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ABSTRACT The joint planning of spare parts and maintenance workers in a multiple echelon inventory
system with lateral and cross-echelon transshipment can reduce the total cost of the system. However, partial
pooling is not extensively considered in the joint optimization problem of maintenance resources. In this
paper, the objective is to determine the optimal inventory of spare parts and the number of maintenance
workers to minimize the total cost of the system considering partial pooling. First, a greedy heuristic is used
to obtain the initial inventory. Then, the cat swarm optimization algorithm is formulated to produce nearly
optimal results, which can solve larger instances with a faster computation time. Furthermore, a maintenance
system with 4 local warehouses, 3 central warehouses and 1 plant serving 5 machine groups is analyzed,
in which each machine consists of 5 key components that can breakdown independently. The results verify
the effectiveness of the proposed optimization approach. Finally, the total cost for different resource provision
scenarios, failure rates and system parameters are discussed.

INDEX TERMS Spare parts, maintenance workers, partial pooling, greedy approach, cat swarm
optimization.

NOMENCLATURE
SETS AND INDICES
I Number of components
J Number of local warehouses
M Number of central warehouses
Pj Number of group assigned to local warehouse j

PARAMETERS
βij Fraction of demand for type-i spare part at local

warehouse j satisfied from stock on hand.
αijk Fraction of demand for type-i spare part at local

warehouse j satisfied through lateral transshipment
from local warehouse k

γij Fraction of demand for type-i spare part satisfied
through direct delivery from the central warehouse

θij Fraction of demand for type-i spare part satisfied
through direct delivery from the plant
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chij Unit inventory holding cost at local warehouse j
for a type-i spare part per time unit

cLTi Lateral transshipment cost at local warehouse j for
a type-i spare part per distance unit

cECi Emergency replenishment cost for using direct
delivery from the central warehouse for a type-i
spare part

cEPi Emergency replenishment cost for using direct
delivery from the plant for a type-i spare part

cNL Normal replenishment cost for local warehouses
for item i

cNC Normal replenishment cost for the central
warehouse for item i

VARIABLES
TNC Average normal replenishment lead time at

central warehouse j for a type-i spare part
sij Safety stock level at the local warehouse j for a

type-i spare part
usij Available type-i spare parts at local warehouse j
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mj Available number of maintenance workers at
local warehouse j

Dsi Average demand for type -i spare part
Dm Average demand for maintenance workers
λ Average demand rate
Wij(S) The target mean waiting time for local

warehouse j for a type-i spare part
WMij(S) The maximum average waiting time applied by

local warehouse j for a type-i spare part

I. INTRODUCTION
With the development of technology, the equipment used
in many important economic sectors has become increas-
ingly capital intensive. For this reason and due to safety
and security considerations, the continuous operation of such
equipment is essential. If unplanned downtime due to failure
occurs, it is of the utmost importance to keep the downtime as
short as possible [1], [2]. To do so, the failed components are
often replaced by ready for use components, since the onsite
repair of the failed system requires an excessive amount of
time. In such cases, the availability of ready for use spare
parts and maintenance workers is critical to ensure a prompt
and effective repair process. To minimize any delay due to
the absence of these resources, a complex integrated multi-
resource optimization problem is studied in this paper.

It is well known that excess inventory incurs a substantial
inventory cost, whereas a shortage in the inventory may cause
a system shutdown and lead to production losses. To guaran-
tee an effective maintenance operation, a cost-effective solu-
tion to this problem requires a tradeoff between overstocking
and shortage of spare parts and maintenance workers [3]–[6].
With the development of technology, the equipment used
in many important economic sectors has become increas-
ingly capital intensive. For this reason and due to safety
and security considerations, the continuous operation of such
equipment is essential. If unplanned downtime due to failure
occurs, it is of the utmost importance to keep the downtime as
short as possible [1], [2]. To do so, the failed components are
often replaced by ready for use components, since the onsite
repair of the failed system requires an excessive amount of
time. In such cases, the availability of ready for use spare
parts and maintenance workers is critical to ensure a prompt
and effective repair process. To minimize any delay due to
the absence of these resources, a complex integrated multi-
resource optimization problem is studied in this paper.

It is well known that excess inventory incurs a substantial
inventory cost, whereas a shortage in the inventory may cause
a system shutdown and lead to production losses. To guaran-
tee an effective maintenance operation, a cost-effective solu-
tion to this problem requires a tradeoff between overstocking
and shortage of spare parts and maintenance workers [3]–[6].
Reference [7] provided extensive reviews of a series of
maintenance spare part management models. Reference [8]
described many spare part inventory control models and
reported exact and heuristic optimization methods that focus
on the system oriented perspective. Reference [9] considered

a repairable system with a fixed budget for maintenance
workers to select the number of maintenance workers to
maximize profits, which can serve a fraction of all possible
failures. In other words, this problem should be solved by
joint, rather than separate or sequential, optimization of the
spare parts and maintenance workers.

In addition, in terms of themaintenance resource transship-
ment strategy, the majority of prior studies have focused on
transshipping the maintenance resources by direct transship-
ment from the central warehouses and did not make effective
use of the resources in the same echelonwarehouses by lateral
transshipment [10]–[14]. However, transshipment flexibility
could be advantageous in minimizing the total cost while
simultaneously ensuring a fast and reliable transshipment of
maintenance resources. Until now, several researchers have
studied the optimal inventory level of the total inventory
between the center and local warehouses in multi-echelon
systems. Reference [15] represented the first research study
in this field, in which an approximate model for a one item
system was formulated, the result showed that the combined
use of lateral transshipments and direct deliveries could lead
to significant cost savings. Subsequently, [16] extended the
work by addressing a multi-item problem using a complete
pooling strategy for the resources. The focus of this study was
on developing a solution procedure to determine the nearly
optimal stocking policies, and the results demonstrated that
allowing transshipment flexibility could minimize the total
cost of the system incurred in the transshipment of the inven-
tory to the local warehouses. Among early studies, a model
similar to that of this problem can be found in [17], in which
the authors researched the integrated planning of spare parts
andmaintenance workers with complete pooling to determine
the optimal amount of resources considering transshipment
flexibility in the case of a resource shortage.

If a failure occurs, the machine should be repaired as
soon as possible because the downtime cost is considerably
higher than the holding and transshipment cost. Therefore,
it is reasonable to retain partial maintenance resources at
each local inventory warehouse. From this perspective, in this
paper, a partial pooling strategy is used to share the spare
parts between local warehouses, which is in contrast from the
approach used in [17]; in particular, a local warehouse offers
its partially available spare parts inventory when a request
is made by another local warehouse with a stock out, rather
than employing transshipping to meet all the demands. Such
systems are more difficult to control and optimize than sys-
temswith complete pooling because there exists an additional
constraint on the inventory safety, si(si> 0), which must be
defined. In addition, the available inventory in each local
warehouse should satisfy the maintenance requirements or it
should be ensured that the remaining resources after main-
tenance are up to si before the next normal replenishment
time. Currently, no study has been reported focusing on the
development of a multi-echelon, multi-warehouse inventory
system with a partial pooling strategy due to the computa-
tional complexity.
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The main methods for solving the maintenance resource
joint optimization problem are as follows:

(1) Mathematical programming. This approach addresses
themaintenance resource optimization as an integer program-
ming problem [18]–[21]. The resource scheduling process of
the object is used to define the decision variables, which are
usually binary. However, such a method is usually based on
some simplified assumptions, and the computational time to
determine the optimal solution within a bounded time is very
long, consequently, the scale of the problem cannot be too
large.

(2) Heuristic algorithm. This approach can solve a rel-
atively large scale planning problem in combination with
other methods [22], [23]. Due to its easy computation,
high efficiency and satisfactory real time performance, this
approach has been widely used in optimization research.
Reference [1] described multiple inventory models and
presented the exact and heuristic optimization methods.
Reference [24] described an efficient heuristic to manage sys-
tems with more than two locations. The heuristic is based on
a greedy initialization method combined with a local search
improvement method. The results show that the heuristic
method performs satisfactorily. Some authors used an exact
method and a heuristic procedure for the evaluation of an
optimized problem with more than five types of spare parts,
and the results demonstrated that the use of approximate
evaluations is faster than using exact evaluations as the system
becomes more complex. However, some special heuristic
rules could be studied for a given problem [25], [26].

(3) Intelligent search algorithm. Intelligent search algo-
rithms have been broadly used in the optimization field due
to their random global search and fast computation, and they
can also easily be combined with other excellent algorithms
[7], [27]–[29]. Reference [30] proposed a multi-objective
dynamic optimal dispatch model to coordinate multiple dif-
ferent scheduling objectives, and a heuristic optimization
algorithm was used to identify a well-distributed set of Pareto
optimal solutions of the problem; the best compromise solu-
tions (BCSs) were identified from all the solutions with the
use of a decision analysis by integrating fuzzy C-means clus-
tering and gray relation projection. Reference [31] considered
a continuously monitored multi-component system and used
a genetic algorithm to determine the optimal maintenance
resource level to optimize the cost objectives. Reference [32]
proposed a hybrid algorithm that combined particle swarm
optimization and an iterative local search for solving the
hybrid resource optimization problem. The authors presented
a detailed comparison of the present efficient algorithms,
including the iterated local search, particle swarm optimiza-
tion and information gain, and verified the effectiveness of
the proposed algorithm.

In this paper, the joint optimization of a spare parts inven-
tory and maintenance workers under partial pooling is stud-
ied. The objective is to minimize the total system cost that
consists of the holding cost and the transshipment cost under
the average waiting time constraint. The main contribution of

this paper can be summarized as follows. A comprehensive
maintenance resource joint optimization system considering
partial pooling is analyzed, which includes multiple eche-
lons and multiple types of maintenance resources. Because
there exists an additional constraint for the inventory level,
si(si > 0), which should be defined when using a partial
pooling strategy, this system is more difficult to control and
optimize than systems with complete pooling. To date, very
few papers have considered managing this complex inventory
system with this approach. The greedy heuristic and the cat
swarm optimization algorithm are used to obtain the optimal
inventory S, which can flexibly support the joint planning of
the spare parts and maintenance workers with the schedul-
ing strategies of lateral transshipment and emergency direct
transshipment.

The remainder of this paper is organized as follows.
Section 2 presents the description and modeling for the
maintenance resource provision scenario model. Section 3
presents a solution framework, including the generation of
an initial maintenance resource inventory scheme using a
greedy approach and an improvement approach for optimiz-
ing a maintenance resource inventory with a cat swarm opti-
mization algorithm. Subsequently, a case study is presented
based on the proposed model that consists of 1 plant, 3 cen-
tral warehouses, 4 local warehouses and 5 groups including
20 machines; furthermore, the analysis and discussion is
presented in Section 4. Finally, the conclusions and future
research directions are provided in Section 5.

II. PROBLEM DESCRIPTION AND MODELING
A. CHARACTERISTICS OF THE INVENTORY SYSTEM
The system treated in this paper is composed of P groups
of similar machines. Each group of machines is assigned
to exactly one local warehouse. Let Pj denote the group
of machines that is assigned to local warehouse j. A local
warehouse can serve one or more groups or zero groups.
Each machine consists of I components that can breakdown
independently. The failure rates (demand rates) for each type-
i component in different types of equipment are assumed to
follow a Poisson process with a constant rate of λi. A repair
request consists of a simultaneous demand for two resources,
namely, the spare parts and maintenance workers. In general,
the repair of highly complex machines may require a team of
professionals and a set of spare parts. However, because on-
site repair is time-consuming, the replacement of the failed
components on-site by one generic maintenance worker is
considered exclusively in this paper. If the maintenance
resources are requested by group p ∈ Pj, they are provided
immediately by local warehouse j if this local warehouse
has stock on hand; otherwise, it will be provided by other
warehouses, for example, other local warehouses through a
lateral transshipment, central warehouses or another plant by
direct transshipment. In this paper, it is assumed that J local
warehouses, M central warehouses and the plant have an
infinite supply capacity. The detailed maintenance resource
provision relationship is shown in FIGURE 1. The waiting
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FIGURE 1. The maintenance resource supply relationship.

time is denoted by Wij(S), and the maximum expected wait-
ing time for a maintenance request is denoted by WMij(S).
The expected total system cost includes the holding, normal
transshipment and emergency transshipment cost. The goal
is to determine an optimal inventory level S to minimize the
expected total system cost under the waiting time constraints.

Note that for a given inventory, the total fraction of the
emergency demand for type i maintenance resources at each
local warehouse j ∈ J is such that

αijk + βij+γij+θij = 1 (1)

The fraction of the demand met by the emergency trans-
shipment from the central warehouses or from plants is the
same; more specifically, for all the local warehouses, the sup-
plementation takes place when the resources on hand fall
below the safety inventory, and for all the central warehouses,
the resource requests occur when no resources are available.

γ1j=...=γij=γi (2)

θ1j=...=θij=θi (3)

The joint optimization model for the maintenance
resources employs the following notation.

B. OPTIMIZATION FORMULATION
The objective of this paper is to determine the optimal main-
tenance resource inventory for each type of maintenance
resource at each local warehouse to minimize the expected
total system cost under the expected waiting time constraint.

minCc(S) =
∑I

i=1

∑J

j=1
CHij +

∑I

i=1

∑J

j=1
CTij

=

∑I

i=1

∑J

j=1
chijSij +

∑I

i=1

∑J

j=1

TABLE 1. Spare part related parameters.

× (cNLTNL + cNCTNC + cLTiαijTLTi
+ cECiγijTECi + cEPiθijTEPi) (4)

subject to αijk + βij+γij+θij = 1 (5)

Wij(S) =
∑I

i=1
[αijk (TLTi +1WLij)+γij(TECi+1WDij)

+ θijTEPi] ≤ WMij(S) (6)

Due to the use of partial pooling in this paper, the available
inventory in all the local warehouses should be reserved
for the safety inventory. Therefore, each local warehouse
j(j = 1, 2, . . . , J ), employs an order up to policy (s, S);
in other words, an order is placed when the spare parts
inventory cannot satisfy the maintenance requirements or the
resources remaining after maintenance are below the safety
inventory level. The quantity ordered is set to ensure that the
spare parts inventory level of the next normal replenishment
time is up to sij.
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TABLE 2. Maintenance worker related parameters.

After defining the spare part related parameters, the prob-
ability of the status of maintenance workers is studied. Note
that the approach for satisfying the requirement of the main-
tenance workers depends on the available spare parts inven-
tory on hand. When the available spare parts inventory is
empty, the maintenance worker demand is satisfied by the
emergency direct transshipment together with the spare parts.
To ensure that the available spare parts inventory is sufficient,
a separate classification analysis is used for the maintenance
operations, such as for the status probability of the spare parts.
As analyzed above, assuming that there exists only one kind
of maintenance worker who can repair all types of failure,
the demands for the maintenance workers follow the Poisson
processes, which are similar to the failure distributions.

In contrast to the spare parts inventory strategy, a com-
plete pooling strategy is applied to manage the maintenance
workers; in particular, a local warehouse shares all the main-
tenance workers with the same echelon warehouses when a
demand for maintenance workers is raised. This assumption
is reasonable because after finishing one maintenance task,
the maintenance workers return to their warehouse to wait for
the next task, and it can be considered that the maintenance
workers are employed continuously.

In accordance with the characteristics of the inventory sys-
tem and maintenance resource provision strategies described
above, the detailed definitions for the holding cost, normal
replenishment cost and emergency transportation cost are as
follows:

(1) Holding cost
During a given period, all the spare parts in the inventory

warehouse generate the holding cost, which is computed for

each type i spare part according to a uniform distribution U
[4], [12], denoted by chij. The differences in the holding cost
for each type i spare part among all the local warehouses,
central warehouses and plants are negligible.

CHij =
∑I

i=1

∑J

j=1
chijSij (7)

(2) Transportation cost
The transportation cost includes the normal replenish-

ment cost and emergency transshipment cost. The normal
replenishment transshipment times from a plant to the local
warehouses and central warehouses are denoted by TNL and
TNC , respectively; in addition, the transshipment times for
a type i spare part from the local warehouses by lateral
transshipment, or from the central warehouses and plant by
emergency transshipment, are denoted as TLTi, TECi and TEpi,
respectively, all of which are exponentially distributed [15].
Reference [25] proved that in a multiple echelon inventory
system, the lateral transshipment is preferred over the emer-
gency delivery transshipment, and considering the actual
transshipment scenarios, it is assumed that TLTi < TECi <
TEPi < TNC < TNL for all i, j and k . The expected total
transportation cost incurred per unit time equals:

CTij = cNLTNL + cNCTNC + cLTiαijTLTi
+ cECiγijTECi + cEPiθijTEPi (8)

where cNL = cNC < cLTi < cECi = cEPi
In Eq. (1), Cc(S) is defined as the expected total system

cost for one type of inventory S. The set of constraints implies
that the mean waiting time for each local warehouse must not
exceed its maximum expected waiting time. It can be seen
from Eqs. (4) and (6) that the values of βij(S), i ∈ I, j ∈ J ;
αijk (S), i ∈ I , j ∈ J ; k ∈ J , k 6= j; γij(S), i ∈ I , j ∈ J ;
and θij(S), i ∈ I , j ∈ J are the key issues for determining
the Cc(S) and Wij(S). Since the probability values of αijk ,
βij, γij and θij are determined by the available inventory in
each inventory warehouse, the exact probability values are
difficult to evaluate. In this paper, these values are determined
according to the actual application scenarios.

III. OPTIMIZATION ALGORITHM DESIGN
In this paper, the aim is to determine an optimal inventory
level S that minimizes the expected total cost in a mul-
tiple echelon multiple equipment inventory system under
waiting time constraints. The maintenance resources in the
same echelon can be mutually scheduled to avoid shortages.
In addition, the safety inventory level si(si > 0) should be
determined to satisfy the maintenance requirements or ensure
that the remaining resources after maintenance are up to si
before the next normal replenishment time, which makes
the problem NP hard. Hence, the solution procedure for this
problem consists of two steps. In the first step, a greedy
approach is applied to generate an initial feasible solution.
In the second step, the initial solution is improved by applying
a cat swarm algorithm.
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The cat swarm algorithm mixes two subgroups of global
search and local search, and hence, it can simultaneously per-
form a global and local search when dealing with optimiza-
tion problems. This unique algorithm structure guarantees the
convergence speed of the algorithm, which considerably alle-
viates the local optimization problem and long computation
time. Currently, the algorithm has beenwell applied in contin-
uous function optimization [33]–[35] and image processing
[36], [37], which proves that it has an excellent convergence
speed and the ability to overcome the local search ability of
the genetic algorithm and the local optimal problem of the
particle swarm optimization algorithm when solving discrete
problems.

In addition, cats are extremely alert, and they always
remain alert even if they are resting. One can simply note
that resting cats lying anywhere are always observing the
environment; once a target is identified, the cat quickly
captures the target and expends a considerably amount of
energy. Similar to the optimization problem proposed in this
paper, when there is no maintenance resource requirement,
the inventory resources of each inventory warehouse are at
a standstill (except for the monthly normal replenishment).
Once there is a request for maintenance resources, accord-
ing to the preset rules, the optimal inventory warehouse is
found that minimizes the total cost; at the same time, all
the inventory warehouses with the remaining inventory are
ready for the scheduled requirement. In addition, the cat
swarm algorithm simultaneously performs a global and local
search in the optimization process; the search has a strong
convergence, and the convergence speed is very high. In the
discrete problem, the cat swarm algorithm exhibits excel-
lent performance compared to those of traditional opti-
mization algorithms, such as the genetic or particle swarm
algorithms.

A. GENERATION OF THE INITIAL MAINTENANCE
RESOURCE INVENTORY
A greedy approach is applied to generate the initial feasible
solution. The basic idea of this approach is to add one unit
of resource at a time for the local warehouses such that the
largest decrease in the distance to the set of feasible solutions
per extra unit of total cost can be gained. The procedure is
terminated when a feasible solution is obtained.

Since it is assumed that the plants can provide infinite
resources, the initial inventory in the plants is infinite, while
the center and local warehouses have zero stock for all the
resources.

For each solution S, the distance to the set of feasible
solutions is defined as

max(0,
∑J

j=1
(Wij(S)−WMij(S))) (9)

For each combination of i ∈ [0,1,. . . , I] and j ∈ [1,. . . , J],
the ratio is calculated as

rij = 1Wij(S)/1Cc(S) (10)

FIGURE 2. Solution framework.

FIGURE 3. The flow of the greedy algorithm.

where

1Wij = max(0,
∑J

j=1
(Wij(S)−WMij(S))) (11)

−max(0,
∑J

j=1
(Wij(S +1S)−WMij(S)))

1Cc(S) = C(S +1S)− C(S) (12)

One unit of resource is then added for the combination
with the largest ratio. A formal statement of this initialization
procedure is as follows:
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Step 1. Set the initial solution and calculate Wij(S) for all
the local warehouses j = 1, . . . , J ;

Step 2. For all i ∈ [0, 1, . . . , I ] and j ∈ [1, . . . , J ], set S =
S + 1S and calculate 1Wij(S), 1Cc(S) and rij.
Step 3. Record the highest ratio of rij. If Wij(S) ≤ WMij(S)

for j ∈ [1, . . . , J ], go to END; otherwise, go to Step 2.
END
The total cost associated with the initial solution, S = 0,

in all the local and central warehouses can be quite high due to
the exceedingly high cost of emergency direct transshipment
from the plant. In this case, increasing the inventory level may
lead to a reduction in the total cost. Hence, the optimal S can
be determined. If there exists more than one combinationwith
the same lowest cost, the one which can provide the largest
decrease in the ratio is chosen.

B. IMPROVEMENT APPROACH FOR OPTIMIZING THE
MAINTENANCE RESOURCE INVENTORY
The objective of this procedure is to a determine a better
maintenance resource inventory for the current solution S.
In this section, the cat swarm algorithm is chosen to optimize
the current solution S. The real number encoding scheme
is used in this approach to address the joint scheduling
problem of maintenance resources. For example, the similar
machines groups are represented by 0, 1, 2, 3; the local
inventory warehouses are represented by 4, 5, 6, 7; the central
inventory warehouses are represented by 8, 9, 10; and the
factory is represented by 11. Among these values, 0: (1,1),
1: (5,8), 2: (11,2), 3: (20,7), 4: (9,14), 5: (13,6), 6: (7,4),
7: (15,12), 8: (18,10), 9: (4,19), 10: (21,3), and 11: (17,23).
The real sequence 11-9-6-1 indicates the maintenance
resources scheduled from plant 11 to central inventory ware-
house 9 to local inventory warehouse 6, and subsequently,
to the maintenance base of the failed machine group.

At present, the cat swarm algorithm generally adopts
a fixed ratio to select the cat behavior in the seeking
mode or tracking mode; consequently, the global cats and
local cats cannot be effectively allocated according to the
optimization degree. According to [38], if the number of
cats in the tracking mode is larger in the early stage of the
algorithm, the global search ability of the algorithm can be
increased. If the proportion of cats is larger in the seek-
ing mode at the later state, the accuracy and convergence
of the solution can be improved. Therefore, to reasonably
allocate the proportion of local and global search, the mixed
ratio (MR) is used in this research to generate different car
proportions in different iteration stages.

Since the failures among components do not affect each
other, it is rational to optimize each kind of resource at one
time. Accordingly, each individual cat represents the inven-
tory amount of one resource at an individual inventory Sij, that
needs to be optimized in this paper. The cat swarm represents
the resource configuration at all the inventory warehouses
according to the maintenance requirements and the actual
available remaining inventory in each warehouse scheduling
maintenance resource.

FIGURE 4. The cat swarm optimization algorithm flow.

In this paper, the total system cost function is used as the
fitness function, and the fitness value is used as the guiding
result for the maintenance resource inventory. By constantly
resettingMR, the above operation is repeated. After multiple
iterations and feedback cycles, the output Sij, minimizes the
total system cost.

The main steps of the cat swarm optimization algorithm
can be described as follows:
Step 1: Initialize the cat swarm
The initial cat swarm is generated through roulette; how-

ever, the result generated by this approach has a lower fitness,
and the convergence speed is restricted to some extent. There-
fore, in this paper, the combination of the greedy criteria [39]
and roulette is applied to initialize the cat swarm, which can
increase both the convergence rate and the diversity of the
initial solution.

First, the inventory warehouse i is selected randomly and
added to 0i = {π1, π2, . . . , π1+J+M}. This value is used as
the inventory warehouse of the current scheduling resource.
Next, according to themaintenance resource scheduling strat-
egy, the next inventory warehouse is searched and added
into the remaining inventory warehouses until all the inven-
tory warehouses are processed in the order set 0i = {π1,
π2, . . . , π1+J+M}; Sij is assigned to πi. Finally, the initial
solution sequence is transformed into the position vectors
within a certain interval by using the following formula:

xk,d = xk,min +
xk,max − xk,min

n
·
(
sk,d − 1+ ω

)
(13)
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where xk,d represents cat k , which is currently in ware-
house d ; sk,d represents the cat k in the d inventorywarehouse
in the current position vectors; xk,min and xk,max represent cat
k in the near-term position vector in continuous space; and
ω ∈ [0, 1].

The initial position and speed are generated as follows:

Xi = Xmin + (Xmax − Xmin)ω1 (14)

Vi = Vmin + (Vmax − Vmin)ω2 (15)

where Xi is the continuous change in intervals Xmax and Xmax ;
and Vi is the continuous change in intervals Vmax and Vmax .
Step 2: Determine MR
In the algorithm execution process, to adjust the proportion

of the global search to the local search, the MR selection
method is used. Initially, a larger MR1 is used to improve
the global search ability and subsequently changed toMR2 to
accelerate the convergence of the algorithm until the termi-
nation condition is satisfied. The total linear MR calculation
formula is as shown in Eq. (11):

MR = MR1 + (MR2−MR1) · Ti/maxTi (16)

where Ti represents the current number of iterations; and
maxTi represents the maximum number of iterations.
Step 3: Determine the candidate probability of each

inventory warehouse
When there is nomaintenance resource demand, all the cats

are in the resting state. Once a request is received, the cats
adjust their state according to the following rules:

1. Define the number of copies (P) of the current inven-
tory Sij, SMP = P.
2. Update Sij: according to theCDC, perform the following

actions:
i. Randomly add or subtract the SRD values from the

current Sij.
ii. Replace the old Sij for all the copies.
3. Compute the fitness (FS) for all the copies according to

Cc(Sij).
4. Judge the FS: if all the FS values are different, calcu-

late the candidate probability of each inventory warehouse
according to (FSi-FSmax)/(FSmax-FSmin); otherwise, set all
the candidate possibilities to 1.

5. Obtain the largest candidate probability of the inventory
warehouses and record the corresponding Sij.
Step 4: Update the inventory change speed
This step corresponds to the global search in the optimiza-

tion problem; the process actually determines the speed of the
inventory change in the selected CDC inventory warehouse.
This process is implemented by adding a random disturbance
mechanism. The specific steps are as follows:

1. Determine the disturbance speed:

vk,d (t + 1) = vk,d (t)+ r · c · (Xb,d (t)− xk,d (t)),

d = 1, 2, . . . , (1+M + J ) (17)

ifvk,d (t) > Vmax d (t) : vk,d (t + 1) = Vmax d (t) (18)

ifvk,d (t) < Vmin d (t) : vk,d (t + 1) = Vmin d (t) (19)

where vk,d (t + 1) represents the rate value of cat k in ware-
house d after the latest update;
Xb,d (t) represents the location of the cat that has the best

fitness value; xk,d (t) represents cat k , which is currently in
warehouse d ; and r, c ∈ [0, 1].
2. Update the speed of each cat to determine whether the

dimension speed is within the maximum and minimum speed
range, and if it is outside the range, force it to the boundary
value.

3. Update the warehouse of each cat.

xk,d (t + 1) = xk,d (t)+ vk,d (t + 1),

d = 1, 2, . . . , (1+M + J ) (20)

where xk,d (t + 1) represents the inventory warehouse of cat
k after the latest update.
Step 5: Reset MR
Reset the number of cats in the tracing and seeking modes

according to the MR, and perform constant iteration until the
termination condition is reached.

IV. CASE STUDY
A. INPUT DATA
A system with 4 local warehouses, 3 central warehouses and
1 plant is analyzed, and in total, 5 groups of machines are
considered. Each of the 4 local warehouses serves one or two
groups, and each group has 4 machines each consisting of
5 key components that can break down independently.

TABLE 3. The cost of each type of resource.

The failure rates (demand rates) per time unit for each type i
component are assumed to follow the Poisson processes with
a constant rate of λi. The replacement time (MTTR) of the
failed components is correlated with its accessibility, and the
λi and MTTR values for all the types of components are pre-
sented in TABLE 3.WMij = 0.8 is set for all j. The remaining
system parameters are fixed as follows: cNL = cNC = 4;
cLTi = 5; cECi = cEPi = 8 f or all i. According to the above
definition, the transshipment time obtained by sampling
from an exponential distribution is as follows: TLTi = 0.8,
TECi = 2, TEPi = 4, TNC = 5, TNL = 7 for all i, j and k , and
1WL ij = 1WDij = 1.

From the pre-experiment, even for the maximum demand
rates, a low safety inventory is sufficient to guarantee high fill
rates. For this reason, the instances are limited to 2 spare parts
for each type of spare part, and the number of maintenance
workers is limited to 1 in each local warehouse. In addition,
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it is assumed that 1 spare part and 1 maintenance worker are
consumed for each maintenance activity; however, it is easy
to extend the model to other strategies. The shortest distance
scheduling strategy is applied to formulate the optimization
problem; hence, the exact probability values of βij are higher
than those of αijk , γij and θij. In this paper, the respective
values are 0.5, 0.3, 0.15, 0,05.

TABLE 4. The parameters of the cat swarm optimization algorithm.

The cost of each type of resource is presented in TABLE 3.
Meanwhile, the parameters of the cat swarm optimization
algorithm are presented in TABLE 4.

B. RESULTS AND ANALYSIS
Because the failures among the components do not affect each
other, for each type of component, the optimal inventory is
computed by the greedy approach and the cat swarm opti-
mization algorithm. Subsequently, the percentage gaps of the
total cost, waiting time and computation time between the two
S values are calculated (GAPc = (total cost from the greedy
approach – total cost from the cat swarm optimization)/total
cost from the greedy approach · 100; GAPw = (waiting time
from the greedy approach–waiting time from the cat swarm
optimization)/waiting time from the greedy approach · 100;
GAPr = (computation time from the greedy approach –
computation time from the cat swarm optimization)/
computation time from the greedy approach · 100).
During the simulation process, each cat searches for the

inventory configuration S that can iteratively reduce the total
system cost. The total system cost changes with the number
of iterations, as shown in FIGURE 5.

FIGURE 5. The convergence graph.

It can be seen from FIGURE 5 that the data tend to be stable
when the simulation runs 1000 times, which is sufficient to

FIGURE 6. The changes in cost based on the spare parts inventory.

prove that the cat swarm algorithm can maintain satisfactory
convergence and stability for the system inventory optimiza-
tion process.

For each type of spare part, increasing the aggregate inven-
tory level decreases the emergency direct transshipment cost.
In contrast, the expected holding cost increases. The expected
total lateral transshipment cost first increases with the aggre-
gate inventory level but later decreases if the inventory level
is sufficiently high, thereby reducing the need for lateral
transshipment.

The optimal maintenance resource inventory configuration
obtained by the greedy algorithm and the cat swarm algorithm
are shown in FIGURE 7. It can be seen from the figure that
the optimal inventory of each maintenance resource exhibits
little difference. Furthermore, the comparison of these two
optimization results on the total cost, waiting time and run-
ning time are shown.

Based on the comparison of the results, several conclusions
can be drawn as follows:

(1) The results of the greedy heuristic and cat swarm
optimization algorithm are almost the same in terms of the
total cost, suggesting that the cat swarm optimization can
determine the optimal solution in the cases.

(2) A slight difference exists in terms of the waiting time
because the optimal solutions are almost the same; however,
the cat swarm optimization algorithm performs well in terms
of the computation time, which remains within a few minutes
for the executed cases.

The presented total cost, waiting time and computation
time are indicative and might differ for other test cases. In the
Discussion section, the impact of the problem size on these
parameters is analyzed.

C. DISCUSSION
1) THE RESEARCH ON THE SCALABILITY
OF THE PROPOSED METHOD
The simulation results show that the number of components
(I ) and number of local warehouses (J ) are two dominant
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FIGURE 7. Maintenance resource inventory.

TABLE 5. The computation time.

FIGURE 8. Comparison of results.

factors affecting the computation time. FIGURE 8. indicates
that the cat swarm optimization algorithm performs better in
terms of the computation time. Subsequently, additional test
cases were added to test the algorithmwhen addressing larger
problems, consisting of four to eight local warehouses with
the same parameter settings as those used in the previous
experiment. TABLE 5 indicates that although the computa-
tion time (measurement unit: min) increases almost linearly
with the number of components, it increases considerably
faster with the number of local warehouses.

To demonstrate the value of the integration, the results
of the joint optimization of the spare parts and mainte-
nance workers were compared with the optimization results
when the number of maintenance workers and the spare
parts inventory are optimized separately. The latter could be
achieved by simply defining X0 = [x01, x02. . . , x0J],Xi =
[xi1, xi2 . . . , x iJ ], i ∈ [1, 2, . . . , I ].

FIGURE 9. Difference between joint and separate optimization
techniques.

That is, the spare parts and maintenance workers are iso-
lated from each other and analyzed separately. FIGURE 9
shows the relative cost difference between the joint and indi-
vidual optimization. The relative cost difference is defined as

diff =(Cs − Cj)/Cs (21)

where Cs is the total expected cost obtained using the sepa-
rate optimization approach, and Cj is the total expected cost
obtained using the joint optimization approach.

The figures are provided for different values of λ (the
failure rate). It is clear from the figure that the joint optimiza-
tion is important in reducing the total cost. The individual
optimization for each resource does not take into account
some maintenance resource requests due to the lack of
other resources. Therefore, in such cases, the proposed joint
optimization and the presented cat swarm optimization algo-
rithm are highly effective.
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TABLE 6. The heuristic hybrid optimization approach used in complete pooling system.

TABLE 7. Comparison with some previous works.

2) SENSITIVITY OF THE APPROACH
This section describes the analysis of how the total cost
changes with an increasing λ (failure rate). In these experi-
ments, λ is obtained by multiplying a factor, Kλ ∈ [0.5; 10],
by the initial failure rate. FIGURE 10 shows the total cost
per month obtained using the presented optimization algo-
rithm, and the total cost can be noted to be a monotonically
increasing function of Kλ. The part cost increases smoothly
and constitutes the largest component of the total cost.

FIGURE 10. The change in cost with the increase in the failure rates.

Subsequently, it is studied whether the optimization algo-
rithm can be used to perform the complete pooling. A small
system with 1 plant, 2 central warehouses and 3 local ware-
houses that serve 4 machine groups are chosen to verify the
algorithm. The results are presented in TABLE 6.

TABLE 6 shows that the optimization algorithm is also
suitable for complete transshipment, which indicates that the
algorithm is generic and can be used to solve most transship-
ment problems.

3) COMPARISON WITH OTHER STUDIES
Because the maintenance resources scheduling system is an
NP-hard problem, the constraints play a critical role in the

optimization of the inventory. Previous studies solved some
aspects of the complex problem, however, none of them could
cover all the characteristics, such as the joint optimization
of multiple maintenance resources, multiple warehouses and
multiple echelons, considering the partial pooling strategy.
In this phase, the proposed approach was compared with pre-
vious studied in some aspects, and the results are summarized
in TABLE 7.

On the basis of the experiment results and the additional
test cases addressing larger problems, this approach can
be used for any system with a known type of component.
Furthermore, the algorithm can be used directly for optimiz-
ing each kind of resource in different inventory warehouses.
Moreover, the analysis of the joint optimization of the spare
parts and maintenance workers compared to the optimization
separately indicates that only the joint optimization can yield
a global optimal for a multiple component system.

V. CONCLUSION
In this paper, a heuristic hybrid optimization approach
is proposed to optimize the maintenance resources. First,
a greedy heuristic is used to obtain the initial inventory. Then,
an improved cat swarm optimization algorithm is applied to
optimize the current S. The modifications are incorporated
into the individual cat swarm mode, which make the cat
swarm algorithm more efficient, reliable and robust. The
main contributions of this paper are as follows:

1) A partial pooling strategy is used to share the mainte-
nance resources between the same-echelon inventory ware-
houses, and the results show that the partial pooling strategy
performs well in multiple echelon and resource inventory
systems.

2) The greedy heuristic and cat swarm optimization algo-
rithm are used to obtain the optimal resource inventory S,
which can flexibly support the combination of the spare parts

VOLUME 7, 2019 137845



B. Cui et al.: Heuristic Hybrid Optimization Approach for Spare Parts and Maintenance Workers Under Partial Pooling

and maintenance workers with the scheduling strategies of
lateral transshipment and emergency direct transshipment.
The results show that the cat swarm optimization algorithm
is time efficient.

3) The combination of the greedy criterion and roulette
is used to initialize the cat swarm, which can accelerate the
convergence rate.

4) The mixed ratio is used in the cat swarm optimization
algorithm to reasonably allocate the proportion of local and
global search in different iteration stages, which can increase
the global search ability of the algorithm and the accuracy of
the solution.

The results obtained are encouraging. In the future
research, some extensions can be performed in several direc-
tions. One possible extension is to consider more types of
resources (e.g., including tools), not equally skilled service
engineers and possibilities to backorder the failure requests
due to the lack of the resources. Another extension is to
group several local inventory warehouses into a pooling
group served by a central inventory warehouse. The analy-
sis becomes more complex with these additional decisions;
therefore, the analysis must be performed jointly with the
inventory decisions.
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