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ABSTRACT As a frontier research topic in the field of scientific visualization, trajectory data visualization
extracts valuable patterns and knowledge from trajectory data for decision support via spatiotemporal
trajectory visualization techniques. We propose the concept of multivariate trajectory data and interpret
two categories of attributes that are based on geographical space and abstract space. Properly analyzing
multivariate trajectory data depends on many factors such as visualization task and data sparsity. Therefore,
we generalize rich interactions to explore the evolution of trajectory events and transform the issue into a
more intelligibly perceptual task, which derives our discussion regarding advantages and limitations of the
analytical methods. This review endeavors to provide a quick and thorough cognition and comprehension
with regard to fundamental features and numerous outcomes in visual analytics for trajectory data, seeks
to promote comparisons and criticisms about the descriptive framework for multivariate spatiotemporal
trajectory data visualization, and aims to encourage the exploration of emerging methods and techniques.

INDEX TERMS Visualization, trajectory data, spatiotemporal data, attribute, multivariate trajectory.

I. INTRODUCTION
In the context of big data, the analysis of trajectory data,
which can involve both dimensional and attribute with large
amounts and high variability, is complicated. After years of
research, the latest advances in trajectory data visualization
techniques have created rich visual representations for dif-
ferent variables in spatiotemporal data, which has substantial
value for comprehending dynamically evolutionary move-
ment behaviors of objects and predicting their future mobile
trends. However, the depiction of variable visualization is
more diverse than dimensional visualization; understanding
relevant analysis studies is therefore more challenging, which
hinders the design potential for exploring multivariate spa-
tiotemporal data visualizations. Thus, comprehensively sort-
ing and analyzing the basic features and numerous outputs of
these studies is worthwhile.
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Our previous study has elaborated visualization methods
and techniques of dimensional information based on data
types [1]. As a supplement of the series, this paper concen-
trates on visual analytics of variables based on data envi-
ronment. The objectives are therefore 1) to formulate an
explicit conceptual framework, 2) to understand how these
visual analytics are conceptually related, and 3) to organize
the visualization forms of these variables, which can serve
as the foundation of normative and evaluative work. In other
words, our analysis is descriptively meaningful for better
comprehending the advantages and disadvantages of different
visualizations in terms of tasks and data and conceptualizing
research issues in empirical research.

II. CONCEPTUAL FRAMEWORK
Trajectory data typically consist of a vast amount of high-
dimensional or spatiotemporal vector data that consists of two
parts—geolocations and attributes—where geospatial data
represent the locations of spatial elements and attribute data
describe their features. The difference in the correspondence
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FIGURE 1. Conceptual comparison among multidimensional, multivariate, multivalue and multiscale. (a) Multidimensional: 0D, 1D, 2D and 3D;
(b) multivariate: Scalar, 2-tuple and n-tuple; (c) multivalue: Scalar, 2-tuple and n-tuple; (d) multiscale: High resolution and low resolution.

between the two parts determines the data structures and
storage methods of the vector data. Compared with raster
data models, these vector models have complex characteris-
tics. In the field of visualization, concepts and terms, such
as multidimensional, multivariate, multivalue, multimodal,
multichannel, are usuallymisemployed. ‘‘Multidimensional’’
indicates the dimensionality of independent variables in a
physical space and focuses on the expression of spatial and
temporal concepts. ‘‘Multivariate’’ is used to express the
number of variables and attributes and represents the quantity
of information and attributes involved in the data. ‘‘Multi-
value’’ can also represent the information expressed by data
but provides a different definition from ‘‘multivariate’’: it
emphasizes the number of values other than attributes or
variables. ‘‘Multisource’’, ‘‘multimodal’’ and ‘‘multichan-
nel’’ emphasize the differences among data acquisition man-
ners and their corresponding data structures and magnitudes.
‘‘Multipass’’ indicates that being subject to data quality,
the data acquisition is typically not a one-time result but
requires resampling erroneous data. ‘‘Multiscale’’ refers to
the difference in the visualization results when observing
spatial entities in a hierarchy of scales. ‘‘Multicharacteristic’’
indicates that trajectory data conform to the ‘‘3V’’ character-
istics of big data (i.e., volume, velocity and variety) due to its
rich data sources and diverse data structures. Fig. 1 illustrates
the concepts of and distinctions among multidimensional,
multivariate, multivalue and multiscale.

For example, if a set of trajectory data includes three-
dimensional geospatial data and four variables of speed,
acceleration, tire temperature and tire pressure, the data
are referred to as three-dimensional four-variable trajectory
data. If another temporal dimension is involved, the data are
referred to as four-dimensional four-variable trajectory data.
If the source data are acquired by multiple methods, includ-
ing satellite monitoring, ground monitoring and numerical
simulation, the data are referred to as multimodal or multi-
channel four-dimensional four-variable trajectory data. This
paper considers 3D/4D trajectory data that contain at least
one variable as the major research target, which we will refer
to as trajectory data. Due to limitations of acquisition and
processing methods, the major issues and challenges of its
visualization are addressing multivariate, type-compositing,
internally complex and intertwined data characteristics, and
devising an effective visual encoding.

III. VISUAL REPRESENTATION
In the past few decades, many research achievements
of trajectory data visual analytics can be divided into

visualizations based on geographical space or abstract space
according to their visual backgrounds. The former arranges
data by geolocation using geographical space (e.g., maps),
while the latter encodes the data into abstract space (e.g.,
parallel coordinates and high-dimensional projection). Due
to different characteristics of the two types of visualizations,
their application scenarios also differ. The geospatial-based
visual designs emphasize the utilization of absolute geo-
graphic locations and are tightly coupled in geographical
space. With geospatial as the exploring environment, users
can quickly locate the spatial locations of trajectory data,
and temporal and attribute feature distributions are intuitively
displayed. However, due to these constraints in geospatial
relations, the nonspatial correlated visualizations of temporal
and attribute features in a geospatial space are also con-
strained. For example, visualizing time-sequential trajectory
attributes among a large quantity of locations on a map can
cause visual clutter problems, which increases the difficulty
of devising a visualization approach. Conversely, without
spatial constraints, these trajectory data visualizations focus
on other feature analyses that combine multiple features in
a loosely coupled manner, which enables a better flexibility
in visualizing temporal features and attribute features in an
abstract space. For example, when visualizing spatial features
of trajectory data using spatial visual query languages in
an abstract space, the relative spatial relations implied in
spatial attributes can be described. However, if visualizing
absolute geolocations is required, additional geospatial win-
dows can be employed as assistance. Therefore, compared
with geospatial-based visualizations, these designs have less
difficulty and stronger expandability but poorer integration.
Fig. 2 illustrates representations of various features based on
geographical space and abstract space.

Trajectory visualization presents fundamental dimensional
information and additional variable information of spa-
tiotemporal objects. However, these two types of infor-
mation are typically combined together rather than exist
separately. Therefore, visualizations that illustrate variables
are inevitably related to dimensions, and direct visualization
and indirect visualization for attribute information of trajec-
tory data are both commonly used. In this case, the core of
spatial and temporal expression is to provide users with a
visual environment related to the variable information.

A. TRAJECTORY-DATA VISUALIZATION BASED ON
GEOGRAPHICAL SPACE
Temporality is the basic characteristic of a narrative, while
events take place in a certain space and attributes are

VOLUME 7, 2019 143647



J. He et al.: Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated

FIGURE 2. Different design models for various features of trajectory data: Mappings of spatial features (left), temporal features (middle) and attribute
features (right) in (a) geographical space and (b) abstract space.

FIGURE 3. Displaying spatiotemporal information of trajectory data based on geospatial visualization [2]–[4].

correlated with both time and space. As a classic tool for
displaying spatiotemporal data, space-time cube (STC) visu-
ally displays time, space and attributes in a three-dimensional
form to observe motions, halts, encounters and separations of
individual trajectories. Fig. 3a provides a visualization exam-
ple of the Napoleon’s Russian campaign using a space-time
cube [2]. When depicting the Ursus arctos geophylogeny,
Kidd [3] established a STC-resemble model to describe bio-
logical diversity and evolutionary process of each branch
(see Fig. 3b). Additionally, most variable-based visual ana-
lytics systems combine geospatial visualizations and tem-
poral visualizations, starting with an overview of geospatial
data at a particular time, where users can extract informa-
tion of interest via a linked view. However, this exploration
should provide many snapshots of geospatial data and require
switching from a spatial view to a temporal view, and vice
versa. Thudt et al. [4] proposed a concept of map-timeline,
which regards a space-time path as the narrative thread that
is linked to other types of event elements to enhance attribute
data (see Fig. 3c); such problem is therefore avoided.

1) SPATIAL VISUALIZATION
The conditions of geospatial-based visualizations of trajec-
tory spatial features, such as location, area size and spatial
relations, can be directly specified in a map. The coordinate
system is generally used to describe the spatial position. The
shape features are described by the size and spatial dimen-
sion of an object (e.g., using azimuth or directional relations
to describe the relative orientation between two entities);
polygons are shape descriptions of the objects, where points,
lines and planes represent spatial dimensions; and topological

relations describe relationships with other spatial objects such
as contains, meet, cover, overlap and disjoint [5]. Spatial
visualization can be divided into point-, line- and region-
based visualization.

Point-based visualizations are the most direct type of visu-
alizations for presenting and analyzing geolocations. These
displays place trajectory samples into a spatial context as
individual discrete points, each of which indicates a target or
event, and encode related variables with visual channels of
points. For example, in the traffic domain, Kristian et al. [6]
designed a Trains of Data project that denotes each train as a
mobile point running on a 2D map (see Fig. 4a). This type of
visualization is particularly promising in the distribution of
pick-up and drop-off events in trajectories through transport
hubs. Fig. 4b shows the location of the Pudong International
Airport [7], where orange dots and blue dots denote pick-up
points and drop-off points, respectively. Subsequently, more
scholars have researched the dynamic visualizations of loca-
tional information. Fig. 4c shows the participant-location
animation based on the wireless network record of the venue
created by the OpenDataCity [8]. This animated approach has
strengthswith regard to displaying data and verifying analysis
results but is typically inadequate for comparative analysis.

As positioning techniques advance, discrete sample points
can be converted to a continuous form. Line-based visual-
izations serve to present specified paths, including vehicle
trajectories in the road network (Fig. 5a [9]), vessel trajecto-
ries (Fig. 5b [10]), marine-life trajectories (Fig. 5c [11]), and
human trajectories. These visualization methods can glob-
ally or locally encode related variables with visual channels,
which facilitate the depiction of spatial patterns of these
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FIGURE 4. Geospatial-based point visualizations presenting spatial information in trajectory data [6]–[8].

FIGURE 5. Geospatial-based line visualizations that present spatial information in trajectory data [9]–[11], [13].

FIGURE 6. Geospatial-based region visualizations that present spatial information in trajectory data [14], [15].

trajectories. Clustering algorithms function well in loading
large amounts of trajectory data; they can facilitate statistics
and display macro information while preventing data loss and
hence provide an applicable auxiliary for line-based visual-
ization of trajectory data. Rinzivillo et al. [12] introduced
a progressive-clustering method for visualizing the geome-
try of trajectory paths. In the vessel trajectory visualization
in Fig. 5d, numerous vessel trajectories are clustered into and
represented as various colored lines [13].

Region-based visualization is typically employed to
encode related variables with aggregated visual channels
according to predetermined spatial partitioning. Flow maps
are a classic approach to visualizing interregional flows. For
example, Guo and Zhu [14] proposed a novel flow-map
method to demonstrate smoothed flows ofU.S.migration (see
Fig. 6a). Numerous other visualizations also exist in addition

to flow maps. In the field of aviation, for example, ‘‘spatial
pattern’’ can refer to the locations of regulatory events or
affected flights. Fig. 6b shows a flight map that represents the
spatial distribution of unregulated flights and interregional
aggregated flows [15].More robust visualizations are enabled
with the auxiliary of other means. In the maritime field,
detecting anomalous near-location events supports the pre-
diction of traffic conditions. A density map of the extracted
events is shown in Fig. 6c, which reveals spatial-density
patterns of extracted regional trajectories [15].

Point-based visualizations exhibit advantages that enable
users to clearly observe individual objects and events in the
trajectory data and explore the variable information of objects
of interest in target areas; however, these visualizations have
poor efficiency in continuous-data display. As the number of
objects or events grows, severe visual cluttering can result
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FIGURE 7. Geospatial-based visualizations that present temporal information in trajectory data [16], [17].

in a predicament of obscure visualization. Line-based visual-
izations perform excellently in addressing trajectory-analysis
tasks, enable intuitive displays of trajectory-flow distribution,
and lend clarity to the attribute expression, especially when
visualizing trajectory origin-destination (OD) patterns is
required. However, as the trajectory count increases, the clut-
tering problem becomes severe. Although edge bundling can
mitigate clutters, it conceals the real link directions between
two positions. Density maps can also be an effective solution
compared with edge bundling, which can be used to display
massive trajectories without distorting them. However, this
advantage is exhibited in macro trajectory-data analysis but
does not preserve any information about specific trajectories;
thus, a comparison between two trajectories is impossible.
Instead, area-based visualizations can reduce the complexity
of the visualization results. Region-based visualizations play
a proper role in discovering macro patterns for individual
regions. However, these visualizations are not sufficient for
analyzing micro patterns, such as speed patterns regarding
individual vehicles. Therefore, this technique generally com-
bines other techniques or merges various scales of informa-
tion to support a comprehensive analysis with different levels
of detail.

2) TEMPORAL VISUALIZATION
2D maps have always been the primary approach for trajec-
tory visualizations, which are typically divided into four types
of representations: 1) single 2D map, 2) multiple 2D maps
and their linked views, 3) map animation, and 4) 2D display
of abstract spatial information. A series of excellent temporal
representations integrated with 2D spatial information exists,
such as a static 2Dmap that serves to display trajectories with
different timestamps, a 2D map that simultaneously displays
limited amounts of tracking data for visualizing temporal
data, and a separated timeline view for temporal information
that is linked to a 2Dfloor planwith embedded trace represen-
tation. The expression of this kind of information can also be

extended to a 3D form. Unlike geospatial information, time is
one-dimensional and linear. Showing temporal information in
a geographical space is not an easy task, which, however, does
not burden the information representation of time-varying
attributes. The space-time cube that we previously discussed
enables visualizations of trajectory temporal data in a 2.5D or
3D spatiotemporal medium. Road segments in the trajectories
may also involve variables of different points in time. Fig. 7a
shows ten trajectories of OD (origin-destination) pairs during
three different periods in Shenzhen, China, where different
colors on particular road segments over a particular time
period indicate that trajectories with different OD pairs have
passed through this segment [16]. The visualization of tempo-
ral features is closely related to the encoding of time in geo-
graphical space. Temporal perspective, which is proposed by
Abbott [17], transforms the spatial reference frame based on a
geographical range into a temporal reference frame measured
by time. In Fig. 7b, compared to the spatial-perspective view
(top), the temporal-perspective view (below) depicts spatial
accessibility and variable rendering in an explicit manner.

3) ATTRIBUTE VISUALIZATION
Attribute visualization reflects the changing patterns over
time with respect to nonspatial information of research
objects, where specific attribute features are typically
encoded by visual elements. For example, Fig. 8a shows
the glyph design by Scheepens et al. [18] that denotes
information about vessel types and respective quantities.
In addition to explicit attributes, such as visual encodings
and visual mappings, implicit attributes also exist, such as
the trajectory shape as a continuous geometric attribute fea-
ture. Guo et al. [19] designed TripVista for these attribute
characteristics, which filters intersection-traffic trajectories
to derive shape-resembled trajectories (see Fig. 8b).

In geographical space, attribute features are broad in scope,
where different types of spatial entities correspond certain
attribute fields for description. For example, the TWatcher
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FIGURE 8. Geospatial-based visualizations that present attribute information in trajectory data [18]–[21].

system, which was developed by Pu et al. [20], maps the
vehicle ID, average speed and on/off-taxi ID of taxis through
spiral-shaped visual fingerprints to explore urban hotspots
(see Fig. 8c). In terms of visualizing attribute-value varia-
tions, visualizations for specific requirements have different
results. Andrienko and Andrienko [21] proposed a mosaic
diagram to visualize a set of vehicle-collective movements,
of which various attributes were referred to as ‘‘traffic situa-
tion’’. The meaning of mosaics differs in different contexts;
in Fig. 8d, for example, their colors denote speed. How-
ever, traditional visualization methods often fail to provide a
comprehensive display if the data exhibit complex attributes;
rather, the application of diversified visualization methods
facilitates the discovery of potential correlations and patterns
in data.

The similarity of the above-mentioned studies concentrates
on the attribute characteristics involved in the trajectories.
How to integrate multiple attributes into one view to reveal
the connection between these attributes and how to address
the visual-cluttering problem caused by massive trajectory
data are challenging tasks in trajectory visualization. The
related techniques of geospatial-based trajectory-attribute
visualization are applicable to low-dimensional datasets, and
their visualization results are typically colorful and intuitive,
exhibiting excellent performance with special dimensional
attribute. However, a disadvantage of these techniques is
insufficient adaptability. For example, if data attributes are
rather dense, the visual channel-based method is vulnerable
to occlusion problems. A poor response can cause visual
cluttering or even mislead users with erroneous data observa-
tions and analysis results. Data fusion and hybrid rendering
in trajectory-data visualization based on abstract space can
exhibit excellent expression effects at this point.

B. TRAJECTORY-DATA VISUALIZATION BASED ON
ABSTRACT SPACE
The previously mentioned trajectory visualization methods
can preserve the integrity of the original spatial structure,
while adding extra time and attributes to these visualizations
can cause cluttering. When trajectory data are visualized in
an abstract space, the expression of the spatial features is
weakened to a certain extent without constraints from abso-
lute geographical locations, while the temporal features and
attribute features are more freely expressed.

Characterizing spatiotemporal information and attribute
information in abstract space requires encoding positional
information in geographical space into a time-dependent,
abstract visualization skeleton. During this procedure,
the relationship between dimensions and variables that cannot
be easily displayed on a given geospatial map, especially
for numerous entities, becomes more explicit in an abstract
space by mapping the trajectory from absolute coordinates
to relative coordinates. Fig. 9a shows a flight route over
France and its representation in an abstract space, which
facilitates mining the eight relationships among relevant
transformed representations, namely, spatial concentration,
co-incidence, concurrence, trends, fluctuation, convergence,
meet, and divergence [22]. To an abstract extent, correlating
the spatial dependence, interaction, causality or symbiosis
between two different geospatial entities is enabled by com-
bining other interactive modes. The abstract-space system
interface by Chen et al. [23] shown in Fig. 9b visualizes
geo-tagged social-media data and the movement distribution
of its spatiotemporal information and variable information
with multilinked views. In addition, numerous spatial-flow
visualizations based on abstract-space views have been inves-
tigated to avoid flows that are displayed as intersecting lines,
such as ordered matrices [24] and exploratory visualiza-
tions [25]. A persuasive example is the OD visualization
designed by Zeng et al. [26] (see Fig. 9c). Although it can-
not preserve more spatial context, the visual-cluttering prob-
lem is avoided to some extent. However, spatial distortion
complicates the perception. The spatial pattern of the total
flows is divided into multiple position-specific patterns; thus,
an overview of spatial-flow patterns cannot be provided.

1) SPATIAL VISUALIZATION
Traditionally, trajectories can be plotted in geographical
space as straight or curved lines from the origin point
to the destination point. These trajectories can also be
spatially transformed via topological or geometric algo-
rithms and then re-rendered in other spaces. For example,
Fig. 10a shows the simulated people-evacuation trajecto-
ries after an explosion in an office building by applying
line-based visualization in geographical space (left figure)
and proximity-based visualization in abstract space (right
figure) [22]. As the amount of trajectory data grows, visual-
ization often becomes troublesome due to over-plotting and
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FIGURE 9. Visualizations based on abstract space that present spatiotemporal information in trajectory data [22], [23], [26].

FIGURE 10. Visualizations based on abstract space that present spatiotemporal information in trajectory data [22], [27]–[29].

cluttering in the 2D-map display, especially when extract-
ing beneficial and higher-level information from the original
movement data. Gupta et al. [27] proposed MovementSlicer,
a location access tool, for this issue to indicate individual
behaviors or the meetings between them (see Fig. 10b).
Furthermore, visualizations for spatial features are primar-
ily achieved via visual spatial query language in abstract
space. The spatial visual query language visualizes the spatial
relations among spatial elements and defines the locational

and topological relations among primitives, which includes
defining intertarget positional relations by gridding query
languages and quantitatively configuring spatial relations by
scroll bars (see Fig. 10c [28]). In addition to this approach,
which establishes interprimitive spatial relations by controls,
some other studies support hand-drawing input, a more nat-
ural interaction. Egenhofer [29] converted these hand-drawn
inputs (such as lines and surfaces) into the spatial relations
among the objects; as shown in Fig. 10d. Users can input
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FIGURE 11. Mappings from temporal information into visual variables [30].

their visual queries by hand drawing to visualize spatial
locations.

2) TEMPORAL VISUALIZATION
Several trajectory visualization methods are available for
mapping time into visual variables [30]; some of these appli-
cation examples are shown in Fig. 11.

Specifically, we focus on several types of representative
temporal visualizations:

1) Linear time. Linear time considers time as a linear
field from the starting point in time to the ending
point in time, which indicates how the variables change
and denotes their time-varying peaks and valleys (see
Fig. 12a [31]). Linear-time representations exhibit fine
intelligibility, but they are not a smart choice for dis-
playing multiple variables because of the cluttering
problem. In addition, linear-time representations can-
not be displayed without sufficient space and thus fail
to provide a strong overview.

2) Axis-based time. Axis-based temporal visualization
can accurately present absolute times in abstract
space, where colors and connections are two preva-
lent methods for relatively interpreting temporal data.
However, the two methods are both constrained by
limited scalability and can only function when process-
ing low amounts of time-series data. To mitigate the
spatial-information deficiency, the temporal display is
associated with the spatial display by interactive tech-
niques (see Fig. 12b [13]). However, once the quantity
of time-series data excessively increases, clutter occurs
and encompasses the features. Visualization technique
based on time-axis variants was proposed to counter
this problem (see Fig. 12c [13]).

3) Radial time. Many recursive processes, including iter-
ations of seasons, weeks, and days, exist in our natural
world. Radial times are geared to comprehend periodic

behaviors and outliers. This type of time encoding
efficiently reveals potential patterns but suffers poor
spatial utilization (see Fig. 12d [23]).

4) Other time. Currently, many trajectory visualiza-
tion systems or tools have extended visualization
approaches that effectively resolve time solutions in
abstract space to illustrate attached attributes. For
example, timetables play an important role in provid-
ing information about routes and travel plans, which
address the problem that the practical issues involving
temporal information is usually ambiguous and cannot
be fully interpreted to forms that support automatic pro-
cessing (Fig. 12e [32]). A time mosaic display conveys
contextual information about time periods via a specific
arrangement of dominant elements (Fig. 12f 33]). The
time-distance transformation technique [34] enables an
overview of individual trajectory periods with different
granularities (Fig. 12g [35]). Isotime flow maps are
typically employed for efficiently comparing temporal
information (Fig. 12h [36]).

3) ATTRIBUTE VISUALIZATION
Attribute features are typically time-varying and generally
involve time-related visualization issues. When processing
trajectory data from different sources, different scales, or dif-
ferent types, data fusion should be performed to prevent
potential misunderstanding caused by incomplete informa-
tion display and facilitate an observation with regard to
the changing process of certain data and attributes in a
context of other data and attributes and their correlation.
For example, the security monitoring system designed by
Willems et al. [37] displays the correlation between a
pair of attributes in a trajectory contingency table (mid-
dle part of Fig. 13a). When the fusion of multiple datasets
derives various types of multivariate data, a hybrid-rendering
method is generally employed considering these data
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FIGURE 12. Examples of temporal visualization [13], [23], [31]–[33], [35], [36].

characteristics. Ryoo et al. ’s visual analytics [38], which
is based on pixel grid and horizon graph, comprehensively
displays the time-varying changes of individual-athlete per-
formance and team features (see Fig. 13b). One of the appli-
cation purposes of rationally visualizing attribute features
is to implement predictive analysis. To plan and determine
flight routes, Hurter et al. [39] extended the visualization
interface of FromDaDy to facilitate the operators and ana-
lysts accurately predict the weather impact on the trajectories
(see Fig. 13c).

Trajectory data in the context of big data are likely to be
high-dimensional and require high-dimensional visualization
techniques. For example, parallel coordinates [40] is a general
high-dimensional data-visualization method that shows the
trajectory data distribution of different attributes and correla-
tions among various attributes. For example, Guo et al. [19]
applied parallel coordinates to plot multiple attributes of each
trajectory when studying intersection traffic trajectories (see
Fig. 13d). High-dimensional data can also be projected into
a low-dimensional abstract space using a dimensionality-
reduction approach. For example, Wang et al. [41] performed
high-dimensional projection according to the similarities
among graphs, extracting jam propagations of corresponding
taxis and visualizing them on the projected graphs based on
attribute features (see Fig. 13e).

However, visualizing trajectory data based on abstract
space has certain limitations: these visualizations are not
applicable to trajectory set issues that require detailed anal-
ysis and modeling. Although spatial abstraction serves as
a tool to protect locational-data privacy [42], it can affect

the accuracy of data-analysis algorithms. Even if the cir-
cumstance setting enables abstraction, the spatial scale can-
not increase unlimitedly without distorting or destroying the
curve shape that indicates spatiotemporal information and
the relationships between the trajectory flows and attributes.
Typically, increasing the spatial scale can intensify the noise
amount within the geometric primitives of abstract objects,
whose upper limit regarding size and style may depend on
the quantity and diversity of existing physical connections.

IV. VISUAL ANALYTICS
In this section, we concentrate on how to visualize individual
variable-based trajectories or an overall trajectory set from
different aspects using different methods. These tasks seem
very popular in trajectory visualization, which reflects the
core interests and requirements of scientists in this domain.
However, note that these tasks are not complete and are not
orthogonal to each other; some tasks may depend on other
tasks to some extent.

A. MICRO AND MACRO OVERVIEW: ESTABLISHING A
CONCISE VISUAL SUMMARY OF DATA ENTIRETY AND
CONVEYING OVERALL UNCERTAINTY
In most cases, moving-object-trajectory data can be ana-
lyzed on different spatial scales: from a detailed local-scale
view of all individual movements to an overall wide-range
view of a trajectory set. The interests of analysts focus on
how the origins and destinations are arranged in space and
how these routes vary over time. The analysis may empha-
size trajectory events in specific space (e.g., traffic jams or
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FIGURE 13. Visualizations based on abstract space that present attribute information in trajectory data [19], [37]–[39], [41].

FIGURE 14. Example of a micro overview of trajectory data [19].

accidents) or interactions among trajectories and the contexts.
The overview seeks to present advanced visual abstractions of
data; in terms of trajectory data, the task typically shows the
spatiotemporal conditions of either microscopic individual
trajectories or a macroscopic trajectory set.

To illustrate some of these techniques, we magnify the
example of individual movements from a micro viewpoint
that consists of time-varying location records of moving
points [43]. The advantage of concentrating on individual
trajectory data is that its fundamental nature enables the
construction of more complex trajectory events via com-
bined manners. The TripVista [19] in Fig. 14 indicates the
individual movements of vehicles and pedestrians at a road
intersection with colored polylines that represent the types or
speeds of individual moving-object movements; risk events
are discovered and extracted from the trajectories.

To support the overall-view exploration of the spatiotem-
poral trajectory dataset, aggregating information from various
trajectories is required in multiple views. The trajectory sam-
pling points can be divided into continuous aggregation and
discrete aggregation according to the sampling methods and
scales.

In terms of continuous aggregation, for example, den-
sity maps and heatmaps for aggregated mass mobility flows

serves as a general visualization method for high-hierarchy
global overview: smoothly mixing flow points with high den-
sity or heat values based on a dedicated kernel function and
creating and rendering a visual flow map that highlights the
distribution of density and heat patterns. Continuous aggrega-
tion is not limited to 3D space. Zou et al. [44] combined the
fourth dimension—4D time density into a 3D geographical
space instead of a 2D space. Fig. 15a shows their visual appli-
cation of presenting 4D temporal-density trajectories with a
real flight dataset. Furthermore, the concept of density map
and heatmap can be extended to a composite of time-varying
movement behaviors in multiple trajectories, with different
parameter settings to effectively highlight abnormal move-
ments. Itoh et al. [45] employed a 2D heatmap to obtain an
overview of the temporal variations of flows and 3D animated
ribbons. The heatmap view in Fig. 15b visualizes the day
of the Great Earthquake in Japan to discover traffic-volume
anomalies in specific routes in crowded traffic hours and
trajectory segments.

The discrete aggregation produces location-based and link-
based space-time sequences. To macroscopically compre-
hend the behaviors of the overall trajectory set in space and
time, a two-way clustering approach is preferred for observa-
tion and analysis, which involves time series that function in
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FIGURE 15. Examples of macro overviews of trajectory data [44]–[47].

FIGURE 16. Visualization solutions of visual comparison: (a) multiple coordinated views, (b) juxtaposing, (c) superimposing, (d) cutting and (e) explicit
encoding.

local time series and spatial contexts. For example, Fig. 15c
shows the clustering of flows between two spatial compart-
ments according to the similarities among flows and speeds
in a local time series, which is an application regarding the
local time series [46]. Fig. 15d clusters the hourly intervals
in a week according to the spatial-context similarities among
the flow magnitudes and average speeds, which enables the
simplification and abstraction of space and time. However,

the data typically exhibit high variability among trajecto-
ries. Guo et al. [47] modified the single-linkage clustering
method to enforce the spatial continuity of clustering: first,
the quantities of GPS points are spatially clustered to detect
potential meaningful positions, and then, the traffic flows are
extracted and plotted. This approach can extract information
from complicated links among massive locations with spatial
continuity ensured. They applied this method to a large set of
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TABLE 1. Comparison of strengths and weaknesses of visual analytics.

taxi trajectories in the working days of a week in Shenzhen,
China, as shown in Fig. 15e.

B. COMPARISON: VISUALLY RECOGNIZING
MULTIVARIATE CASES OF TRAJECTORY SETS VIA MULTIPLE
COORDINATED VIEWS, JUXTAPOSING, SUPERIMPOSING,
CUTTING AND EXPLICIT ENCODING
As a generally applied visual analytics method, visual com-
parison enables us to recognize the similarities/dissimilarities
and correlations/decorrelations among different data
instances. How can we enable an intuitive representation
of trajectory events in a visualization system to enhance
and magnify our reasoning? Many solutions for visualizing
multivariate trajectory data have been analyzed. We list these
standard techniques in common perspectives and visualize
the spatiotemporal information and attribute information
of trajectory data in a combined manner. Fig. 16 shows
combined-view models that visualize spatial, temporal and
attribute dimensions. These techniques require different
affordances to frame internal representations and a hybrid
method to construct trajectory events in spatiotemporal con-
texts. Table 1 summarizes the strengths and limitations of
these visual analytics and illustrates a specific overview for
each approach.

1) MULTIPLE COORDINATED VIEWS
There are two major challenges in trajectory data visual ana-
lytics: 1) The solution space is determined to be extensive,
and 2) an intuitive visual-comparing analysis is required.
The multiple coordinated views can adequately counter these
problems by combining a standard map with the temporal
view, which sometimes involves multivariate views, to simul-
taneously display spatiotemporal information and attribute
information of trajectory data [48]. For example, the Smar-
tAdP designed by Liu et al. [49] unifies three views by

explicit visual links and user interactions and enables mul-
tihierarchical and multivariate comparison and analysis (see
Fig. 17a). In terms of multiple coordinated views, users may
create several separate internal representations with links that
can be densely woven. The multi-linked views designed by
Shi et al. [50] intensively shows the correlations and dif-
ferences of people flows from spatial, temporal and mul-
tivariate perspectives (see Fig. 17b). Multiple coordinated
views adequately integrate trajectory data, separately arrange
the layout of geographic location, temporal expression and
variable mapping in a trajectory event and coordinate these
views with the interaction of links to enable a synergetic
visualization of amultivariate trajectory dataset. For example,
Konzack [51] composited the visualization view, density map
and calendar view into an interactive visualization with mul-
tiple coordinated views to analyze seagull-migration patterns
and show the stopovers (see Fig. 17c). Moreover, the effect
of high-density local chaos on trajectory events cannot be
exhaustively displayed in a single view, which often requires
integrating maps of temporal overview and spatial context
to predict the hidden mechanism in the context of space-
time. Liang et al. [52] provided multiple coordinated views
for meaningful attributes of flight trajectories to enhance the
comprehension of trajectory behaviors. The global view in
Fig. 17d displays all trajectories, while other views show
more detail about the selected trajectory.

2) JUXTAPOSING
In trajectory visualizations, juxtaposing typically refers to
placing different visualization productions of multiple trajec-
tories regarding temporal, spatial and attribute information
side by side for comparison, and many types of juxtaposing
methods exist. We classify the juxtaposition based on tem-
poral information into temporal-layer juxtaposition, which
divides trajectory data into multiple parallel temporal layers.
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FIGURE 17. Examples of multiple coordinated views visualizing trajectory data [49]–[52].

These layers primarily read data by temporal dimension,
which requires users to read and compare multiple sequential
views, cognize visual changes or understand how trajectory
events evolve over time. Likewise, the same categoriza-
tion method may be introduced to spatial-layer juxtaposition
and attribute-layer juxtaposition. For example, the Alavai
tool [53] shown in Fig. 18a compares three simulated oil-spill
trajectories in different sites for the prediction of drift trajec-
tories on ocean surface. The utilized spatial juxtaposition is
capable of visualizing complicated information in a simple
and intuitive manner. But generally speaking, juxtaposing
methods are closely related; the detail level of their coop-
erative visualization can smoothly interpret and explore the
correlations and anomalistic patterns among various factors.
Fig. 18b shows the trip exploration of selecting points of
pick-ups (blue) and drop-offs (orange), which recognizes the
travel-count variations and abnormality in hurricane mode
of the analyzed taxi trips in 2011 and 2012 [54]. All jux-
taposing methods rely on the short-term memory of users;
observers can identify differences between parallel views
by frequently switching visual attentions. Therefore, this
approach effectively solves the cluttering problem in tradi-
tional visualizations caused by massive-data overlays with
a low interaction cost. The MobilityGraphs [55] uncovers
the occluded movement patterns in flow maps based on a
graphical approach. Fig. 18c shows the transformation from
traditional visualization mode to a juxtaposing visualization
of simplified overviews. However, the juxtaposing scaling
operation can shorten the time slices and space slices: the

larger is the number of the displayed slices, the smaller is the
space occupied by each slice and the lower is the resolution.
Therefore, the operating time of juxtaposition expects the
best trade-off between the spatial resolution and the tempo-
ral resolution. As Zeng et al. [36] states, the spatial views,
isochronemap views and isotime flowmap views in their PTS
(public transportation system) mobility model can occupy
larger display space, which may pose more difficulties on
mobility-correlation analysis (Fig. 18d).

3) SUPERPOSING
Superposing primarily refers to combining temporal, spa-
tial or attribute information into an integrated representa-
tion in the same context while comparing them in a view
using transparency. Bennett et al. defined the concept of
‘‘visual momentum’’ as the extent to which an interface sup-
ports users’ conversions between two different perspectives
or information-seeking activities [56]. The seamless transi-
tions between these two conversions form continuous links
between two different views or perspectives by explicit vari-
ations, and PolyCube is one of the systems that support these
operations. Fig. 19a illustrates two of these conversions that
seamlessly transition from a space-time cube representation
to a slice-juxtaposing perspective to a slice-superimposing
perspective [57]. The analysis issue of trajectory visualization
often involves multiple indicators and the analysis indicators
for each attribute differs; thus, we cannot conclude by a
view based on one attribute. Multilayered-data superimpo-
sition is a flexible visual layout, where user-obtained visual
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FIGURE 18. Juxtaposing examples of visualizing trajectory data [36], [53]–[55].

FIGURE 19. Superimposing examples of visualizing trajectory data [57], [58].

information ismultivariate instead of univariate. For example,
Lu et al. [58] thoroughly explored passenger-travel patterns
via an adaptedOD-wheel. The exchange flows in Fig. 19b can
exhibit an entirely different distribution in the linear views,
where the superimposing results are indicated by dark bars.

4) CUTTING
Cutting typically includes temporal-cutting operations and
spatial-cutting operations, which extract temporally and spa-
tially based information of interest from trajectory data,
respectively. Although a single temporal cutting can provide
a clean, complete and detailed snapshot with a specific times-
tamp, the goal of temporal visualization in practical cases
is to display information throughout time. The space-time
cube in Fig. 20a displays the temporal cross-sections that
correspond to different instants, which reflects the event
states at different moments [59]. This temporal cutting usu-
ally does not work independently: it is either performed
multiple times or in combination with other operations or
interactions. We studied an interesting experiment to illus-
trate a extraction-related dynamic visualization usingmining-
truck trajectory data of a mining area in Inner Mongolia,

China, where we displayed the attributes of interest by per-
forming temporal cuttings and spatial cuttings several times.
Fig. 20b shows our attribute extraction of TR207-truck trajec-
tory segments with tire pressure less than 93 psi (pounds per
square inch). Furthermore, spatial cutting can also function
in visualizing temporal data, which is primarily reflected in
the static visualization in space-time cubes. Fig. 20c is a
visualization view created by Marey [60] that displays major
rail connections between two French cities, which can also
be described as a spatial-cutting operation along the rail
tracks [61]. Besides, spatial cutting can be separately per-
formed to reduce the trajectory-exploration range, which is
more beneficial for local trajectory analysis. When exploring
the behaviors of taxis along a route, for example, Lu et al. [35]
introduced TrajRank with uneven segmentations, which nar-
row the travel-behavior analysis to smaller sections. Fig. 20d
visualizes several road sections with varying lengths.

5) EXPLICIT ENCODING
Explicit encoding refers to quantifying inter-object differ-
ences to be compared and visualizing these quantified values
using specific metrics. Typically, a highlighting method for
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FIGURE 20. Cutting examples of visualizing trajectory data [35], [59], [60].

subject information is provided in animation or loaded maps
to attract users’ attention. Visual variables in maps are the
basis for constructing various map symbols and conveying
different visual perceptions, which serves well as a widely
employed encoding that corresponds to different attributes
in trajectory dataset. These methods exhibit invariant charac-
teristics in the aspects of scale, translation and rotation, and
intuitively depict the basic features of objects. In Kim et al.’s
illustration in Fig. 21a, current (left) and future (middle)
data distribution are shown for evaluating mobility patterns,
which is, however, not so intuitive as the explicitly encoded
diverging and converging flows (right) [62]. Reasonably
adjusting the weights and priorities of the combinations is
essential for facilitating visual differentiation and optimiz-
ing a visual-encoding scheme, which contributes to enhance
interactivity with users and multiple variables of displayed
data and exhibits the most intuitive visibility. For example,
SemanticTraj, which was proposed by Al-Dohuki et al. [63],
enables efficient visual encodings for large-volume and near
real-time spatial and nonspatial data (multisource data) in
urban transportation networks, where the intermittent red
points indicate slow-traffic areas (see Fig. 21b). The explicit
encoding can also express multivariate information using
glyphs with multiple identifiable features, each feature of
which can be used to represent one variable of themultivariate
information. Fig. 21c compares several visual-highlighting
methods that are applied to spatiotemporal trajectory data
and interactively supports analytical reasoning based on
context-aware graphs [64]. This technique generally creates
a visualization of a complete image, in which the types, sizes
and colors of the dots and lines indicate relationships among
data. For example, Duffy et al. [65] proposed a glyph-based

visualization to summarize and analysis sperm mobility by
conveying over 20 parametric measurements with spatiotem-
poral contexts (Fig. 21d).

C. TEMPORAL-TREND ANALYSIS: REVEALING HOW
SPATIAL AND ATTRIBUTE OBJECTS OF TRAJECTORY SET
EVOLVE OVER TIME
Temporal expression presents a granular-level hierarchy: if
trajectory data involve a time series, they can capture the time-
varying features of spatial data. This variation includes two
possibilities: the spatial features and attribute features of geo-
graphic objects can independently change over time or simul-
taneously vary over time. Fig. 22a explores the time-varying
traffic patterns in different areas of Beijing by locating
and analyzing congested roads [41]. According to previous
research, temporal trends can be captured by three major
methods: the topic evolution of trajectory events, time-series
graphs and their changes, and path-based visualization. The
event evolution is often used to recognize knowledge from
trajectory data. Fig. 22b explores the topical-route evolution
of massive taxi trajectories in Shenzhen, China over time
by visualizing probability-based topical information [66].
Time-series visualization analyzes data features of time series
from both perspectives of time and data, which depict not
only the varying patterns of trajectory data over time but
also the temporal patterns of trajectory-data distribution. Sev-
eral commonly employed visualization methods exist for
time-series data: 1) Linear graphs that can be simply imple-
mented. When displaying time-series data, one of the axes is
fixed as the time axis to represent the continuous relationship
of time, while the other axis indicates the corresponding
data values. 2) Stacked graphs that present data-accumulation
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FIGURE 21. Explicit-encoding examples of visualizing trajectory data [62]–[5].

variations from different categories in various periods. The
strength of these graphs is their intuitive display of the overall
sequence variations. However, this approach lacks the ability
to compare different types of data and performs poorly in pro-
cessing data with negative values. 3) Animations that enable
better user perception in time-dimensional data variation.
In dynamic varying situations, this approach may result in
worse user memory of the overall situation and thus harm
the data comparison. In this regard, the animation method is
not recommended for general time-series data visualization.
4) Horizon graphs proposed by Saito et al. [67]. These graphs
can compensate for the visualization methods that are unable
to represent cases with negative values, while differentiating
positive-negative variations using color-channel properties.
5) Timelines that express narrative trajectory data. This tool
indicates the described temporal ranges with a horizontal time
axis by displaying data near the corresponding time scale.
However, when handling a long time span and denser data
points, the overall layout can become cluttered and suffer a
poor visual effect. The space-time exploration mechanism
applied in TaxiVis [54] concentrates on studying how the
taxi-demand patterns change over time, of which the explo-
ration results consist of multiple views of each time interval
that are displayed on the timeline and an overall data view
that integrates the results of time intervals (see Fig. 22c).
Path-based visualization is an abstract timeline for describing

the variations of the event target as it moves from one region
to another. Fig. 22d shows the flow patterns of taxi trips for
different periods and various zones, where regularity plots
can witness some irregular patterns, which is reflected in
the severe traffic jams during Hurricane Irene and Sandy in
August 2011 and October 2012 [54].

D. CORRELATION ANALYSIS: EXPOSING
ATTRIBUTE-INFORMATION CORRELATIONS OF
TRAJECTORY SETS
The objective of correlation analysis in trajectory visualiza-
tion is to visually analyze two or more attribute elements
in the selected data, which qualifies the correlative degree
between each of two variables. Some connection or prob-
ability exists between the elements of correlation, and the
yielded visualization results tend to be relative. For example,
when analyzing time-related data, to demonstrate the over-
all correlation among multiple variables (i.e., integral over
time), Grottel et al. [68] visualized the correlations between
robot-hand coordinates and joint angles of robot arms based
on a robot-arm trajectory set (see Fig. 23a). This type of
analysis is especially applied in transportation studies, and
interdependence that fits basic traffic maps often exists at
different levels of spatial abstraction. As shown in Fig. 23b,
Andrienko et al. [69] displayed the interdependent rela-
tions between average speed and relative traffic intensity on
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FIGURE 22. Examples of temporal-trend analysis [41], [54], [66].

different spatial scales in a spatially abstracted traffic network
of Milan. The opposite dependency can also be modeled
to indicate how the maximum vehicle count through a link
during a period depends on the average speed, which demon-
strates a dependency series from three selected clusters by
a polynomial regression model with a higher polynomial
order. Similarly, the authors employed the regression model
to represent the dependence between traffic intensity and
average speed (see Fig. 23c [69]).

E. INFORMATION EXTRACTION: EXTRACTING GEOMETRIC
OR TOPOLOGICAL FEATURES FROM THE UNCERTAIN
FIELDS OF TRAJECTORY DATA
In the trajectory big data era, the established models are
becoming increasingly complicated. Information extraction
for user-interested variables effectively alleviate the difficul-
ties that most users encounter in comprehending the domain
knowledge reflected in the entire visual analytics process.
Data selection and content query comprise the critical tasks
of visualization. Ding et al. [70] applied VIPTRA to a real
taxi-trajectory dataset of Hangzhou, China, and their result
in Fig. 24a displays map, trajectory points, trajectory infor-
mation and query results (area query and moment query).
The query interface of this visualization macroscopically
and microscopically explain user requirements in different
spatiotemporal extents. Fig. 24b explores behavioral needs
regarding drivers’ route choices in a certain area according to
the attribute selection and ranking [71]. Points or segments
extracted from a trajectory are often used to represent basic

events regarding specific moving-object states. These events
themselves may not be meaningful, but they can comprise
or indicate an important and complex event. Trajectories can
involve many events, of which negative events such as acci-
dents, congestion, and dangerous actions, may require special
attention and analysis. For example, a spatiotemporal cluster
of speed-reduced vehicles may indicate traffic jams. To iden-
tify the locations and spatiotemporal extent of these complex
events, not only detecting trajectory events of interest but
also extracting them may be required to detect clusters of
spatiotemporal density and track their further evolutions. For
example, Buchmüller et al. [72] proposed a visual analytics
method to explore and investigate air-traffic behaviors. Infor-
mation extraction is often fulfilled with interactive-filtering
techniques, and numerous interactive techniques for extract-
ing events of interest from movement data and methods
for analyzing temporal patterns and trends of events occur-
ring in space currently exist. For example, sports ana-
lysts expect to effortlessly depict motion patterns based on
individual-, formation- or team-related trajectories to iden-
tify tactical motions and unannotated scenes in a game.
In Fig. 24c, the upper graphs explore soccer trajectories
by systematically visualizing all team-turns over an entire
match, which enables analysts to iteratively select and survey
clusters of interest; the lower graphs enable further segmen-
tation of player trajectories based on speed, acceleration and
straightness [73]. However, extracting trajectory-event cir-
cumstances from multisource data can be more challenging.
During the information extraction of trajectory data, data

143662 VOLUME 7, 2019



J. He et al.: Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated

FIGURE 23. Examples of correlation analysis [68], [69].

filtering can select in terms of trajectory positions or time
intervals, which helps users select an area from the central
geographic circle of global view for analysis. All trajectories
through this area are chosen and attributes of time and speed
are highlighted in another view. Fig. 24d illustrates a seven-
step information-extraction process for retrieving a missing
iPhone, where taxi trajectories are tracked by selecting, fil-
tering and aggregating multiple data sources [59].

F. DIMENSIONAL ANALYSIS
The task of dimensional analysis is to establish links among
multivariate data. We have mentioned multidimensional
expressions in section 2, and visualization techniques and
methods for low-dimensional and high-dimensional trajec-
tory data often possess different features. When focusing on
trajectory data of high dimensions, although we are capable
of visualizing trajectory data with higher dimensionality, their
visualizations may become involved to understand. There-
fore, we fail to derive a reasonable arrangement of data space.
Sometimes transforming geographic space into abstract space
is required to mitigate visual cluttering. If a dataset grows
further, the human eyes can hardly capture meaningful infor-
mation. Dimensionality should be reduced to two or three
to visualize these data in 2D or 3D space. Data dimen-
sionality reduction simplifies the scale of high-dimensional
data and significantly reduces the complexity of clustering

algorithms. Thus, an abstract and imperceptible high-
dimensional data structure is partially exposed in low-
dimensional space. However, the dimensionality-reduction
process tends to lose data information, resulting in
low-dimensional space that cannot accurately reflect data
interrelations of the original high-dimensional space. The
higher is the dimensionality, the more severe is the infor-
mation loss caused by dimensionality reduction. Therefore,
a visualization design that fits the trajectory data dimensions
is especially critical.

1) LOW-DIMENSIONAL TRAJECTORY DATA VISUALIZATION
In trajectory data visualization, we consider that trajectory
data below four dimensions is low-dimensional trajectory
data. The space in which we live is three-dimensional,
and humans can directly comprehend space of or below
three dimensions, but a directly cognitive map is hard to
design if the data dimensionality exceeds three. Visualizing
low-dimensional trajectory data is relatively easier.

One-dimensional data can be visualized by basic charts,
such as pie charts and bar charts, which is covered in
temporal-information visualizations in section 3.1.1.

Two-dimensional data visualization comprises visualiza-
tions for geographic location, narrative trajectories and other
two-dimensional data. For example, as an extensively applied
visual widget, temporal heatmap serves to overview how a
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FIGURE 24. Examples of information extractions [59], [70], [71], [73].

particular variable evolves over certain periods (see Fig. 25a
[50], [51]). In Fig. 25b, the two-dimensional scatter plot can
map two-dimensional values of two dimensions to two axes
and indicate other attribute values by different visual elements
of the glyphs [74]. However, their elements are stretched
in two dimensions, where the mining of more dimensional
correlations and links is slightly weak. Elmqvist et al. [75]
extended this work to three-dimensional space and devel-
oped mappable dimensions by a rolling ScatterDice (see
Fig. 25c).

The space-time cube is a classic representation of three-
dimensional spatiotemporal paths, which consist of two-
dimensional geographical space and temporal dimension; the
availability of this technique has been discussed in numerous
studies. McArdle et al. [76] introduces a novel geographical
environment that combines STCwithGoogle Earth to explore
movement data and analyze the spatiotemporal characteris-
tics of trajectories. Fig. 25d shows 2D and 3D visualization
that displays paths of two pedestrians in a city to explain
how 3D visualization contributes to recognizing invisible
spatiotemporal patterns in two dimensions.

2) HIGH-DIMENSIONAL TRAJECTORY DATA VISUALIZATION
Although low-dimensional data visualization is more
intuitive, some data can be linearly inseparable in
low-dimensional space. These data can be mapped to
high-dimensional space and conduct classification by con-
structing hyperplanes. During the process of collecting actual
trajectory data, massive datasets beyond three dimensions
exist, which poses a serious challenge to the pattern recog-
nition and principle discovery in trajectory data. Abundant
information involved in high-dimensional data can create new
possibilities for solutions. The earliest studies include two
solutions: 1) Modifying the third-dimensional stacking of a

space-time cube by visual channels. However, the extensi-
bility of visual encoding is limited. 2) Analyzing and visu-
alizing these data through methods of kernel heat or kernel
density and plotting heatmaps or density maps by aggregating
dynamic point datasets. However, these solutions do not
regard movements as a dynamic process of temporal and
spatial functions; aggregating and visualizing movement data
only inmaps fails tomeet the requirements of spatial analytics
and loss meaningful information. Therefore, visualization
of high-dimensional trajectory data requires more practical
techniques.

Thanks to the evolvement of machine learning, traditional
low-dimensional data visualization methods become applica-
ble by reducing the dimensionality of high-dimensional data
to two or three. For example, Fig. 26a shows the process
of stem-cell differentiation, where PHATE approach [77]
embeds progression structures in high-dimensional data into
lower dimensions to visualize trajectories and branches
and extract biological meanings. However, the accompanied
problem of dimensionality reduction is evident: its intention
is to filter redundant and useless information from original
dimensions, but this process may inevitably lose meaning-
ful information. To alleviate this problem, the scatterplot
matrix effectively displays the pairwise dimensional relation-
ship. Fig. 26b shows all attribute-pair scatter plots within a
matrix-layout view [78]. However, excessive dimensions of
trajectory data can cause visual burdens. For example, the
12-dimensional scatterplot matrix in Fig. 26b comprises
144 subplots. The number of displayed views should be
slashed without reducing dimensionality. The best case
is to visualize high-dimensional trajectory data in a sin-
gle graph, whose representative methods include paral-
lel coordinates [40], RadViz [79], star coordinates [80],
and UnTangle Map [81]. For example, when processing
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FIGURE 25. Examples of low-dimensional data visualization [50], [51], [74]–[76].

FIGURE 26. Examples of high-dimensional data visualization [77], [78], [82].

high-dimensional datasets, Murray and Forbes [82] explored
multiple inter-attribute relations with extended star coordi-
nates (see Fig. 26c).

G. INTERACTIONS
Proper interactivity is a primary aspect that affects users’
knowledge acquisition from maps. The interactivity of
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space-time narrative is substantially reflected in the aspects
of visualization-interface design, simple and reasonable map
layout, and real-time interactive query. The limitations of
human and display devices may result in the inability
to display all data information at once, especially when
the trajectory-data scale grows and complexity increases.
Interactions facilitate addressing different requirements from
different users and analysts, such as selecting and filter-
ing information to browse data overview or explore data
subsets in detail, customizing display background colors,
reflecting user intents, and enhancing recognition of multi-
variate trajectory data. Based on the characteristics of target
objects, we divide typical interaction techniques that promote
trajectory-data visual explorations into the following cate-
gories.

1) VIEW MANIPULATION
Due to the limitation of the display screen, when visualiz-
ing a large set of trajectory data, some trajectory displays
may surpass the screen range and, therefore, are invisible
in the view. Interactive features, such as overview, zooming,
panning, rotating, filtering, navigation, highlighting, details-
on-demand, visibility and rendering sequence configuration
of different information layers, and opacity configuration,
enable observation and analysis of trajectory scenes from
various perspectives, which supports users’ exploration and
research tasks in local and global space-time. As a basic appli-
cation, various manipulations are adopted to select objects of
interest, including trajectories, trajectory segments, moving
objects and trajectory events, to address the issue of trajectory
data complexity.

2) DATA MANIPULATION
The manipulation of data representation refers to selecting
attribute information to represent the values in a trajectory
dataset. Keim and Kriege [83] classified multivariate-data
visualization methods into pixel-oriented, geometric, glyph-
based, hierarchical, graph-based and blending techniques,
which dramatically enriched the flexibility of interactive
visual manipulation; their combinations can reach the opti-
mal projection distance metric and thus can facilitate effi-
cient and excellent data mining. Previous studies employ
visual encoding as the original benchmark for manipulating
data. For example, as shown in Fig. 27a, the well-known
1812 Napoleon Crusade map by French engineer Joseph
Minard is a successful example of a map that depicts histori-
cal battles by expertly utilizingmultiple static visual variables
such as colors, line widths.

3) SPATIAL EXCHANGE
A direct way to specify spatial-exchange conditions is to
discover variable data that meet certain spatial relations by
explicit and implicit visualization methods. Explicit visual-
ization of spatial exchange refers to directly presenting inter-
regional exchanges on a map to indicate exchanging patterns.
Spatial exchanges can be denoted by directed line segments
and expressed as spatial-based flow visualization due to its

data structure with weighted vectors. Although thesemethods
can clearly visualize exchanges between certain and other
regions and their spatial distribution, inevitable defects in
depicting exchanging information exist. The location-implied
visualization only represents spatial-exchange patterns but
fails to reveal their spatial distribution. This approach there-
fore loses spatial features but avoids cluttering in explicit
flow visualization. The flow visualization of explicit spatial
exchange can be converted into a novel OD map [25] based
on spatial transformation, where the spatial region is divided
into rectangles (see Fig. 27b). However, the global patterns
are split into minor subpatterns, which places higher require-
ments on user comprehension.

4) TEMPORAL MECHANISM
Trajectories cannot be instantly created by moving objects;
thus, time is always involved in multivariate trajectories as
an indispensable element. Temporal interactions are usually
combined with visualization of temporal changes. Fig. 27c
provides a snapshot of refugee movements between East
Africa and Western Europe, which tracks the dynamic
changes of spatial exchange between any two regions via a
sequential heatmap (middle) [84]. However, temporal infor-
mation in static views may lose a user’s focus. To allevi-
ate this situation, potential approaches are assigning similar
visual representations to temporal and thematic attributes
with visual variables or using additional notations to depict
trajectory information of moving objects. An auxiliary tem-
poral mechanism is applied, of which diverse operations
include standard graphic control [54] brushing and selecting
a timeslider [19]. For example, the time lens developed by
Tominski et al. [85] can present temporal aggregation infor-
mation about interactively defined spatial query areas, which
depend on the display of temporal information via a dynamic
query mechanism and aggregation (see Fig. 27d).

5) MAP INTERACTION
The powerful GIS features of fast interactions that enable
viewing variations of variables in a map have broken the
original state of paper maps and statistics and serve as a
major tool for studying geospatial data. Users not only notice
the resulting quantitative differences, but most importantly,
make decisions in a qualitatively varied manner. Many geo-
visualization techniques are directly related to mapping tech-
niques, such as map projection, map annotation and map
generalization. In terms of extending these techniques, for
example, as a traditional cartographic tool, the Choropleth
map has combined animation and interaction to present richer
information, which enables more flexible correlation and
exploration of multivariate trajectory data (see Fig. 27e [86]).
Further, novel geovisualization techniques are emerging. For
example, the hierarchical structure in Fig. 27f, which consists
of a base map layer, a thematic raster layer and a symbol
layer, supports more sophisticated trajectory tasks in map
design [64]. Several types of visual contrasts among the layers
are used to establish a detecting sequence.
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FIGURE 27. Examples of high-dimensional data visualization [25], [39], [45], [64], [84]–[92].

6) TEXTUAL INTERACTION
The intention of textual interaction is to effectively label,
edit, and annotate trajectory variables. The visualization
of static textual information includes feature-based textual
visualization and topic-based visualization. In feature-based
textual visualization, features indicate grammatical struc-
tures or nonoverlapping text chunks within a document.
Word clouds, an emerging visual metaphor, indicate tra-
jectory attribute information by their dominant keywords
in documents. For example, Itoh et al. [45] proposed a
TweetBubble view to visualize the overall trends of Twitter
keywords (see Fig. 27g). Topic-based textual visualization
provides an overview of static textual interactive context
for trajectory data; its typical methods represent the dis-
similarity between two documents with vector spacing after
exchanging documents, which enables transformation from
clustered documents into mathematical grouped vectors in
hyperspace. Conversely, in dynamic textual information visu-
alization, temporal attributes play a critical role in compre-
hending topic-evolution patterns in time-varying document

collections and framing a correct storyline and solution,
which illustrates the informative-evolution process in textual
streams of trajectory data.

7) TRANSITION
Transitions serve as an alternative for visualizing variables
and can be a central issue of visualization, of which the
forms can be classified into static transitions and dynamic
transitions. Static transitions, which are often employed
for trajectory-event narrative interactions, comprise static
transitions of user-oriented and interactive storytelling and
static transitions of parallel narratives. When users interac-
tively establish static transitions, the majority of the focus
is interactive user-driven transitions instead of an auto-
matic process. In terms of parallel narratives, the static
transitions are displayed in parallel, in which case many
transitions can simultaneously occur. For example, in the
alternative to a trajectory map of the animated transition
in Fig. 27h, animation is used to demonstrate time-varying
evolutions [87]. These graphically animated trajectories can
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reduce clutter during animated transitions and tend to be
smooth.

8) EDGE BUNDLING
Node-link diagrams have been the most commonly employed
to represent graphs. Recently, however, researchers of vari-
able visualization have recognized that various other applica-
tions exhibit their utility. A controversial issue of this utility
is reducing clutter because thousands of edges can over-
whelm the view and cover underlying patterns when the data
amount becomes tremendous. Edge bundling serves as the
most popular solution, and cost-based, geometry-based, and
image-based edge-bundling methods can effectively work
in cartography. For example, in the flow maps in Fig. 27i,
Tobler [88], Doantam et al. [89] and Buchin et al. [90] applied
tree-based edge bundling techniques to illustrate Ameri-
can migration data and achieved excellent bundling results.
Despite considerable research attention on this approach,
challenging issues regarding legibility, algorithmic complex-
ity, and intuitive navigation may exist. Focus + context inter-
active techniques can benefit further cluttering reduction and
present more complex spatial and data queries in trajectory
visualization.

9) FOCUS + CONTEXT
As one of the most classic interactive models, focus + con-
text technique enables both an overview of global contex-
tual information and detailed focus views on components
of interest by zooming in on areas of interest and zooming
out on other areas. Among these methods, fisheye view is
a focus + context interaction model based on polar coor-
dinates. In terms of implementation techniques, focus +

context adopts a spatiotemporally seamless data-presentation
method, which differs from spatial segmentation in overview
+ detail (displays global and local information with individ-
ual views) and temporal division in zooming (sequentially
presents overall and detailed information for different users),
to effectively reduce users’ burdens in comprehending spa-
tially topological relations and short-term memorizing. For
example, Fig. 27j demonstrates an exploration of bundling
aircraft trajectories using the focus + context technique [39].
As mentioned in the previous section (edge bundling), this
approach also contributes to mitigating the spatial-cluttering
problem in sophisticated trajectory visualization and estab-
lish geographically accurate trajectory contexts.

10) ANIMATION
Static visualizations are relatively accessible to visualize
trajectory data and enable interactive observation as users
require. Dynamic or animated visualization techniques also
demonstrate their considerable strengths. In terms of enhanc-
ing visual scalability, animation can address issues of insuffi-
cient display space or highly cluttering of static visualization
techniques. Animation serves as a natural technique for con-
veying dynamically varying data and promoting perceptions
of even subtle changes or dynamic displays, whose most

expected utilization seems to present real-time variation and
spatiotemporal reposition of variables.

Time-series maps and map animations are commonly used
interactive dynamic visualization. A time-series map dis-
cretizes the time series and reflects its dynamic changes by
displaying different time states of the same spatial domain,
which is essentially an approach of simulating dynamic
progress in a static manner. In a time-series map, the direct
correspondence between two cells in different visualizations
of the same data table enables smooth animation between
them. However, time-series snapshots often present minor-
scale and same-region changes. For geographically large-
scale comparisons, interpretation difficulties are caused by
limitations in resolution and precision. Time-series maps
can only discretely show event states that correspond to
certain moments and cannot reflect the progressive changes
between two adjacent instants. Due to the limited number of
frames, presenting the continuously varying long-term event
sequence is difficult. Therefore, if the time series is rather
brief, the maps can be juxtaposed; otherwise, map animation
is recommended.

Map animation concentrates on three aspects: symbolic
dynamic visual variables, animation establishment and stat-
ically displayed progression.

Visual variables of static maps are principally applicable
to dynamic maps but require appropriate supplements, such
as duration (the time required for each frame), rate of change
(the ratios of graphically changed magnitudes to correspond-
ing duration), order (the sequence of multiple scenes) and
frequency (the frame count played per time). For example,
Caquard and Fiset [91] employed glyph-flicker durations
to effectively depict the temporal information of switching
between and staying in different scenes (see Fig. 27k). This
proper and flexible utilization of dynamic visual variables
can convey more information via the map and dramatically
strengthen the map legibility.

Map animation serves as a proper dynamic space-time
visualization method that rapidly updates the content to
demonstrate a series of maps in a single view. This approach
generally simulates the event processes in a manner of
dynamic deduction, which addresses the dynamic variations
of space scale and spatial scenes and enables more efficient
observation and exploration of event trends. These trends
are typically patterns and relations that are ambiguous when
observing a single map. Generally, each frame in a simple
animated view corresponds to a spatiotemporal state at a cer-
tain moment. As shown in Fig. 27l, Poiesi and Cavallaro [92]
utilized overlaid video frames to visualize the time-varying
2D trajectories, which enable frames to be navigated back-
ward and forward while exploring 3D space. However,
this implementation neither includes temporally contextual
contents nor describes object distribution on the timeline
or semantic relationships, such as temporal sequence and
distance.

Animation is a natural way to illustrate variable-data evo-
lution; however, animated progression displays pose certain
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requirements on users’ mental maps. Therefore, the approach
of the statically encoding temporal dimension has motivated
research by scholars. Additionally, animation requires users’
focused attention to capture the trajectory evolution, whose
solution should reduce cognitive loads during observation.
In this regard, timelines and small multiples tend to be popu-
lar choices.

H. DATA IMPACT
The evaluation and prediction of the visualized object move-
ments often need to consider numerous uncertain factors and
draw support from trend extrapolation, scene fitting and other
methods by analyzing either individual trajectory evolution
or overall trajectory set evolution by tracking information
of each point or the overall information. The uncertainty
related to trajectory visualization exists in visual represen-
tation. Although this uncertainty has a positive effect on
protecting user privacy, its impact in trajectory data analysis
can involve complex and diverse origin factors and cannot be
disregarded. Consider traffic-flow visualization as a macro-
scopic example. The imbalance of trip distribution and peak
travel volumes may cause cluttering in traffic flows, and
individual driver behaviors have different behavioral patterns,
whose direct consequence is short-term blocked intersections
or congested roads. If uncertain factors such as terrible weath-
ers, traffic controls, or sudden accidents are encountered,
behavioral conflicts will inevitably occur and produce aggra-
vated uncertainty and nonlinear characteristics of short-term
traffic flows. At the data level, uncertainty is also reflected
in erroneous data, missing data and fuzzy data, which are
characterized by complexity, stochasticity, and periodicity.
At the expressive level, the adopted parameters, models and
techniques in the visualization process can cause differences
in visualization results, which is considered as uncertainty
in visual analytics. The limitations of visualization carri-
ers (e.g., limited screen resolution) and user perception of
visual-variable encoding are also prone to the uncertainty of
user cognition.

The immense trajectory data resources have enabled a
quantification process in various domains. Based on the spa-
tial and temporal references that exist in movement data,
the links to relevant contextual data are established. The
visual analytics method generated in the context of this
major environment involves a joint analysis with respect to
movement-involved variable data and spatiotemporal contex-
tual data, which is inevitably susceptible to external factors.
For example, weather conditions (especially wind direction
andwind speed) can affect the direction of takeoff and landing
and ground speed. Reasonably establishing relationships with
these factors can help explain anomalies and refer to con-
textual data. Conversely, trajectory data can exhibit promis-
ing application prospects. For example, logistic companies
optimize a freight logistics system based on transportation
data [93]. Police officers analyze the trajectory characteristics
of criminal suspects to track them [94]. Meteorological cen-
ters establish a similarity analysis model that compares the

current typhoon trajectory and historical typhoon trajectories
to predict typhoon moving paths [95].

Although trajectory visualization analysis offers conve-
nience in the context of big data, certain limitations of these
visualization techniques remain to be conquered. In addition
to issues related to normal trajectory events, illegal or abnor-
mal trajectory information and its acquisition can trigger
potential or further risks. Additionally, trajectory visualiza-
tion does not concentrate on displaying one accurate image
and cannot replace critical thinking; rather, it presents various
representation effects as trajectory data applications. There-
fore, excessive reliance on visualization when analyzing tra-
jectories may also derive a biased result, hence a deviated
final judgment.

V. CONCLUSION
We introduced the concept of multivariate trajectory data,
covered the contemporary evolvement and representative
applications of visualization techniques, and demonstrate that
some variable visualization can be resolved into fundamen-
tal operations of specific tasks. These operations typically
function synergistically rather than independently, and their
combinations selected are even diverse; perception is there-
fore supported based on different levels of static or dynamic
processing. However, no direct mapping between these oper-
ations and their best-supported tasks has yet been reached.
While discussing the pros and cons of a variable-visualization
operations, we primarily focus on the relative effectiveness
with respect to data types and features, as the reference for
trade-off, and explicitly descriptive analysis can help better
discriminate the subtly different effects of design features and
better control clutters. Although this review is imperfect to
cover all aspects of all possible operations, it is meaningful to
help visualization designers to pursue novel solutions, extend
existing solutions and think outside the box.
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