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ABSTRACT This paper presents a comprehensive review of current literature on drone detection and
classification using machine learning with different modalities. This research area has emerged in the last few
years due to the rapid development of commercial and recreational drones and the associated risk to airspace
safety. Addressed technologies encompass radar, visual, acoustic, and radio-frequency sensing systems. The
general finding of this study demonstrates that machine learning-based classification of drones seems to
be promising with many successful individual contributions. However, most of the performed research is
experimental and the outcomes from different papers can hardly be compared. A general requirement-driven
specification for the problem of drone detection and classification is still missing as well as reference datasets

which would help in evaluating different solutions.

INDEX TERMS Drone detection, drone classification, machine learning, radar, vision, acoustics,

radio-frequency.

I. INTRODUCTION

Despite attracting a wide attention in diverse civil and com-
mercial applications, Unmanned Air Vehicles (UAVs - also
known as drones) undoubtedly pose a number of threats
to airspace safety that may endanger people and property.
While such threats can be highly diverse in terms of the
attackers’ intentions and sophistication, ranging from pilot
unskillfulness to deliberate attacks, they all can produce
severe disruption. Their frequency is also on the increase:
in the first few months of the year 2019, for example,
various airports in the USA, UK, Ireland, and UAE have
experienced major disturbance of operation following drone
sightings [1]. Classic risk theory tells us that hazards whose
probability is high and whose consequences are severe gen-
erate huge risks (risk assessment = probability x impact).
Flight authorities worldwide are working hard on reducing
the probability aspect of the risk equation by regulating drone
operation. Regulations may discourage careless or unskilled
drone operation, but cannot prevent criminal or terroristic
attacks. To be effective, they must be supported by technolo-
gies enabling i- drone detection, classification, and tracking,
ii- drone interdiction, and iii- evidence collection in the case
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of violation. In addition to these technologies which essen-
tially address uncooperative drones, friendly UAVs should
have onboard preventive technologies to support safe oper-
ation such as sense&avoid, geofencing, parachuting systems,
as well as mechanisms against different attacks such as jam-
ming or hijacking of the control signal. Figure 1 classifies
the technologies which were deployed to support safe drone
operations into four main categories with examples.

This paper addresses the detection and classification tech-
nologies specifically those which are based on machine learn-
ing (ML). Due to its ability to recognize patterns without a
man-in-the-loop, ML has shown major advantages in object
detection and classification in diverse areas. Limiting the
reliance on man-in-the-loop is desired not only because of
human inability to recognize far or small objects and the
risk of reduced attention due to fatigue or boredom. Rather,
ML can perform pattern recognition using modalities, which
cannot be perceived by humans altogether. These include
radio frequencies as well as optic and acoustic signals beyond
the abilities of human sense organs.

Recently, many technical papers have provided short
reviews of related work on drone detection [2], [3]. Also,
some review articles have appeared which consider sin-
gle or multiple modalities [4], [S]. Most, if not all of these
reviews, however, are focused on the functional level of the

138669


https://orcid.org/0000-0003-4799-3495
https://orcid.org/0000-0003-1840-9958

IEEE Access

B. Taha, A. Shoufan: ML-Based Drone Detection and Classification: State-of-the-Art in Research

Radio-frequency
detection

Bi- and multimodal
detection

. Detection & . N
Prevention g Interdiction Investigation
. Classification . .
Technologies A Technologies Technologies
Technologies
Sense&Avoid _[ Radar detection ] —| Jamming Digital Forensics
—[ Visual detection ]
—[ Acoustic detection ]

FIGURE 1. Different technologies applied to support safe drone operations.

TABLE 1. Comparison of advantages and disadvantages of different drone detection technologies [4].

Detection Tech-
nology

Advantages

Disadvantages

Radar

Low-cost Frequency-Modulated Continuous Wave
(FMCW) radars are resistant to fog, cloud, and dust
as opposite to visual detection; and less pron to noise
as opposite to acoustic detection. Radar does not re-
quire a line-of-sight (LOS). Higher frequency radars
such as mmWave radars offer higher resolution in
range and enable capturing micro-Doppler signature
(MDS).

Drones have small radar cross sections (RCS) which
makes the detection more demanding. mmWave has
higher path loss, which limits drone detection range.

Acoustic

Does not require a LOS, so it works in low-visibility
environments. Low-cost depending on the employed
microphone arrays

Sensitive to ambient noise especially in loud areas.
Wind condition affects detection performance. Re-
quires a database of acoustic signature for different
drones for training and testing.

Visual

Low-cost depending on the utilized cameras and op-
tical sensors or reusing existing surveillance cameras.
Human assessment of detection results using screens
is easier than other modalities

Level of visibility is affected by dust, fog, cloud,
and day time. High-cost thermal, laser-based, and
wide field-of-view cameras may be required. LOS is
necessary.

Radio-frequency

Low-cost RF-sensors. No LOS is required. Long de-

Not suitable for detecting drones flying autonomously

(RF) signal-based
detection

tection range.

without any communication channels. It requires
training to learn RF signal signatures.

different technologies and limit the evaluation to comparing
their general advantages and disadvantages as summarized
in Table 1.

To support researchers in this area as well as interested
parties including drone manufacturers, drone operators, anti-
drone system operators, regulators, and law enforcement, this
paper provides a wide and deep look into state-of-the-art
contributions in the field of drone detection and classifica-
tion using machine learning. For this purpose, we followed
a systematic approach by addressing each of the following
questions for each reviewed paper.

What is the classification objective?

Classification is an application of supervised ML where all
data samples used in the training and testing are labeled. The
number of different labels used in annotating the dataset is
equal to the number of classes. Using machine learning to
detect a drone is a binary classification problem where two
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labels are used, e.g., “Drone’” and “No Drone”. Recognizing
drones from birds or drones from other aircrafts is also a
binary classification problem with corresponding labels for
the data. Several researchers tried to identify the drone type
by ML-classification. In this case we refer to multi-class
classification with as many classes and labels as the number
of identifiable drone types. Multi-class classification was also
used to specify the drone itself, e.g., by determining the
number of its rotors, or estimating its payload.

What dataset is used?

Machine learning is about learning from data. Both the qual-
ity and quantity of data used in training and testing are vital
for learning powerful classification models, with low bias and
variance. To reduce the bias in the learned model (under-
fitting effect), the data should cover a wide range of cases
which stem from or resemble real situations. To reduce the
variance (prevent over-fitting), the model should learn from
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alarge amount of data to gain enough experience and increase
its generalization capability. In the field of drone classifica-
tion, there are still no widely recognized reference datasets for
the different modalities. In most, if not all cases, researchers
generated their own data using different ways including simu-
lations, experiments in lab, as well as outdoor measurements.
In some cases, data generated in the lab, e.g., acoustic data
are mixed with noise to emulate a real environment.

Which features are extracted?

In general, raw sensor data requires some pre-processing
before they are fed to the ML process. This include filtering
to suppress noise and clutter or implementing principle com-
ponent analysis (PCA) or independent component analysis
(ICA) to reduce the data dimensionality. Feature engineering
and selection is an essential but difficult task in most ML
algorithms to ensure learning efficient and generate useful
models. In the literature on drone classification, researchers
made use of different features in the time and frequency
domains depending on the used modalities. Feature extraction
and selection is omitted when deep learning is employed since
this ML scheme learns features inherently, however, at the
cost of complexity and higher demand of data.

What classifiers are employed?

Machine learning packages are widely available nowadays
and it is a common practice to try different classifiers and
compare their performance. This is a typical scenario in ML
because it is still hard to tell from the beginning which
classifier would work better on which features especially
in new areas such as drone detection. Researchers in the
related work tried multiple classifiers including support vec-
tor machines (SVM), artificial neural networks (ANN), ran-
dom forests, etc.

Which results are reported?

The quality of classification models is generally measured by
the classification accuracy which boils down to the number of
correct predictions from all predictions made. Cross valida-
tion is a widely used technique to improve the quality of the
classification model especially if limited data are available.
Trained models can also be tested and verified using real
unseen data. For drone classification, researchers essentially
utilized classification accuracy to estimate the classification
performance. Depending on the risk level associated with
drone flights, classification accuracy may not be sufficient for
evaluating the performance of a classification model. In such
cases, model precision should be considered to reduce the
percentage of false negatives.

The rest of the paper is divided into five sections. The
next four ones review the ML-based drone classification
technologies for each modality from the most to the least
popular ones. Each of these sections has three main parts:
a detailed review of the papers, an overview table, and a
discussion. The last section gives a general summary for
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all technologies, provides some research directions for the
future, and concludes the paper.

Il. ML-BASED DRONE CLASSIFICATION BY RADAR
Researchers who applied ML to radar signals followed one of
the following objectives (see Table 2):

A. Drone detection: This applies when two labels are used
to annotate data: drone vs. no-drone.

B. Classification of drones vs. birds: In this case, two
labels are used: drone vs. bird.

C. Classification of drones vs. drones: This applies when
as many labels are used as the number of investigated
drone types.

D. Drone characterization classification: This is the case
when the data is labeled according to a value of a
specific drone characteristic such as the payload or the
number of rotors.

E. Multi-drone detection: In this case, researchers
labeled the data with the number of drones flying
simultaneously.

The following subsections are structured according to these

classification objectives.

A. DRONE DETECTION

Jahangir and Baker showed how the need for ML arises in
the context of radar detection in practice [6]. The authors
used a high-end 3-D holographic radar with a transmission
power of 10kW and 32 x 8 receiver array to detect a drone
at a reasonable range of around 1km. Employing the radar
standard configuration, the detection probability was almost
0 due to the low radar cross-section (RCS). The authors then
reduced the amplitude threshold and permitted detections
with lower Dopplers. By this means, they improved the drone
detection (true positives) significantly. However, much more
false positives were recorded in this case because the radar
sensitivity for other targets such as birds, surface targets and
clutter was increased. As a solution, the authors used ML by
selecting simple time-domain features including the height,
the maximum height, the Doppler (radial velocity), the accel-
eration, and the jerk (change in acceleration). A binary deci-
sion tree model was trained which could improve the drone
prediction probability to 88% and reduce the false alarm rate
to 0. In later papers, the authors utilized newer versions of
radar to classify drones vs. birds tracks, however, without the
aid of ML [7], [8].

B. CLASSIFICATION OF DRONES vs. BIRDS

Torvik et al. highlighted the importance of classifying drones
vs. birds because both targets show low RCS and causes
a confusion in the surveillance against non-cooperative
drones [9]. They argued that gliding birds and plastic-rotor
UAVs are characterized by insignificant micro Doppler sig-
nature (MDS) and poor RCS modulation. Therefore, they
proposed using polarimetric features for drone detection as
reported in radar ornithology and meteorology [10]. The
authors used nine polarimetric parameters (linear depolar-
ization ratio, differential depolarization ration, co-polarized
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TABLE 2. Summary of related works on radar methods based on machine learning for drone detection and tracking.

Work | Radar Sys- | Range Classes Data Features Classifier Results
tem
[6] L-band holo- | 1km-500m. 2 classes: Drone | 5-min flight Height, max. height, | Decision tree | Detection probability:
graphic radar | Altitude 500 | (hexacopter), Non- acceleration, jerk 88%
ft. Drone
[9] S-band 0.3-0.4 km 4 classes: two birds | 8000 trail sam- | 9 polarimetric | nearest- Classification
BirdRad and two drones (3-D | ples features neighbor accuracy: 100%
Solo and DJI Phan- classifier accuracy
tom II)
[11] Ka-band CW | 2 m in lab. | 2 classes: UAVs vs. | 30 10-second | Mean spectrogram, | SVM Classification
radar Outdoor simulated bird data trials per drone, | SVD, CVD accuracy: 96% to
experiments simulated  bird 100%.
without MDS
range
specification
[12] S-band - 2 classes: UAV | Bird tracks real. | 20 features extracted | ANN with30 | Classification
pulsed radar tracks vs. bird track UAV tracks by | from track hidden layers | accuracy: up to
simulation 100%
[14] X-band CW | less than 30 11 classes: 11 30 seconds | Eigenvector and | Naive Bayes, | Classification
radar m drones recording for | Eigenvalue of MDS linear and | accuracy: approx.
each drone non-linear 95%.
SVM
[15], | S-band CW 3m 4 classes: 3 drones | 280 images Spectral ~ correlation | Deep Belief | Classification
[16] and no-drone class function (SCF) of | Network accuracy: above 90%
MDS (DBN) when SNR >=0
[17] K-band and | 1.2m 3 classes: | 720 samples each | PCA based features SVM Classification
X-band CW Quadcopter, radar/drone accuracy: up to
radar Helicopter, 94.7%
Hexacopter
[18] Ku-band - 2 classes: Inspire 1 50000/10000 Contatendated MDS | CNN classification
FMCW radar and F820 images and CVD accuracy:94.7%
indoor/outdoor
[19] Pulsed - 2 classes: Phantom | Own database Virtual scattering | MLP,RNN, Classification
2 and S1000+ points’ images FCN accuracy: from
70% to 100%
[20] S-band 60 m 3 classes: no pay- | 45 samples per | Centroid and band- | Naive Bayes | Classification
pulsed radar load, 200 g payload, | class width of MDS and Discrim- | accuracy: 90-100%
(NetRaAD) 500 g payload inant analy-
sis
[22] S-band 60 m 5 classes: no pay- | 45 samples per | SVD and centroid of | Naive Bayes, | Classification
pulsed radar load, 200g, 300g, | class MDS Discriminant | accuracy: 95-96%.
(NetRaAD) 400g, 500g analysis and
Random
forest
[24] CW K-band | - Quadcopter, 140 segments | cadence  frequency | k-means Classification
radar Helicopter, with 0.375s for | spectrum (CFS) | classifier accuracy up to
Hexacopter each segment features 96.64%, 90.49% and
97.8% for single |,
two and three drones
respectively
[23] - - 4 classes: single | Synthetic MDS MLP, ANN Aver.  classification
and multi-propeller | database accuracy: 99%
drones with 2 or 3
blades each
[11] | Ka-band CW | 2 m in lab. | 2 classes: small- | 30 10-second tri- | Mean spectrogram, | SVM Classification
radar Outdoor sized drones vs. | als per drone SVD, CVD accuracy: 96% to
1o experiments medium-sized 100%. VOLUME 4. 2016
without drones ’
range
specification
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correlation coefficient, cross-polarized correlation coeffi-
cient, entropy, anisotropy, polarimetric eigenvector, and ori-
entation angle) to train a nearest-neighbor classifier. 8000 real
data points from two drones and two birds, which exhibit
similar RCS characteristics, were collected using a dedicated
S-band radar system called BirdRAD at 3.25 GHz. The classi-
fier showed very high classification accuracy close to 100%.

Fuhrmann et al. extracted three features from the MDS to
classify drones against birds [11]. These features include the
mean spectrogram, the first left singular vector of singular
value decomposition (SVD), and the mean cadence velocity
diagram (CVD). The authors obtained data for six drones by
operating these drones in a stationary lab setup (drones are
fixed at a distance of 2 m from the radar) as well as by flying
them different trajectories outdoors, however, without details
about the flight range. In contrast, birds’ flight data were gen-
erated by simulation using the same Continuous-Wave (CW)
radar configuration which was deployed to collect drone
data. A SVM classifier was trained and the generated model
showed a classification accuracy of 100%.

Mohajerin et al. used statistical features of radar tracks to
classify UAVs vs. birds and manned aircraft [12]. The non-
UAV tracks were generated from real data collected using an
air traffic control radar. UAV tracks, however, were generated
by simulation. 16 time-domain features were derived from
target movement data such as the mean and variance of speed,
acceleration, and jerk in addition to features related to the
form of the trajectory. Four more features associated to the
radar cross section of the target derived from the amplitude
of the plot were also employed. An artificial neural network
with 30 hidden layers was used where 70%, 15%, and 15%
of the data were divided for training, validation, and testing,
respectively. UAV tracks could be classified with an accuracy
of 100% even with single features. However, it should be
noted that the simulation-based generation of data in this
paper raises some questions. For example, the drone tracks
were generated for long ranges (up to 20 km) and the drone
RCS was assumed to be between 1 and 2 m?. The second
assumption is very far from reported results by researchers
who investigated the RCS characteristics of different drones.
In their review, Patel et al. found out that typical RCS values
varies between —30 and —14.1 dBsm [13]. Also the first
assumption of a 20-km range is impractical since all other
related work could hardly detect a drone beyond a 1-km
range.

C. CLASSIFICATION OF DRONES vs. DRONES

Molchanov et al. extracted features based on the Eigenvectors
and Eigenvalues of the MDS [14]. They trained a linear and
a non-linear SVM as well as a Naive Bayes classifier. Data
were collected using a CW radar by flying eleven objects (two
fixed-wing, three helicopters, one quad-rotor, an artificial
bird, and four stationary rotors) for 30 seconds each. Based
on 10-fold cross validation, drones could be classified with
an average accuracy of 95%. In a second test, the authors
excluded some models from the training and found out that
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the classifier could still classify them into fixed-wing, sta-
tionary rotor, or helicopter with an accuracy ranging from
87% to 100%.

Mendis et al. trained a deep belief network (DBN) to clas-
sify drones after extracting the spectral correlation function
(SCF) from the MDS [15], [16]. The SCF is the Fourier trans-
form of the autocorrelation function and helps in comparing
observations of the distribution of velocities. Three micro-
drones (an artificial bird, a helicopter, and a quad-copter)
were placed at fixed position three meters far from a CW radar
in a lab environment. The authors also generated data without
any drone in place as a reference class. Thus, the DBN worked
on data from four classes, in total where 70 SCF images were
generated for each class. Different levels of Gaussian noise
were added to 50 of these images as a data augmentation
mechanism. The authors reported that the drones could be
classified with accuracies above 90% when the signal-to-
noise ratio is equal to or larger than zero.

Zhang et. al. proposed a dual-band CW radar operating in
the K-band and X-band to classify three drones: a helicopter,
a hexa-copter, and a quad-copter [17]. The drones were fixed
in a lab at a distance of 1.3 m from both radar sensors which
were placed at a distance of 1 m from each other. First,
time-frequency spectrograms were extracted using short-time
Fourier Transform (STFT) from the radar data (MDS). Then
features were obtained by applying PCA on the spectrograms.
Three tests were performed using a SVM classifier: The
first two tests worked on features from the individual radars
only. In the third test, the data from both radars were fused.
720 samples from each radar sensor and for each drone
were collected. 3% of the data were used for training and
the rest for validation, whereas the training/testing process
was repeated 50 times with a random selection of data. The
authors highlighted the superiority of the dual-band solution
over single radar solution, although the K-band radar alone is
not clearly worse than the dual-radar solution. On average its
classification accuracy is only by 1.2% lower than the dual-
band solution. In a subsequent work, the authors investigated
the detection of two and three drones at the same time as will
be described in Section II-E.

Kim et al. investigated the pre-trained convolutional neural
network (CNN) (GoogleNet) to classify two drones (Inspire 1
and F820) [18]. While hovering above a Ku-band FMCW
radar at two heights (50 m and 100 m), the MDS was recorded
and its CVD was determined. The MDS and CVD images
were concatenated into one image, which was referred to
as merged Doppler image (MDI). 10000 images from out-
door measurements were generated and applied to the CNN
classifier using 4-fold cross validation. The results show that
the drones could be classified with an accuracy of 100%.
Surprisingly, indoor experiments in an anechoic chamber
demonstrated lower classification performance.

Brooks et al. modeled a drone by a discrete set of scattering
points distributed along its structure [19]. This model is two-
dimensional and assumes that the drone is in the same plane
with respect to the radar. When the scattering points move,
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they yield a set of series of 2-D coordinates. The latter are
fed to wave equations which return a temporal series of
complex points. Then the ground clutter is added by sim-
ulation using Billingsley’s model. These models were used
to generate data for three types of drones (Vario helicopter,
DIJI’s Phantom?2 and S1000+). Three classifiers were tested:
Fully-convolutional networks (FCNs), Recurrent neural net-
works (RNNs), and multilayer perceptron (MLP). While the
MLP classifier could classify the drones with an accuracy
around 70% to 85% depending on the SNR, the RNN and
FNC classifier gave higher accuracy approaching 100% when
SNR = 30dB. Note that this work does not consider MDS and
assumes a pulsed radar. The models are used to generate data
from simulation without any range information. It would be
interesting to know how this approach would work with real
radar data.

D. CLASSIFICATION OF DRONE CHARACTERISTICS
Fioranelli et al. applied ML to identify whether a drone has
zero, 200, or 500-gram payload (three classes) [20]. The
authors argued that the knowledge about the drone payload is
crucial because it can indicate suspicious or hostile activities
by malicious users. They utilized the same multi-static radar
system NetRAD described in [21] to extract two features
which are the centroid and the bandwidth of the MDS in
2-second windows. The three receivers recorded data of
a drone hovering at 60 m distance from transceiver for
30 seconds. Thus, 15 samples per receiver for each payload
class were collected. Naive Bayes as well as discriminant
analysis were applied with cross validation for training and
testing. Results were shown for three decision strategies:
(i)-Model generated from data of the mono-static receiver
(the receiver co-located with the transmitter), (ii)-Model gen-
erated by merging data from the three receivers (iii)-Three
models, one per receiver and the decision was based on a
majority voting scheme. The majority voting gave the best
accuracy with a value between 90% and 100%. In terms of
the tested classifier, discriminant analysis outperformed the
Naive Bayes in terms of accuracy. The authors observed that
with increasing payload, the MDS appears ‘“more uniform
and straight” and reaches higher positive and negative val-
ues which can clarify the good classification results. This is
explained by the fact that higher payload requires more blade
speed to maintain the drone hovering at the same altitude. In a
subsequent work by the same group, the authors extracted the
SVD and centroid of the MDS and added random forest to the
set of experimented classifiers [22]. In addition, the authors
tested two flight cases: (i) hovering and (ii) moving where
the attained classification accuracy show slight differences
(96% vs. 95%). While the SVD feature was more efficient in
classifying the payload in the case of movement, the centroid
was more suitable for payload classification when the drone
was hovering.

In their paper which we described in Section II-B,
Fuhrmann et al. performed additional classification tests to
characterize the drones [11]. They divided five of the used
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drones into a small-sized classes (three drones) and medium-
sized classes (two drones). They used the same data, features,
and classifier, which they deployed to classify the drones
against birds as described in Section II-B. The SVM clas-
sifier could identify small and medium-sized drone with an
accuracy of 96%. In addition to these classification tests,
the authors performed a Cepstrogram analysis in the que-
frency domain to characterize the drones according to their
number of rotors, the rotation rate, and the rotor blade length.
For example, for a specific drone, they could estimate a blade
length of 18.5 cm whereas the actual length is 19 cm.

Regev et. al. relaied on theoretical time-domain models
for MDS to generate synthetic data for 1 and 4 propeller
drones with two or three blades each. The data were used
to train a MLP ANN-based classifier followed by regression
to estimate the blade length and rotation rate [23]. The envi-
ronment noise was simulated by adding different levels of
SNR. The classification results were very accurate (99% for
SNR =5 dB) and the parameter estimation showed low errors
(4% in estimating the rotation frequency and 6% in estimating
the blade length). It would be desirable to learn how this
method would be extended to address practical drone data.

E. MULTI-DRONE DETECTION

Zhang et al. studied the possibility of detecting multiple
drones that are present simultaneously using a K-band CW
radar [24]. They converted the time-frequency spectrogram
into a CVD and extracted from the latter the cadence fre-
quency spectrum (CFS), which was used as features for train-
ing a K-means classifier. In their lab tests, they employed a
helicopter, a hexa-copter and a quad-copter to collect data
for single UAVs, two UAVs, and all UAVs. They found out
that average accuracy results for single drone classification,
two drone classification and three drone classification were
96.64%, 90.49% and 97.8%, respectively.

F. DISCUSSION

Despite the wide variety of used radar front ends, extracted
features, and classifiers, all reviewed papers report positive
classification results which surely gives hope in this tech-
nology. On the other hand, it is unclear whether any of the
reported solutions can be generalized to cover more drone
types, wider ranges, different radar sensors, and different
signal processing schemes. Haykin commented ‘“The radar
has to learn from experience on how to deal with different
targets, large and small, and at widely varying ranges, all in
an effective and robust manner” [25]. Most of the research
performed in the reviewed papers (and many other papers
without ML) can be described as experimental work without
sufficient exploration of design alternatives based on an in-
depth requirement analysis.

An interesting observation is that the papers which address
the ability of ML to classify drones vs. drones or drones vs.
birds as well as the contributions on drone characterization
(size, payload, etc.) seem to presume detection. This is evi-
dent form the experiments which are frequently conducted
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in setups, which bias the detection schemes. For example,
with just a few exceptions, most experimental flights were
performed at low ranges under 60 meters and sometimes the
drone was even fixed at a distance of 1.5, 2, or 3 meters
from the radar in a lab setup. It should be expected that
targets at larger distances are harder to detect not to mention
classify. With their high-end radar, Jahangir showed that
detecting a drone at distances between 500 and 1000 meters
is impossible [6]. Their contribution was a clear example
of how machine learning can help reduce noise on the data
level and help in the detection mechanism. It would be very
interesting to see if Jahangir’s solution can be extended to a
multi-class classification at such distances. On the other hand,
it is significant to experiment how the classification models
proposed by other groups, would behave at larger distances.
Model-based and simulation-based data generation for the
sake of classification is another form of presuming detection.
Mohajerin commented on their simulation-based approach
“to further validate this claim it is required to improve the
fidelity of our simulation and finally perform experimental
evaluations™ [12].

Focusing on the classification task and separating it from
the detection assignment may sound attractive and justified in
order to achieve progress in feature engineering and the devel-
opment of classification models. However, without reference
datasets, the validity of such models is difficult to show. The
provision of accessible datasets is a high-priority task for the
radar drone detection, as it is for cognitive communication
and radar in general [26]. Researchers interested in the prepa-
ration of such datasets should spend deep thoughts on finding
the most appropriate signal/s that should be made ready for
the ML process. As an example, the MDS has been accepted
and utilized by most authors and could be a starting point.

Furthermore, many drones are capable and usually fly at
high speeds. If they developed research and techniques is
limited to only low distances classification, then this would
only make sense if the classification technology is fast enough
to allow a decision on time. Not all classifiers are equally
efficient in real-time. While a linear SVM model, for exam-
ple, requires a few arithmetic operations to classify a data
point, a random forest classifier often requires the traversing
of large number of trees, which can take considerable time.
The real-time aspects of classifiers will be more important
when multiple drones are expected in the sky at the same time.

Moreover, many papers presented the results of one clas-
sifier and some tested two or three classifiers. With just
one or two exceptions, all classifiers worked well. This is not
the case in other fields such as natural language processing
and computer vision. In these research areas, researchers
sometimes report significant differences in the performance
of classifiers on the same dataset [27]. Knowing this, it would
be interesting to know why the research on radar drone clas-
sification worked with the ““first” classifier at hand. This is
especially compulsive to know because none of the reviewed
papers has justified the selection of the employed classi-
fiers. Testing multiple classifiers and features can be very
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beneficial for the community to pinpoint the limitations and
capabilities of each algorithm.

Ill. ML-BASED DRONE CLASSIFICATION

BY VISUAL DATA

Despite its traditional success in target identification and
tracking, the radar remains a highly professional technology
which requires a trained staff that is capable of interpreting
the visual outcomes of the radar system at least for decision
making. This complexity of the radar technology and the
rapid progress in the computer vision field have invited some
researchers to consider drone detection and classification
using visual data (images or videos). Contributions in this
area can be divided into two categories depending on how
authors have dealt with feature extraction. The first cate-
gory includes solutions which rely on learned features, thus,
omitting the extensive step of feature engineering. The other
category depends on traditional machine learning schemes
which are expected to feed the system with low-level hand-
crafted features such as edges, blobs, and color information.
Table 3 summarizes related work on ML-based visual drone
detection.

A. VISUAL DETECTION WITH LEARNED FEATURES
Rozantsev et al. in [28] proposed two methods for the detec-
tion of flying drones (UAVs and Aircrafts) from a single
camera. The two approaches are based on 3-dimensional
Histograms of Gradients (HoG3D) and a CNN model. The
proposed system starts by dividing the video frames into
overlapping temporal slices with 50% overlapping. Then,
amulti-scale sliding window is deployed to generate st-cubes.
After that, to avoid any bias to global motion, the authors pro-
posed a motion compensation algorithm based on regression
method. To this end, two propositions are made: 1) train two
different boosted tree regressors to predict the required trans-
lation for an input patch based on HoG features. 2) train two
separate CNNs for the regression task based on the learned
features. After the training, the regressors are used to compen-
sate the motion and generate the st-cubes which are then fed
as inputs for classification. To evaluate the performance of the
proposed system, the authors built their own database which
consists of two parts a UAV dataset and an aircraft dataset.
This database is publicly available. The average precision of
the proposed detection method is 0.849 and 0.864 for the UAV
and aircraft datasets, respectively. As a final stage, a regressor
is trained to accommodate for the different image scales, i.e.
it is trained to fit the detected object precisely.

Yoshihashi ez al. in [29] proposed a deep learning approach
namely Recurrent Correlational Networks (RCN) for detect-
ing and tracking small UAVs. The proposed system consists
of four networks each with a specific task. The first one is
a convolutional layer that represents target and non-target
appearances from a single frame. Then the ConvLSTM is
utilized to learn motion representations from multiple frames.
After that, cross-correlation layers are employed to generate
correlation maps between the template and each subsequent
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TABLE 3. Summary of related work on visual methods for drone detection and tracking.

Work Drone Max. Acquisition| Pre- Dataset Features Detection Results
Range | Method processing Method
[28] UAVs and | NS NS Multi-scale UAV database | HoG3D, Learned | Boosted trees, | Average  precision  is
Aircraft sliding and Aircraft | features CNN 0.849, 0.864 for the UAV
window to | database and Aircraft databases
generate respectively.
st-cubes
[29] Small NS NS NS UAV database ILearned features Recurrent Corre- ROC curves demonstrate
UAVs and video-based lational Networks | the superiority of the sys-
bird database (RCN) tem.
[30] NS NS NS NS Artificial dataset Learned features Fine tuning CNN | Precision and recall values
(YOLOv2) of approximately 0.9.
[31] NS NS NS NS Drone Vs Bird | Learned features Fine tuning CNN | Mean average precision
Database (VGG and ZF) 0.66
[32] NS NS NS NS Synthetic Learned features Fine tuning | Mean average precision
database for Faster R-CNN | 80.69%
drone detection with ResNet 101
[33] NS NS NS Camera 10013 images | Haar and learned | Haar cascaded | Detection and identifica-
mounted on a | collected from | features classifier, CNN tion accuracies are 89%
drone Google and 91.6% respectively
[34] NS NS Smart NS NS Geographical Intelligent proba- | Results show good perfor-
phone distributed data | bilistic model. mance but needs more in-
points vestigation and improve-
ments
[35] NS NS NS 64 X 64 resiz- 1340 images for | Generic Fourier | Neural Network classification accuracy is
ing and gray- | drones and birds Descriptor (GFD) 85.3%
level conver-
sion

frame with the aim to localize the target in the frame. Finally,
fully connected layers are used to generate the confidence
scores of each object. It should be mentioned that the authors
did not train the whole system from scratch. Rather, they
followed a fine tuning approach using AlexNet and VGG16.
The evaluation of the system was done using two datasets
for UAV and birds. The results reported in terms of ROC
curves demonstrate that the system outperforms the previous
solutions.

Aker etal. proposed an extension of an existing CNN model
namely, YOLO, which is a single shot object detector [30].
The new version, YOLOV2, uses a fine tuning technique to
train a regerssor for the UAV detection. They have created an
artificial dataset to evaluate their system where they attained
approximately equal precision and recall values of 0.9.

Saqib et al. [31] investigated different pre-trained CNN
models including Zeiler and Fergus (ZF) and VGG16 coupled
with the Faster R-CNN model for the detection of drones
from video data. They used the VGG16 and the ZF model
as a transfer learning to compensate for the lack of suffi-
cient dataset and to ensure the convergence during training
for the model. The training was done with Nvidia Quadro
P6000 GPU where the learning rate was fixed to 0.0001 with
a batch size of 64. They used a Bird-Vs-Drone dataset which
consists of 5 MPEG4-coded videos recorded in different
sessions with a total of 2727 frames and a resolution of
1920 x 1080 pixels. The results show that VGG16 coupled
with the Faster R-CNN demonstrates the best performance
with an average precision of 0.66.
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Peng et al. in [32] addressed the issue of limited visual
data for UAVs by creating their own artificial images. They
used Physically Based Rendering Toolkit (PBRT) to gener-
ate photorealistic UAV images. The rendered images con-
sist of different positions, orientations, camera specifications,
background, and post processing methods. After creating the
images, the Faster R-CNN network was fine-tuned using the
weights from ResNet-101 model for UAV detection. The size
of the dataset created is 60480 UAV images where the average
precision achieved was 80.69%.

Lee et al. proposed detecting drones from a camera
mounted on a different drone [33]. The system relies on Haar
feature cascade classifier to detect the drone in the images and
a simple developed CNN network for identifying the drone
models. The CNN model consists of two convolution layers
and two fully connected layers with 30% dropout used in the
latter. Adam optimizer was employed to train the network for
the identification phase. The dataset was collected manually
from Google images, where the total number of drone image
is 7000. This includes distorted drone images and 3019 non-
drone images. The detection accuracy attained is around 89%
while the identification accuracy is 91.6%.

B. VISUAL DETECTION WITH HANDCRAFTED FEATURES

Boddhu et al. in [34] proposed employing an intelligent
smart-phone application to obtain drone attributes such as
speed and height. This is done by integrating a composable
sensor cloud and an intelligent probabilistic model. The pro-
posed model utilizes multiple geographical distributed data

VOLUME 7, 2019



B. Taha, A. Shoufan: ML-Based Drone Detection and Classification: State-of-the-Art in Research

IEEE Access

points for the prediction and estimation of flight path. The
results demonstrate the capability of such system to per-
form the specified tasks; however, more improvements are
required.

Unlu et al. developed vision-based features namely
Generic Fourier Descriptor (GFD) which are robust against
translation and rotation changes [35]. These features are used
to detect drones from birds by training a neural network
model. They perform the training and testing on their own
collected dataset using 5-folds cross validation. The dataset
consisted of 1340 images (410 for drone and 930 for bird).
The attained classification accuracy is 85.3% with the origi-
nal dataset and 93.10% with a subset of the dataset consisting
of only 162 selected images.

C. DISCUSSION

Drone detection and classification based on visual data is
still in its infancy. Most of the work was done using learned
features by utilizing different deep learning models and
approaches. However, it is known that deep learning methods
are data driven and require huge labeled datasets to generate
robust models. The lack of publicly available datasets is
a hard constraint on the research in this area. To mitigate
this situation, some authors made use of transfer learning
rather than starting from scratch. Other research work such
as [32] employed dedicated software to generate synthetic
images to increase the number of samples in the dataset.
Other techniques for enlarging the dataset that could be used
in the future include data augmentation and the utilization
of generative models such as generative adversarial network
(GAN) for creating artificial data which are similar to the
original real data. Most of the research in visual drone
detection fails to specify the type of the acquisition device,
the drone type, the detection range, and the dataset used in
their research. These details are key to validate the work and
make it comparable with related literature. Apart from these
machine learning aspects, visual detection suffers from its
reliance on the presence of a line of sight (LOS) between
the drone and the camera system which might mitigate the
effectiveness of this modality.

IV. ML-BASED DRONE CLASSIFICATION

BY ACOUSTIC DATA

A flying drone produces a humming sound that can be
captured by acoustic sensors and analyzed using different
methods to identify drone-specific audio fingerprint. An ideal
outcome would be to determine the drone type or even the
individual drone by its audio fingerprint. In general, acoustic
drone detection relies either on correlation/autocorrelation
methods or on machine learning classification, see Fig. 2.
In this paper we focus on the latter.

Nijim and Mantrawadi [36] presented a feasibility study
for drone detection from its sound. They relied on Hidden
Markov Model for the detection of DJI Phantom 3 and FPV
250 drones.
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FIGURE 2. Classification of solutions on acoustic drone detection and
tracking.

Jeon et al. proposed using Gaussian Mixture Model
(GMM), CNN, and RNN classification to detect the existence
of a drone in the range of 150 meters [37]. The authors
addressed the lack of acoustic data of flying drone and pro-
posed building datasets by augmenting different environmen-
tal sounds with drone sounds. An interesting aspect of their
work is using different drones for training and testing the
classifiers. They found out that the RNN classifier performed
the best (80%), followed by GMM classifier (68%) followed
by CNN classifier (58%). The performance of all classifiers,
however, drops significantly with unseen data.

Bernardini et al. used multi class SVM classifier to identify
the drone sound compared to other signals such as crowd
and nature daytime [38]. The work involved collecting web
audio data using an audio file scraper with a focus on files
with sampling rates higher than 48 kHz. The dataset included
five 70-min sounds from flying drones, nature daytime, street
with traffic, train passing, and crowd. Then the collected data
were segmented into 5-second segments for midterm analysis
and 20-msec sub-frames for short-term analysis; all with
overlapping segments of 10ms. The authors extracted short-
time energy, temporal centroid, Zero Crossing Rate (ZCR),
spectral centroid, spectral roll-off, Mel Frequency Cepstral
Coefficients (MFCCs) as features from the pre-processed
signals to train a SVM classifier. The results for detecting the
drone sound against the other classes in terms of accuracy
15 96.4%.

Kim et al. [39] proposed using spectrum images from the
sound signals coupled with correlations and k-nearest neigh-
bor (KNN) classifier methods to detect DJI Phantom 1 and 2.
Different sound signals were recorded from the drones indoor
(without propellers) and outdoor as well as from an outdoor
environment without drones in addition to environmental
sound from a YouTube video. All recorded sounds were
segmented into 1 second frames. 83% accuracy was achieved
with image correlation and 61% with the KNN classifier.

Yue et al. developed a distributed system to detect the pres-
ence and approximate the location of drones utilizing acoustic
wireless sensor network (WSN) with ML [40]. By performing
several experiments, the authors found that the power spec-
trum density (PSD) of the drone sound is different from other
natural sounds. The PSD is obtained using Fast Fourier Trans-
form (FFT) after prepossessing the drone sound with a low
pass filter (LPF) with a cutoff frequency at 15 kHz. The exper-
imentation showed that filtering at this cutoff frequency could
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eliminate unwanted noise associated with the acoustic signal.
After applying PCA as a dimensionality reduction technique,
a SVM classifier was trained to identify the drone sound
from other sounds (rain, natural background). The dataset
was collected from different categories with 20000 samples
each. Then 2000 tuples were selected at random and divided
into 50, 30 and 20 percent which were used for training,
testing and creating overlapping signals for additional testing.
Additional Gaussian noise was added for the testing scenario
with a signal to interference ratio (SIR) higher than of 10dB.
The result demonstrate that the drones were detected success-
fully with this level of introduced SIR or higher.

Seo et al. proposed to use the normalized STFT to create
2D images from drones’ acoustic signals [41]. The sound
signal was first divided to 20-ms segments with 50% overlap-
ping. Then the normalized STFT was extracted and used as an
input for a designed CNN network. The dataset consisted of
experimental measurements taken outdoor with hovering DJI
Phantom 3 and Phantom 4. It contained 68931 sound frames
from the drone and 41958 non-drone frames. The testing was
done on this dataset after adding Additive white Gaussian
noise (AWGN). The best result was found while training the
CNN network with 100-epoch and low SNR in which the
detection rate (DR) is 98.97% and the false alarm rate (FAR)
is 1.28.

Matson et al. proposed to extract the MFCCs and the
STFT features from an optimized multiple acoustic nodes
system [42]. The features were then employed to train two
types of supervised classifiers namely SVM and CNN. For
the later, the audio signal was represented in 2D images to be
fed to the CNN model. This model consisted of two convolu-
tion layers and two FC layers along with pooling and dropout
layers. The dataset was collected for two different cases.
In the first case, the drone was flying from 0 to 10 m above the
acoustic system (which consisted of 6 nodes) at a maximum
range of 20m. In the other case, the data was collected without
the presence of the drone where the audio recorded was
the environmental noise only. One type of drone was tested
namely the Parrot AR Drone 2.0. Several experiments were
conducted and the results demonstrate that the STFT features
coupled with SVM provided the best performance which was
reported in terms of color maps.

A. DISCUSSION

From Table 4 and the descriptions of the research works we
can see that acoustic drone detection using machine learning
is still an emerging area of research. Most related work dealt
with drone detection and only a few papers used micro-
phone arrays for localization are available. Like with radar
and visual detection, a comparative evaluation of different
contributions is very difficult, because the authors used dif-
ferent drones, different ranges, different features, different
classification/correlation methods, and different performance
metrics. This research is especially hindered by the lack
of benchmark data with different types of drones flying at
different distances and speeds under different environmental
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noise conditions. Proposed acoustic detectors have at most
150m detection range. Apart from optimizing the detec-
tor with two distances proposed by Hauzenberger and
Ohlsson [43], an in-depth investigation of the impact of range
on the detection performance is missing in all reviewed
papers.

V. ML-BASED DRONE CLASSIFICATION

BY RADIO FREQUENCY

In general, UAVs contain an on board transmitter that perform
data exchange to control and operate the UAV using an RF
signal. Usually, this is in the 2.4 GHz industrial, scientific,
and medical radio band (ISM band). With this prior knowl-
edge, the drones can be detected and localized from a wide
distance. On top of this advantage of using the RF signal as a
detection mechanism for drones, it is also possible to locate
the controller used to send the signal which allows us to locate
the source of the signal.

Shi et al. proposed to use Hash Fingerprint features
based on the distance-based support vector data description
(SVDD) for the detection of slow, small unmanned aerial
vehicles (LSSUAVs) that operate at the 2.4 GHz frequency
band [44]. The system initiates by detecting the start point
of the original signal, generating envelop signals and then
extracting the envelops from the signals. Following that,
hash fingerprint is generated as feature to train a SVDD.
The authors have collected their own dataset to evaluate the
system. The results demonstrate that the system is capable of
detecting and recognizing LSSUAV signals in an indoor envi-
ronment. However, when an additive white Gaussian noise is
added the system performance deteriorates.

Nguyen et al. investigated a system that consists of
different algorithms to detect drones from its physical
attributes [45]. The system takes the drones RF signature
based on two key features which are body shifting caused
by the spinning propellers and body vibration from the nav-
igation and environmental factors. The former was detected
using wavelet analysis while the latter utilized the dominant
frequency component that has a maximum PSD through the
STFT. The evaluation was done for two different types of
drones namely Parrot Bebop and DJI Phantom. Two exper-
iments were performed to characterize the movement of the
drone using inertial measurement unit (IMU) and wireless
sensing hardware. The maximum tested range was 600 m.
The results illustrate the system accuracy of 84.9%, a preci-
sion of 81.5% and a recall of 90.3%. However, when the range
was reduced to 10 m the system performance increased to
reach 96.5% (accuracy), 95.9% (precision) and 97% (recall).

Ezuma et al. developed a system that convert the raw
RF signals into frames in the wavelet domain, as a prepro-
cessing step, to reduce the size of the data and remove any
bias in the signal [46]. A Markov model was employed to
describe the presence or absence of a UAV in the frame.
A naive Bayes classifier was then used for detecting the UAVs
from the frames. To classify the different types of UAVs,
the energy transient signal was used since it is more robust
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TABLE 4. Summary of related work on acoustic methods for drone detection and tracking.

Work | Drone Max. Acquisition Method Pre-processing | Dataset Features Detection Results
Range Method
[36] DJI NS NS NS NS NS HMM Very preliminary results
Phantom 3 that show the feasibility
and FPV of detection.
250
[37] DIJI 150 m Augmenting Frequencies 9556-sec MFCCs Binary Best accuracy  with
Phantom background  sound | below 1.5 kHz | augmented classifi- RNN (80%) followed by
3 and 4, (recorded in public) | are filtered. | sound cation: GMM (68%) followed
DIJI Inspire, with drone sounds | Window length | (training), 151 GMM, by CNN (58%). Low
3RD Solo (recorded in a quiet | 40 ms (GMM) | sec  (testing), CNN, performance with
outdoor place) and 240 ms | 1557 sec RNN unseen data.
(CNN, RNN) (unseen data)
[38] NS NS Web data collected | Divide the | Five 70-min | Short-time Multi-class Classification accuracy
from  audio file | sound into | sounds from the | energy, SVM of 96.4%
scraper segments of | classes temporal
5-second and centroid,
20-ms with ZCR, spectral
overlapping of centroid,
10ms spectral  roll-
off, MFCCs
[39] DIJI NS Drone sound | 1-second NS Spectrum Correlation | 83% accuracy in image
Phantom recording indoor | frames image and KNN | correlation 61% in KNN
1 and (without  propellers) and FFT | classifier classification
Phantom 2 and outdoor. amplitude
Environmental sound spectrum.
recording outdoor
without drone.
Environmental sound
from a YouTube video
[41] DIJI - Yeti Pro microphone Sound segmen- | 68931 sound | Normalized CNN DR is 98.97% and FAR
Phantom tation to 20ms | frames for | STFT is 1.28 with 100-epoch
3 and with 50% drones and and low SNR environ-
Phantom 4 41958  sound ment
frames for
non-drones
others
[40] - - - LPF and PCA 2000 tuples | PSD SVM Clas- | Best TPR and FNR when
sampled for sifier SIR is greater than 10dB.
drone and non
drone  sounds
divided 50%,
30% and 20%
[42] Parrot AR | 75m Multiple acoustic | - Drone and | MFCCs, SVM Clas- | STFT-SVM show best
Drone 2.0 nodes system environment STFT sifier, CNN | detection accuracy in
noise audio model terms of color map.
signals

to different noises and easier to modulate. For this phase,
the distribution of the energy time frequency was employed
to generate a normalized energy trajectory of the signal. After
that, the beginning and ending points of the energy transient
were identified by finding sudden instantaneous changes
in the trajectory. After that, some statistical features were
extracted namely skewness, variance, entropy and kurtosis
where then the Neighborhood component analysis (NCA)
was implemented on the computed features to reduce their
number and select the most robust ones. Finally, different
classifiers were investigated yet the kNN achieved the best
classification performance. The evaluation process was done
on a dataset consisting of 100 RF signals coming from 14 dif-
ferent UAV controllers. The training and testing was done on
partitioning basis where 80% of the data used for training and
20% for testing. The results demonstrate an average detection
accuracy of 96.3%. The authors also reported results for
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different SNR levels whereas an SNR less than 10dB gave
bad performance while an SNR of 12dB or higher attained an
accuracy of 100%.

A. DISCUSSION

The RF signal is an important characteristic of drones which
can be employed for the purpose of detection and localiza-
tion. However, RF based solutions fail when the drone is
operated in a partially or fully autonomous mode. In such
cases, the drone usually flies using preprogrammed GPS way
points with limited RF-based communication with the ground
station. Additionally, the deployment of machine leaning
techniques for this type of data is new and the literature
lacks a comprehensive public dataset for RF signals which
could be used for validation and comparison. Furthermore,
all the existing methods have limited performance for low
signal to noise ratios. Finally, most related work relied on
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TABLE 5. Summary of related work on RF methods for drone detection and tracking.

Work Drone Max. Acquisition Method Pre-processing | Dataset Features Detection Results
Range Method
[44] LSSUAVs NS NS Generation of | NS Hash SVDD Secssful detection in
envelop signal fingerprint indoor environment in
2.4GHz band without
noise
[45] Parrot 600m NS NS NS Body shifting, | Wavelet analy- | Accuracy of 96.5%,
Bebop, body vibration sis and maxi- | precision of 95.9%
and DIJI mum PSD and recall of 97% for
Phantom 10m distance
[46] Controller NS 6-GHz bandwidth | Data reduction 100 RF | Skewness, SVM, DA, | 96.3% detection accu-
for different Keysight MSOS604A | and bias | signals variance, ANN and KNN | racy with KNN clas-
UAVs oscilloscope with | removal from 14 | entropy and | classifiers sifier and good SNR
maximum sampling | using wavelet | UAV kurtosis  with value.
frequency of 20 Gsa/s, | transform controllers NCA
2 dBi omnidirectional
antenna, and 24 dBi
Wi-Fi grid antenna

indoor experiments which do not resemble real application
scenarios in which the RF signal might be deteriorated,
jammed, or interfered.

VI. CONCLUSION

In their “Clarity From Above” report, PwC predicted that the
global market for commercial drones will grow to more than
127 billion dollars with key applications in infrastructure,
agriculture, transport, security, media, insurance, telecommu-
nication, and mining [47]. However, drone operation is asso-
ciated with high risk for people and assets. Authorities are
working hard toward regulations for drone operation so that
less disruptions are recorded. In some cases, these regulations
are also supported by ICT solutions to improve the autho-
rization and notification process such as the Low Altitude
Authorization and Notification Capability (LAANC) by the
USA Federal Aviation Administration (FAA) [48].

Rules and supportive technologies are good for those who
follow them but not for careless or malicious users. Systems
which are able to keep overview of what is going on are
required in the low-altitude airspace, to run a continuous risk
assessment, and to interdict in the case of violation. A major
task towards this goal is being able to detect, classify, and
identify drones in the sky. The expected growth in the drone
market and the associated increase in the number of drones in
the sky will challenge this task and question the efficiency of
human-centered solutions. Machine learning can play a key
role in this respect as was shown in this review. The digital
processing of different modalities has made machine learning
applicable in every detection system as long as the system
operator is ready to pay attention to data.

Issues related to the quantity and quality of data in machine
learning are well known. But in the case of drone detection
and classification, these issues can be described as urgent
due to the high business pressure on the one hand and the
high risk of operation on the other. Collaborative efforts to
build publicly available datasets are indispensable to help
researchers and developers build robust classification models
for drones based on all modalities.
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The risk associated with drone operation strongly depends
on the drone location and how far from critical areas it
flies. Therefore, ranging should actually be a very important
objective. However, as shown in the review researchers have
focused on the detection performance and—in the best case—
information was given about the drone distance at which the
drone was detected. No study was presented which investi-
gated the classification performance as a function of drone
distance not to speak of determining the range using regres-
sion models. This can be a very interesting research area in
the future.

As discussed in the introduction (see Table 1) no single
modality is perfect for drone detection and classification.
Therefore, several authors suggested bi-modal and multi-
modal systems with promising results [49], [50]. Regardless
of the used modalities, all proposed solutions go from the
perspective of a statically located detection system. In modern
cities, this model is very limited because the detection
capability can be deteriorated by many obstacles block-
ing the view, the RF and the radar signal as well as by
high noise levels making acoustic detection more difficult.
Distributed and collaborative detection systems using wide-
area solutions or city-wide surveillance sensors can present
a very useful way for the problem of drone detection and
classification.
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