−1

+
1+ pk
σ ck|k−1

Gk−1Qk−1G
T
k−1 (33)

then ∀pk ∈ (0,+∞), xk ∈Eck|k−1 =E
(
x̂ck|k−1 , σ

c
k|k−1P

c
k|k−1

)
.

Fusion Update Step: Given xk ∈ Eck|k−1 obeying (2) with
vi,k ∈ E

(
0,Ri,k

)
, i ∈ {1, 2, · · ·N }, set x̂k,0 = x̂ck|k−1 , Pk,0 =

Pck|k−1 , σk,0 = σ
c
k|k−1 and let

x̂i,k = x̂i−1,k + qi,kPi,kHT
i,kR
−1
i,k δi,k (34)(

Pi,k
)−1
=
(
Pi−1,k

)−1
+ qi,kHT

i,kR
−1
i,kHi,k (35)

σi,k = qi,kδTi,k
(
qi,kHi,kPi−1,kHT

i,k + Ri,k
)−1

δi,k

+ σi−1,k − qi,k (36)

where δi,k = zi,k − Hi,k x̂i−1,k , then ∀qi,k ∈ [0,+∞), xk ∈
E
(
x̂ck , σ

c
kP

c
k

)
= Eck ⊇ Eck|k−1 ∩ Xk , where x̂

c
k = x̂N ,k , Pck =

PN ,k , σ ck = σN ,k and Xk is given by (9).
Proof: Proof of the prediction step is omitted because it

closely follows the corresponding proofs in Theorem 1.
In fusion update step, according to the observation equa-

tion (2) and (4), xk belongs to the bounding sets

Xi,k = {x : (zi,k −Hi,kx)TR−1i,k (zi,k −Hi,kx) ≤ 1} (37)

It is obvious that Xk = ∩
i
Xi,k . Set x̂k,0 = x̂ck|k−1 , Pk,0 =

Pck|k−1 , σk,0 = σ ck|k−1 and Ei,k = E
(
x̂i,k , σi,kPi,k

)
, then

Ec0,k = Eck|k−1 . The state xk lying in Eci,k which contains
Eci−1,k ∩ Xi,k must satisfy

(x− x̂ci−1,k )
T (Pck,i−1)−1 (x− x̂ci−1,k )

+ qi,k (zi,k −Hi,kx)TR−1i,k (zi,k −Hi,kx)

≤ σ ci−1,k + qi,k (38)

for any qi,k ≥ 0.
After some manipulations similar to (20), (21) and (22),

we can obtain (34), (35) and(36). Let x̂ck = x̂N ,k , Pck = PN ,k ,
σ ck = σN ,k , then we have

EcN,k ⊇ EcN−1,k ∩ XN ,k

⊇
(
EcN−2,k ∩ XN−1,k

)
∩ XN ,k

= EcN−2,k ∩
(
XN−1,k ∩ XN ,k

)
· · ·

⊇ Ec0,k ∩
(

N
∩
i=1

Xi,k

)
= Eck|k−1 ∩ Xk

The proof is completed. �
Remark 3: The pseudo-sequential filtering algorithm has

no limitation on the measurement equations of each sensor.
And every time the fusion center receives a measurement,
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the central processor immediately processes it. Thus the
advantage of the pseudo-sequential filtering algorithm is its
flexibility and it can even embody its advantage when the
measurements are not received at the same time instant.

D. SELECTION OF OPTIMAL PARAMETERS
The scalar parameters can be numerically optimized to
find the smallest bounding ellipsoid [8] or ensure the sta-
bility of the estimator error [9], or set to be a reasonable
constant [7]. Taking the augmented algorithm as an exam-
ple, the different parameters are obtained depending on the
different criteria, as below.

In prediction step, trace-minimum criterion is used,
because the explicit expression of the optimal parameter can
be obtained by using this criterion, thereby avoiding the
solution of the nonlinear equation and improving the compu-
tational efficiency of the algorithm. According to the theory
in [8], the expression of pk is derived as follows:

p̃k =

[
σ ak|k−1 tr(Fk−1P

a
k−1F

T
k−1)

tr(Gk−1Qk−1G
T
k−1)

]1/2
(39)

In fusion update step, contrary to those algorithms that
minimize the size of the ellipsoid, here σ ak is minimized to
obtain the optimal parameters due to the concern for the
stability of the estimated state vector:
Theorem 4: Let q̃k denote the optimal value of qk . When

(δak )
T(Rak )

−1δak ≥ 1, the value of qkgiven in (15) that solves
min
qk≥0

σ ak satisfies

(δak )
T(Rak + qkH

a
kP

a
k|k−1 (H

a
k )

T)−1Rak
× (Rak + qkH

a
kP

a
k|k−1 (H

a
k )

T)−1δak = 1 (40)

When (δak )
T(Rak )

−1δak < 1, there is no solution for equa-
tion (40), and q̃k = 0is the optimal value.

Proof: Based on (15), σ ak can be seen as a function
associated with qk , i.e., σ ak = f (qk ). And the object is
described by

q̃k = arg min
qk≥0

f (qk )

The derivation of σ ak to qk is

f ′(qk ) = 1− (δak )
T(Rak + qkH

a
kP

a
k|k−1 (H

a
k )

T)−1Rak
× (Rak + qkH

a
kP

a
k|k−1 (H

a
k )

T)−1δak (41)

Differentiation shows that the second derivative f ′′(qk )
is always non-negative, which means f ′(qk )is monotone
increasing for any qk ≥ 0.
If f ′(0) > 0, i.e., (δak )

T(Rak )
−1δak < 1, we can obtain

f ′(qk ) > 0,∀qk ≥ 0, which means f (qk ) is increasing for
any qk ≥ 0. Thus the optimal value of qk is 0;
If f ′(0) ≤ 0, i.e., (δak )

T(Rak )
−1δak ≥ 1, we have f ′(qk ) ≤ 0

when qk < 0, and f ′(qk ) ≥ 0 when qk > 0. This implies
the single minimum of f (qk ) is obtained when first derivation
is 0. Thus (40) is obtained. The proof is completed. �

Remark 4: q̃k = 0 means that the observation is informa-
tive and no updating takes place, i.e., Pak = Pak|k−1 , x̂

a
k =

x̂ak|k−1 , σ
a
k = σ

a
k|k−1 .

The parameters αi,k can be chosen at each step in an effort
to reduce the effect of the faulty output zi,k . The faulty output
is subject to an abnormal perturbation which is not in the
ellipsoid Vi,k . Thus αi,k should be chosen as a decreasing
function of the norm of the a priori output error vector δai,k =

zi,k −Hi,k x̂
a
k|k−1 , e.g.,

αi,k =

(∥∥δai,k∥∥R−1i,k
)−1

N∑
i=1

(∥∥δai,k∥∥R−1i,k
)−1 (42)

For the other two algorithms, the different parameters in
different stages are optimized as the augmented algorithm.

V. ALGORITHM PROPERTIES
In this section, the characteristics of the proposed algorithms
in Section IV are analyzed, including the functional equiva-
lence, the exchangeability of measurement update order and
the stability.

A. THE FUNCTIONAL EQUIVALENCE OF THE AUGMENTED
ALGORITHM AND THE COMBINED MEASUREMENT
FILTERING ALGORITHM
Theorem 5: Considering a N-sensor dynamic system given

by (1) and (2), the augmented algorithm and the combined
measurement filtering algorithm are functionally equivalent
in terms of estimation accuracy if the parameters pk , qkand
αi,k of the two algorithms are chosen to be identical.

Proof: Combing (12), (13) and δak = zak − Ha
k x̂

a
k|k−1

yields(
Pak
)−1 x̂ak
=
(
Pak
)−1 x̂ak|k−1 + qk (Ha

k
)T (Rak )−1 (zak −Ha

k x̂
a
k|k−1

)
=

((
Pak
)−1
− qk

(
Ha
k
)T (Rak )−1Ha

k

)
x̂ak|k−1

+ qk
(
Ha
k
)T (Rak )−1zak

=

(
Pak|k−1

)−1
x̂ak|k−1 + qk

(
Ha
k
)T (Rak )−1zak (43)

Then it is easily deduced from the equations of Theorem 1
that(
Pak
)−1
−

(
Pak|k−1

)−1
= qk

N∑
i=1

αi,kHT
i,kR
−1
i,kHi,k (44)

(
Pak
)−1 x̂ak − (Pak|k−1 )−1 x̂ak|k−1
= qk

(
Ha
k
)T (Rak )−1zak

= qk
N∑
i=1

αi,kHT
i,kR
−1
i,k zi,k (45)
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σ ak − σ
a
k|k−1

= qk − qk
(
δak
)T (Rak)−1 (δak)+ [qk (Ha

k
)T (Rak)−1 δak

]T
Pak

×

[
qk
(
Ha
k
)T (Rak)−1 δak

]
= qk − qk

N∑
i=1

αi,k
(
zi,k −Hi,k x̂

a
k|k−1

)T
×R−1i,k

(
zi,k −Hi,k x̂

a
k|k−1

)
+

[(
Pak
)−1 (x̂ak − x̂ak|k−1 )]T Pak [(Pak)−1 (x̂ak − x̂ak|k−1 )]

= qk

(
1−

N∑
i=1

αi,k
(
zi,k −Hi,k x̂

a
k|k−1

)T
× R−1i,k

(
zi,k −Hi,k x̂

a
k|k−1

))
+
(
x̂ak − x̂

a
k|k−1

)T (Pak)−1 (x̂ak − x̂ak|k−1 ) (46)

In a similar way, it can be derived from the equations in
Theorem 2 that(
Pbk
)−1

x̂bk

=

(
Pbk
)−1

x̂bk|k−1 + qk (1− tk)
(
Hb
k

)T
(Rbk )

−1

×

(
zbk −H

b
k x̂

b
k|k−1

)
=

((
Pbk
)−1
− qk (1− tk)

(
Hb
k

)T
(Rbk )

−1Hb
k

)
k
x̂bk|k−1

+ qk (1− tk)
(
Hb
k

)T
(Rbk )

−1zbk

=

(
Pbk|k−1

)−1
x̂bk|k−1 + qk (1− tk)

(
Hb
k

)T
(Rbk )

−1zbk
(47)

Then we have(
Pbk
)−1
−

(
Pbk|k−1

)−1
= qk (1− tk)

(
Hb
k

)T
(Rbk )

−1Hb
k

= qkMk = qk
N∑
i=1

αi,kHT
i,kR
−1
i,kHi,k

=
(
Pak
)−1
−

(
Pak|k−1

)−1
(48)

and (
Pbk
)−1

x̂bk −
(
Pbk|k−1

)−1
x̂bk|k−1

= qkMk

[
M−1k

N∑
i=1

αiHT
i,k (Ri,k )

−1zi,k

]

= qk
N∑
i=1

αi,kHT
i (Ri)

−1zi

=
(
Pak
)−1 x̂ak − (Pak|k−1 )−1 x̂ak|k−1 (49)

Based on (28) and (29), we obtained

σ bk − σ
b
k|k−1

= qk

[
1− tk −

(
δbk

)T
Mkδ

b
k

]
+

(
x̂bk − x̂

b
k|k−1

)T (
Pbk
)−1 (

x̂bk − x̂
b
k|k−1

)
= qk

[
1− ϕ(x̂bk|k−1 )

]
+

(
x̂bk − x̂

b
k|k−1

)T (
Pbk
)−1 (

x̂bk − x̂
b
k|k−1

)
= qk

[
1−

N∑
i=1

αi,k

(
zi,k −Hi,k x̂

b
k|k−1

)T
× R−1i,k

(
zi,k −Hi,k x̂

b
k|k−1

)]

+

(
x̂bk − x̂

b
k|k−1

)T (
Pbk
)−1 (

x̂bk − x̂
b
k|k−1

)
(50)

Note that the prediction steps of the two algorithms are
the same, and so are the initial conditions, i.e. when k = 1,
we have

σ b1|0 = σ
a
1|0 = σ0 (51)

x̂b1|0 = x̂a1|0 = x̂1|0 = F0x̂0 (52)

Pb1|0 = Pa1|0 = (1+ p−11 )F0P0FT
0

+
1+ p1
σ0

G0Q0G
T
0 (53)

Therefore, according to the mathematical induction, for
any k ≥ 1, the following equations hold:(

Pbk
)−1
=
(
Pak
)−1

,
(
Pbk
)−1

x̂bk =
(
Pak
)−1 x̂ak

Finally, it concludes that Pbk = Pak , x̂
b
k = x̂ak and σ bk =

σ ak , so there exists a functional equivalence between the two
fusion algorithms obviously. The proof is completed. �

B. THE FUNCTIONAL EQUIVALENCE OF THE AUGMENTED
ALGORITHM AND THE PSEUDO-SEQUENTIAL FILTERING
ALGORITHM
Theorem 6: Considering a N-sensor dynamic system given

by (1) and (2), the pseudo-sequential filtering algorithm and
the augmented algorithm are functionally equivalent in terms
of estimation accuracy if the parameters pk of the two algo-
rithms are identical and qi,k = qkαi,k .

Proof: It is easily derived from (34)∼(36) that

P−1i,k (x̂i,k − x̂i−1,k ) = qi,kHT
i,kR
−1
i,k δi,k (54)

P−1i,k x̂i,k − P
−1
i−1,k x̂i−1,k = qi,kHT

i,kR
−1
i,k zi,k (55)

P−1i,k − P
−1
i−1,k = qi,kHT

i,kR
−1
i,kHi,k (56)

σi,k − σi−1,k = qi,k
(
1− δTi,kR

−1
i,k δi,k

)
+
(
x̂i,k − x̂i−1,k

)T
×P−1i,k

(
x̂i,k − x̂i−1,k

)
(57)
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Thus(
Pck
)−1
−

(
Pck|k−1

)−1
= P−1N ,k − P

−1
0,k =

N∑
i=1

qi,kHT
i,kR
−1
i,kHi,k (58)

(
Pck
)−1 x̂ck − (Pck|k−1 )−1 x̂ck|k−1
= P−1N ,k x̂N ,k − P

−1
0,k x̂0,k

=

N∑
i=1

qi,kHT
i,kR
−1
i,k zi,k (59)

σ ck − σ
c
k|k−1

= σN ,k − σ0,k

=

N∑
i=1

qi,k −
N∑
i=1

qi,kδTi,kR
−1
i,k δ

i,k

+

N∑
i=1

(
x̂i,k − x̂i−1,k

)T P−1i,k (x̂i,k − x̂i−1,k) (60)

Define δci,k = zi,k −Hi,k x̂
c
k|k−1 , such that

δi,k = δci,k −Hi,k (x̂i−1,k − x̂
c
k|k−1 ) (61)

Then

δTi,kR
−1
i,k δi,k

= 2(x̂ck|k−1 − x̂i−1,k )
THT

i.kR
−1
i,k δi,k +

(
δci,k

)T R−1i,k δci,k

−
(
x̂i−1,k − x̂

c
k|k−1

)THT
i.kR
−1
i,kHi,k

(
x̂i−1,k − x̂

c
k|k−1

)
(62)

Based on (54) and (56), we obtain

N∑
i=1

qi,kδTi,kR
−1
i,k δi,k

=

N∑
i=1

qi,k
(
δci,k

)T R−1i,k δci,k

−

N∑
i=1

(
x̂i−1,k − x̂

c
k|k−1

)T P−1i,k (x̂i,k − x̂ck|k−1 )
+

N∑
i=1

(
x̂i−1,k − x̂

c
k|k−1

)T P−1i−1,k (x̂i−1,k − x̂ck|k−1 )
−

N∑
i=1

(
x̂i−1,k − x̂

c
k|k−1

)T P−1i,k (x̂i,k − x̂i−1,k) (63)

Substitute (63) into(60), then we have

σ ck − σ
c
k|k−1 =

N∑
i=1

qi,k −
N∑
i=1

qi,k
(
δci,k

)T R−1i,k δci,k

+
(
x̂ck − x̂

c
k|k−1

)T (Pck)−1 (x̂ck − x̂ck|k−1 )
(64)

It should be emphasized that some complicated but routine
intermediate derivation process of Equations (61)∼(64) is
omitted due to space limitations.

Let qi,k = qkαi,k , it holds that(
Pck
)−1
−

(
Pck|k−1

)−1
= qk

N∑
i=1

αi,kHT
i,kR
−1
i,kHi,k

=
(
Pak
)−1
−

(
Pak|k−1

)−1
(65)(

Pck
)−1 x̂ck − (Pck|k−1 )−1 x̂ck|k−1
= qk

N∑
i=1

αi,kHT
i,kR
−1
i,k zi,k

=
(
Pak
)−1 x̂ak − (Pak|k−1 )−1 x̂ak|k−1 (66)

σ ck − σ
c
k|k−1

= qk

[
1−

N∑
i=1

αi,k
(
zi,k −Hi,k x̂

c
k|k−1

)T
× R−1i,k

(
zi,k −Hi,k x̂

c
k|k−1

)]
+
(
x̂ck − x̂

c
k|k−1

)T (Pck)−1 (x̂ck − x̂ck|k−1 ) (67)

Similar to the proof of Theorem 5, there exists a func-
tional equivalence between the pseudo-sequential filtering
algorithm and the augmented algorithm obviously. The proof
is completed. �

C. STABILITY AND CONVERGENCE ANALYSIS
In this section, we will prove the fusion estimator of the pro-
posed fusion algorithms is input-to-state stable (ISS) under
some conditions. The concrete meaning of ISS is explained
below.
Definition 2 [17], [20]: The system zk = f (zk−1,uk−1)

is ISS if it admits a continuous ISS-Lyapunov function L :
Rn
→ R+, that is, there existsK∞ functions µ1 and µ2 such

that for all z ∈ Rn, µ1 (‖z‖) ≤ L (z) ≤ µ2 (‖z‖) and there
exists a K∞ function µ3 and a K function χ such that for all
z ∈ Rn and all u ∈ Rm, L (f (z,u)) − L (z) ≤ −µ3 (‖z‖) +
χ (‖u‖)
Lemma 2: Consider two positive definite matrix A ∈ Rn×n

and B ∈ Rn×n, and two vectors a ∈ Rn and b ∈ Rn, then

(a+ b)T(A+ B)−1(a+ b) ≤ aTA−1a+ bTB−1b (68)

Proof: See the works of Shen et al. [17].

x̂ak = x̂ak|k−1 + qkP
a
k
(
Ha
k
)T (Rak )−1δak (69)(

Pak
)−1
=

(
Pak|k−1

)−1
+ qk

(
Ha
k
)T (Rak )−1Ha

k

σ ak = σ
a
k|k−1 + qk − qk

(
δak
)T

×

(
qkHa

kP
a
k|k−1

(
Ha
k
)T
+ Rak

)−1
δak (70)
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Theorem 7: Considering a N-sensor dynamic system given
by (1) and (2), if E

(
x̂ak , σ

a
k P

a
k

)
is estimated by Theorem 1,

qk = q̃k and the pair
(
Fk , [HT

1,k ,H
T
2,k , · · · ,H

T
N ,k ]

T
)
is uni-

formly observable, then Lk =
(
xk − x̂

a
k
)T (Pak)−1 (xk − x̂ak)

is an ISS-Lyapunov function and the estimation error x̃ak =
xk − x̂

a
k is ISS.

Proof: First, we have∥∥x̃ak∥∥2
λmax

(
Pak
) ≤ Lk ≤

∥∥x̃ak∥∥2
λmin

(
Pak
) (71)

where λ
(
Pak
)
is the eigenvalue of matrix Pak .

Let Lk|k−1 =
(
xk − x̂

a
k|k−1

)T (Pak|k−1 )−1 (xk − x̂ak|k−1 ),
from(12), (13) and (15), we obtain (72), as shown at the
bottom of the next page thus Lk − Lk−1 ≤ Lk|k−1 − Lk−1.
Due to (1) and (9), we have xk − x̂ak|k−1 = Fk−1x̃ak−1 +
Gk−1wk−1. Now using (11) and Lemma 3, Lk|k−1 can be
expressed as:

Lk|k−1 =
(
xk − x̂

a
k|k−1

)T (Pak|k−1 )−1 (xk − x̂ak|k−1 )
≤
(
Fk−1x̃ak−1

)T ((1+ p−1k )
Fk−1Pak−1F

T
k−1

)−1
×
(
Fk−1x̃ak−1

)
+ (Gk−1wk−1)T

(
1+ pk
σk|k−1

Gk−1Qk−1G
T
k−1

)−1
× (Gk−1wk−1)

=
pk

1+ pk
Lk−1 +

σ ak−1

1+ pk
wT
k−1Q

−1
k−1wk−1 (73)

It implies that

Lk − Lk−1

≤
pk

1+ pk
Lk−1 − Lk−1 +

σ ak−1

1+ pk
wT
k−1Q

−1
k−1wk−1

= −
1

1+ pk
Lk−1 +

σ ak−1

1+ pk
wT
k−1Q

−1
k−1wk−1

≤ −

∥∥x̃ak−1∥∥2
(1+ pk) λmax

(
Pak−1

) + σ ak−1 ‖wk−1‖
2

(1+ pk) λmin
(
Qk−1

) (74)

(71) and (75) show that Lk is an ISS-Lyapunov function and
the estimation error x̃ak is ISS for this system. The proof is
completed. �
Remark 5:Assume no noise is present, thenLk−Lk−1 ≤ 0

holds, hence the estimation error goes to zero.
Remark 6: ISS system has some important properties:

1) globally asymptotic stable;2) bounded-input bounded-
state stable;3) converged-input converged-state stable. Based
on Theorem 7 and above ISS properties, the convergence
and boundedness of the augmented algorithm described by
Theorem 1 could be summarized as follows:

1) The estimation error is bounded when the noise is
nonzero, the initial error is bounded, and the pair(
Fk , [HT

1,k ,H
T
2,k , · · · ,H

T
N ,k ]

T
)
uniformly observable.

2) The estimation error tends to zero exponentially when
the noise terms to zero.

3) The estimation error is converged when the noise is
converged, the initial error is bounded, and the pair(
Fk , [HT

1,k ,H
T
2,k , · · · ,H

T
N ,k ]

T
)
uniformly observable.

Remark 7: Considering the functional equivalence of
the proposed algorithms, the convergence and bounded-
ness of the combined measurement filtering algorithm and
pseudo-sequential filtering algorithm is the same as that of the
augmented when the conditions in Theorem 5 and 6 satisfy.

D. EXCHANGEABILITY ANALYSIS OF MEASUREMENT
UPDATE ORDER IN FUSION ALGORITHMS
For the linear dynamic multi-sensor system in probabilistic
setting, it has been proven that the estimate accuracy of
the three methods remains unchanged when the measure-
ment’s update order exchanged. Thus it is interesting to know
whether the SM fusion algorithms designed for the system
with bounded disturbances can hold the property or not.
Essentially, whether the fusion accuracy is influenced by the
measurement update order depend on whether the choice of
the parameters is affected, which can be seen from the proofs
of above theorems to some extent.
Remark 8: For the combined measurement filtering algo-

rithm, the information which participated in the measurement
update are zbk , H

b
k and Rbk . Since the calculation process of

these vectors and matrices has nothing to do with the mea-
surement update order, changing the order has absolutely no
affect on the fusion estimate results.
Remark 9: For the augmented algorithm, it can be seen that

the measurement information order can directly influence the
values of zak , H

a
k and Rak . They play an essential role in the

computation of the parameter qk if it is optimized based on a
certain criteria as Theorem 4. Thus changing the order may
alter the fusion estimate results. However, if the selection of
parameters is independent of the measurement and predicted
states (i.e., parameters are set to be a constant), it is obvious
that exchange of themeasurement update order has absolutely
no effect on the fusion accuracy.
Remark 10: For the pseudo-sequential filtering algorithm,

if one is willing to choose some scalar function of the matrix
defining the ellipsoid as a criterion of size, then the optimum
value of qi,k must be related to the estimate x̂i−1,k updated
by the measurement of the previous sensor. Thus different
measurement update order will yield different parameter
sequence, and then yield different fusion results. Certainly,
like the augmented algorithm, the exchange of measurement
update order has absolutely no affect on the fusion accuracy
if the selection of parameters is independent of the measure-
ment and predicted states

E. COMPULATIONAL COMPLEXITY ANALYSIS
The computational complexities of the proposed algorithms
are determined by n, mi and N . To make the results clear,
we set mi = m for i = 1, 2, · · · ,N . Then the computa-
tional complexities are shown in Table 1. In this table, Algo-
rithm 1∼3 refers to the augmented algorithm, the combined
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TABLE 1. The computational complexities of the proposed algorithms.

measurement filtering algorithm and the pseudo-sequential
filtering algorithm, respectively, and this is also the case
in the following figures and tables. Since the augmented
algorithm introduces multiplication and inversion of high-
dimensional matrices, it is computationally intensive. For
the pseudo-sequential filtering algorithm, since the fusion
center performs a filtering process for each batch of sensor
measurement, the computational resources consumed by the
filter will be large when sensor measurements received by
the fusion center per unit time are large. It is obvious that
the combined measurement filtering algorithm usually has
an advantage in the computation load among above three
algorithms due to low dimension.

VI. SIMULATION EXAMPLES
Monte Carlo simulations are performed to assess the perfor-
mance of the proposed algorithms in this paper and verify
relevant conclusions.

Consider the target tracking system with 3 sensors. The
system is formulated as (1) and (2), with correspondingmatri-
ces

Fk =

 1 T0 0.5T 2
0

0 1 T0
0 0 1

, Gk =

 1 0 0
0 1 0
0 0 1

,
H1,k =

[
1 0 0
0 1 0

]
, H2,k =

[
1 0 0
0 1 0

]
,

H3,k =
[
0 0 1

]
,

where T0 = 0.1 is the sampling period. In the state vector
xk =

[
x1,k x2,k x3,k

]T at time k , x1,k , x2,k and x3,k is
the position, velocity and acceleration of the moving target
respectively. zi,k is the detection signal to the target from the
ith sensor. The parameters of the initial ellipsoid are assumed

FIGURE 1. The distribution of process noise.

to be P0 = 100I3,x̂0 =
[
0 0 0

]T, σ0 = 1. The center
of the ellipsoid, x̂k , is considered to be the point estimate at
each recursive step. And the simulations are run underMatlab
R2014a on Intel Core i5 PC (3.2GHz, 4G RAM).

The known matrices in (3) and (4) are given as R1,k =

diag (0.2, 0.2), R2,k = diag (0.8, 0.6), R3,k = 0.7,
Qk= diag (10, 10, 10). In the simulation study, the process
and observation noises of sensor 1 and sensor 2 are uni-
formly distributed inside the ellipsoids E

(
0,Qk

)
,E
(
0,R1,k

)
and E

(
0,R2,k

)
, respectively, as illustrated in Fig. 1and Fig. 2.

The observations noises of sensor 3 are uniformly distributed
inside an interval [−

√
0.7,
√
0.7], which can be seen as an

ellipsoid with one dimension.
To verify the correctness of the conclusions in Section V,

two cases are considered.
Case 1: In the first scenario, The augmented algorithm and

the combined measurement filtering algorithm are performed
with pk = 2, qk = 1, and the parameters αi,k are calculated
according to (42). And in the pseudo-sequential filtering
algorithm, we set qi,k = qkαi,k . In this way, the conditions
in Theorem 5 and 6 are satisfied.
Case 2: In the second scenario, the parameters αi,k are still

calculated according to (42), but all other parameters in the
fusion algorithms are chosen with the methods in Section IV.
Then, the conditions in Theorem 5 and 6 are not satisfied.

In each case, the SM fusion algorithms are firstly per-
formed with measurement update order z1,k → z2,k → z3,k
(ascending order), then performed again with another order
z3,k → z2,k → z1,k (descending order).

Lk =
(
xk − x̂

a
k
)T (Pak)−1 (xk − x̂ak)

=

(
xk−x̂

a
k|k−1−q̃kP

a
k
(
Ha
k
)T (Rak)−1 δak

)T ((
Pak|k−1

)−1
+q̃k

(
Ha
k
)T (Rak)−1Ha

k

)(
xk−x̂

a
k|k−1−qkP

a
k
(
Ha
k
)T (Rak)−1 δak

)
= Lk|k−1+qk

(
zak−H

a
kxk

)T (Rak)−1 (zak−Ha
kxk

)
− qk

(
δak
)T (Rak)−1 δak+

(
qk
(
Ha
k
)T (Rak)−1 δak

)T
Pak
(
qk
(
Ha
k
)T (Rak)−1 δak

)
≤ Lk|k−1 + qk − qk

(
δak
)T (Rak)−1 δak +

(
qk
(
Ha
k
)T (Rak)−1 δak

)T
Pak
(
qk
(
Ha
k
)T (Rak)−1 δak

)
= Lk|k−1 + σ ak − σ

a
k|k−1

≤ Lk|k−1 (72)
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FIGURE 2. The distribution of observation noise. Graph (a) indicates
observation noise of sensor 1. Graph (b) indicates observation noise of
sensor 2.

FIGURE 3. The MSE of the states estimated by proposed algorithms for
Case 1.

The satisfying tracking performances of the state estimates
for both algorithms are shown in Fig. 3∼5. Furthermore, the
evaluation indexes of the algorithms also include the aver-
age mean square error (MSE) in each state variable and the
average volume, which are illustrated in Table 2. By contrast,
the results estimated with the observations from individual
sensor are given in Table 3 and Fig. 6.

FIGURE 4. The MSE of the states estimated by proposed algorithms with
ascending update order for Case 2.

FIGURE 5. The MSE of the states estimated by proposed algorithms with
descending update order for Case 2.

Firstly, compared with the results estimated with the obser-
vations from single sensor, the fusion algorithms perform
significantly better, which demonstrates the effectiveness of
the proposed algorithms. It should be noted that the MSE of
x1 increases as the time goes on, as shown in Figure 6, which
means the estimation is divergent when only utilizing the
measurements from sensor 3. However, the proposed central-
ized fusion algorithm is convergent by utilizing all available
measurements from sensor 1, 2 and 3. Thus the proposed
fusion algorithms could not only improve the estimation
accuracy, but also improve the convergence of the estimated
results. Actually, Theorem 7 can be used to explain the reason
why this is happening: for this simulation example, it is easy
to draw that the pair

(
Fk ,H3,k

)
is not uniformly observable,

which means the ISS condition is not satisfied. But the pair(
Fk , [HT

1,k ,H
T
2,k ,H

T
3,k ]

T
)
is uniformly observable, thus the
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FIGURE 6. The MSE of the states estimated with the observations from single sensor. Graph (a) indicates the MSE of the states estimated
with the observations from sensor 1. Graph (b) indicates the MSE of the states estimated with the observations from sensor 2. Graph
(c) indicates the MSE of the states estimated with the observations from sensor 3.

estimation error of the proposed fusion algorithms is ISS
when utilizing all available measurements from all sensors.
And the input-to-state stability leads to convergent estimation
results.

The results in Table 2 and Fig. 3 show that the accu-
racy of these three algorithms is the same in the first sce-
nario, no matter whether the measurements are updated with
ascending order or descending order. This verifies the cor-
rectness of Theorem 5 and Theorem 6. It can also be seen
from Table 2 and Fig. 4-5 that different algorithms have
different fusion effects in the second scenario, but only the
combing measurement filtering algorithm is not affected by

measurement update order. Above results verify the conclu-
sions which are drawn in the exchangeability analysis of
measurement updates. In particular, it can be seen that the
pseudo-sequential filtering algorithm is significantly affected
by the order of measurement. The pseudo-sequential filtering
algorithm performs the best among three proposed algorithms
in terms of ellipsoid volume and MSE of x1 and x2 when the
measurements are updated with ascending order in the second
scenario. However, when the measurements are updated with
descending order, it performs the worst. This reminds us that
we need to pay attention to the measurement update order in
the application of the pseudo-sequential filtering algorithm.
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TABLE 2. The average MSE of the estimation and volume of bounding ellipsoids estimated by proposed fusion algorithms.

TABLE 3. The average MSE of the states and volume of bounding
ellipsoids estimated the observations from single sensor.

And the choice of the optimal order will be studied in the
future.

It seems reasonable that the proposed algorithms in the sec-
ond scenario produce ellipsoids with smaller volume and give
better results in terms of the estimation MSE than those in
the first scenario. This shows that the selection method of the
optimal parameters in the proposed algorithms is effective for
accuracy improvement.

In addition, the average computational time at each recur-
sive step of the augmented algorithm, the combined measure-
ment filtering algorithm and the pseudo-sequential filtering
algorithm is 3.81ms, 3.32ms and 5.70ms, respectively. This
means the combinedmeasurement filtering algorithm is faster
than the other two algorithms.

VII. CONCLUSION
Based on the SM theory, three ellipsoidal outer-bounding
state fusion estimation algorithms with centralized struc-
ture have been proposed, i.e., the augmented algorithm, the
pseudo-sequential filtering algorithm, and the combinedmea-
surement filtering algorithm. This paper also presents both
theoretical and simulation results on the comparison of these
three algorithms and the exchangeability of the measurement
update order. The three fusion algorithms are functionally
equivalent if the parameters meet certain conditions, as in
Theorem 5 and 6. In this case, the estimation accuracy of
all three algorithms is not affected by the change of the

measurement update order. However, if these conditions are
not satisfied, the property of the functional equivalence for
the three algorithms is lost and the exchangeability can’t be
hold except for the combined measurement filtering algo-
rithm. In terms of their computation speed, the combined
measurement filtering algorithm is faster than the other two
algorithms because of its lower dimension. By comparatively
examining the formulations of the three fusion algorithms,
we note that the combined measurement filtering algorithm
is less flexible since it needs external conditions to perform.
In the meantime, the role of the proposed algorithms in
improving state estimation accuracy is verified by the sim-
ulation results.

In addition, considering operational efficiency, above con-
clusions are helpful for choosing appropriate algorithms
in applications and the chosen criterion is as follows: If
N∑
i=1
αi,kHT

i,k (Ri,k )
−1Hi,k is positive definite, the combined

measurement filtering algorithm should be firstly considered
to use. When this condition is not satisfied, we choose the
augmented algorithm if themeasurements of different sensors
are received at the same time instant. And otherwise we
could use the pseudo-sequential filtering algorithm because
the observation of each sensor can be processed as soon as it
arrives.

ACKNOWLEDGMENT
The authors would like to thank the other members of the
team for their support to this research.

REFERENCES
[1] Z. Jin, Y. Hu, and C. Sun, ‘‘Event-triggered information fusion for net-

worked systems with missing measurements and correlated noises,’’ Neu-
rocomputing, vol. 332, pp. 15–28, Mar. 2019.

[2] C. Wen, Z. Wang, G. Tao, and F. E. Alsaadi, ‘‘Event-based distributed
recursive filtering for state-saturated systems with redundant channels,’’
Inf. Fusion, vol. 39, pp. 96–107, Jan. 2017.

[3] Y. Zhang, B. Song, X. Du, and M. Guizani, ‘‘Vehicle tracking using
surveillance with multimodal data fusion,’’ IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 7, pp. 2353–2361, Jul. 2018.

141624 VOLUME 7, 2019



Q. Shen et al.: Centralized Fusion Methods for Multi-Sensor System With Bounded Disturbances

[4] S. Lee and J. McBride, ‘‘Extended object tracking via positive and neg-
ative information fusion,’’ IEEE Trans. Signal Process., vol. 67, no. 7,
pp. 1812–1823, Apr. 2019.

[5] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe, ‘‘GPS/IMU data
fusion using multisensor Kalman filtering: Introduction of contextual
aspects,’’ Inf. Fusion, vol. 7, no. 2, pp. 221–230, 2006.

[6] B. Gao, G. Hu, S. Gao, Y. Zhong, and C. Gu, ‘‘Multi-sensor optimal data
fusion for INS/GNSS/CNS integration based on unscented Kalman filter,’’
Int. J. Control Autom. Syst., vol. 16, no. 1, pp. 129–140, Feb. 2018.

[7] S. Din, A. Ahmad, A. Paul, M.M. U. Rathore, and J. Gwanggil, ‘‘A cluster-
based data fusion technique to analyze big data in wireless multi-sensor
system,’’ IEEE Access, vol. 5, pp. 5069–5083, 2017.

[8] D. L. Hall and J. Llinas, ‘‘An introduction to multisensor data fusion,’’
Proc. IEEE, vol. 85, no. 1, pp. 6–23, Jan. 1997.

[9] Y. Zheng, ‘‘Methodologies for cross-domain data fusion: An overview,’’
IEEE Trans. Big Data, vol. 1, no. 1, pp. 16–34, Mar. 2015.

[10] Y. Zhu, Multisensor Decision and Estimation Fusion. Boston, MA, USA:
Kluwer, 2003.

[11] H. Fourati, Multisensor Data Fusion: From Algorithms and Architectural
Design to Applications. Boca Raton, FL, USA: CRC Press, 2017.

[12] Z. Duan and X. R. Li, ‘‘Lossless linear transformation of sensor data for
distributed estimation fusion,’’ IEEE Trans. Signal Process., vol. 59, no. 1,
pp. 362–372, Jan. 2011.

[13] A. Fatehi and B. Huang, ‘‘Kalman filtering approach to multi-rate infor-
mation fusion in the presence of irregular sampling rate and variable
measurement delay,’’ J. Process Control, vol. 53, pp. 15–25, May 2017.

[14] D. Nada, M. Bousbia-Salah, and M. Bettayeb, ‘‘Multi-sensor data fusion
for wheelchair position estimation with unscented Kalman Filter,’’ Int. J.
Automat. Comput., vol. 15, no. 2, pp. 207–217, Apr. 2018.

[15] C. Yang, Z. Yang, and Z. Deng, ‘‘Robust weighted state fusion Kalman
estimators for networked systems with mixed uncertainties,’’ Inf. Fusion,
vol. 45, pp. 246–265, Jan. 2019.

[16] Y. Zhu, ‘‘FromKalman filtering to set-valued filtering for dynamic systems
with uncertainty,’’ Commun. Inf. Syst., vol. 12, no. 1, pp. 97–130, 2012.

[17] Q. Shen, J. Liu, X. Zhou, Q. Zhao, and Q. Wang, ‘‘Low-complexity
ISS state estimation approach with bounded disturbances,’’ Int. J. Adapt.
Control Signal Process., vol. 32, no. 10, pp. 1473–1488, Oct. 2018.

[18] F. Schweppe, ‘‘Recursive state estimation: Unknown but bounded errors
and system inputs,’’ IEEE Trans. Autom. Control, vol. 13, no. 1,
pp. 22–28, Feb. 1968.

[19] D. G. Maksarov and J. P. Norton, ‘‘State bounding with ellipsoidal set
description of uncertainty,’’ Int. J. Control, vol. 65, no. 5, pp. 847–866,
1996.

[20] Y. Becis-Aubry, M. Boutayeb, and M. Darouach, ‘‘State estimation in
the presence of bounded disturbances,’’ Automatica, vol. 44, no. 7,
pp. 1867–1873, Jul. 2008.

[21] Y. Liu, Y. Zhao, and F. Wu, ‘‘Ellipsoidal state-bounding-based set-
membership estimation for linear system with unknown-but-bounded dis-
turbances,’’ IET Control Theory Appl., vol. 10, no. 4, pp. 431–442, 2016.

[22] C. Novara,M. Canale,M.Milanese, andM. C. Signorile, ‘‘Set membership
inversion and robust control from data of nonlinear systems,’’ Int. J. Robust
Nonlinear Control, vol. 24, no. 18, pp. 1226–1233, 2015.

[23] M. H. A. Hasanien, ‘‘A set-membership affine projection algorithm-based
adaptive-controlled SMES units for wind farms output power smoothing,’’
IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1226–1233, Oct. 2014.

[24] W. Yu, E. Zamora, and A. Soria, ‘‘Ellipsoid SLAM: A novel set member-
ship method for simultaneous localization and mapping,’’ Auto. Robots,
vol. 40, no. 1, pp. 125–137, 2016.

[25] R. M. Fernández-Cantí, J. Blesa, and V. Puig, ‘‘Set-membership identifi-
cation and fault detection using a Bayesian framework,’’ Int. J. Syst. Sci.,
vol. 47, no. 7, pp. 1710–1724, 2014.

[26] Y. Becis-Aubry, ‘‘Multisensor fusion for state estimation of linear models
in the presence of bounded disturbances,’’ in Proc. Amer. Control Conf.,
Baltimore, MD, USA, Jun./Jul. 2010, pp. 6781–6782.

[27] Y. Becis-Aubry, ‘‘Multisensor set-membership state estimation of nonlin-
ear models with potentially failing measurements,’’ IFAC Proc. Volumes,
vol. 44, no. 1, pp. 12030–12035, Jan. 2011.

[28] Z. Wang, X. Shen, and Y. Zhu, ‘‘Set-membership information fusion for
multisensor nonlinear dynamic systems,’’ in Proc. 20th Int. Conf. Inf.
Fusion (Fusion), Xi’an, China, Jul. 2017, pp. 1–8.

[29] F. Farina, A. Garulli, and A. Giannitrapani, ‘‘Distributed interpolatory
algorithms for set membership estimation,’’ IEEE Trans. Autom. Control,
vol. 64, no. 9, pp. 3817–3822, Sep. 2019.

[30] S. Werner, M. Mohammed, Y. F. Huang, and V. Koivunen, ‘‘Decentralized
set-membership adaptive estimation for clustered sensor networks,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Las Vegas, NV,
USA, Mar./Apr. 2008, pp. 3573–3576.

[31] L. Ma, Z. Wang, H.-K. Lam, and N. Kyriakoulis, ‘‘Distributed event-
based set-membership filtering for a class of nonlinear systems with sensor
saturations over sensor networks,’’ IEEE Trans. Cybern., vol. 47, no. 11,
pp. 3772–3783, Nov. 2017.

[32] N. Xia, F. Yang, and Q.-L. Han, ‘‘Distributed networked set-membership
filtering with ellipsoidal state estimations,’’ Inf. Sci., vol. 432, pp. 52–62,
Mar. 2018.

[33] Y. Wang and X. R. Li, ‘‘Distributed estimation fusion with unavailable
cross-correlation,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1,
pp. 259–278, Jan. 2012.

[34] J. Sijs and M. Lazar, ‘‘State fusion with unknown correlation: Ellipsoidal
intersection,’’ Automatica, vol. 48, pp. 1874–1878, Aug. 2012.

[35] P. Ghofrani, T. Wang, and A. Schmeink, ‘‘A fast converging channel
estimation algorithm for wireless sensor networks,’’ IEEE Trans. Signal
Process., vol. 66, no. 12, pp. 3169–3184, Jun. 2018.

[36] V. Drevelle and P. Bonnifait, ‘‘A set-membership approach for high
integrity height-aided satellite positioning,’’ GPS Solutions, vol. 15, no. 4,
pp. 357–368, 2011.

[37] F. Gu, Y. He, and J. Han, ‘‘Active persistent localization of a three-
dimensional moving target under set-membership uncertainty description
through cooperation of multiple mobile robots,’’ IEEE Trans. Ind. Elec-
tron., vol. 62, no. 8, pp. 4958–4971, Aug. 2015.

[38] L. C. Bento, P. Bonnifait, and U. J. Nunes, ‘‘Set-membership position esti-
mationwithGNSS pseudorange errormitigation using lane-boundarymea-
surements,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 185–194,
Jan. 2019.

[39] Q. Gan and C. J. Harris, ‘‘Comparison of twomeasurement fusion methods
for Kalman-filter-based multisensor data fusion,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 37, no. 1, pp. 273–279, Jan. 2001.

[40] A. X. Yu, W. D. Hu, and W. H. Zhou, ‘‘Performance comparison of
multisensor measurement fusion algorithms,’’ J. Nat. Univ. Def. Technol.,
vol. 25, no. 6, pp. 39–44, 2001.

QIANG SHEN received the Ph.D. degree from
the Xi’an Research Institute of High-Tech, Xi’an,
China, in 2019, where he is currently a Lec-
turer. His current research interests include the
set-membership theory, state estimation, informa-
tion fusion and inertial navigation.

JIEYU LIU received the Ph.D. degree from Xi’an
Jiaotong University, Xi’an, China, in 2008.

She was a Visiting Scholar with the Michigan
State University, from January 2017 to July 2017.
She is currently a Professor and a Ph.D. Supervisor
with the Xi’an Research Institute of High-Tech.
She has published three books, and about 100
articles. Her research interests include signal pro-
cessing and inertial navigation.

XIAOGANG ZHOU received the Ph.D. degree
from the Xi’an Research Institute of High-Tech,
Xi’an, China, in 2009, where he is currently a
Lecturer.

His current research interests include inertial
platform and inertial navigation.

VOLUME 7, 2019 141625



Q. Shen et al.: Centralized Fusion Methods for Multi-Sensor System With Bounded Disturbances

WEIWEI QIN received the Ph.D. degree from
the Xi’an Research Institute of High-Tech, Xi’an,
China, in 2012, where he is currently an Associate
Professor. His current research has been supported
by the National Science Foundation of China. His
current research interests include the hypersonic
flight vehicle and nonlinear control.

LIXIN WANG received the B.S. degree from
Xi’an Jiaotong University, Xi’an, China, in 1997
and the Ph.D. degree from the Xi’an Research
Institute of High-Tech, Xi’an, in 2008, where he
is currently a Professor and a Ph.D. Supervisor.
He has published three books, and about 200
articles. His research interests include inertial
platform and inertial navigation.

QI WANG received the B.S. degree from Xi’an
Research Institute of High-Tech, Xi’an, China,
in 2014, where he is currently pursuing the Ph.D.
degree. His current research interests include
parameter identification, and state estimation and
inertial navigation.

141626 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	THE STATE EVOLUTION ANALYSIS
	THE CENTRALIZED SM ESTIMATION FUSION ALGORITHMS
	THE AUGMENTED ALGORITHM
	COMBINED MEASUREMENT FILTERING ALGORITHM
	PSEUDO-SEQUENTIAL FILTERING ALGORITHM
	SELECTION OF OPTIMAL PARAMETERS

	ALGORITHM PROPERTIES
	THE FUNCTIONAL EQUIVALENCE OF THE AUGMENTED ALGORITHM AND THE COMBINED MEASUREMENT FILTERING ALGORITHM
	THE FUNCTIONAL EQUIVALENCE OF THE AUGMENTED ALGORITHM AND THE PSEUDO-SEQUENTIAL FILTERING ALGORITHM
	STABILITY AND CONVERGENCE ANALYSIS
	EXCHANGEABILITY ANALYSIS OF MEASUREMENT UPDATE ORDER IN FUSION ALGORITHMS
	COMPULATIONAL COMPLEXITY ANALYSIS

	SIMULATION EXAMPLES
	CONCLUSION
	REFERENCES
	Biographies
	QIANG SHEN
	JIEYU LIU
	XIAOGANG ZHOU
	WEIWEI QIN
	LIXIN WANG
	QI WANG


