
Received September 3, 2019, accepted September 18, 2019, date of publication September 23, 2019,
date of current version October 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2942954

Defuse: Decoupling Metadata and Data
Processing in FUSE Framework for Performance
Improvement
WENRUI YAN 1, JIE YAO2, (Member, IEEE), AND QIANG CAO 1, (Senior Member, IEEE)
1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System of Ministry of Education, Wuhan 430074, China
2School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding authors: Jie Yao (jackyao@hust.edu.cn) and Qiang Cao (caoqiang@hust.edu.cn)

This work was supported in part by the Creative Research Group Project of NSFC under Grant 61821003, in part by the NSFC under Grant
61872156, in part by the National Key Research and Development Program of China under Grant 2018YFA0701804, in part by the
Fundamental Research Funds for the Central Universities under Grant 2018KFYXKJC037, and in part by the Alibaba Group through
Alibaba Innovative Research (AIR) Program.

ABSTRACT A popular user-space file system framework, FUSE, has been widely used for building various
customized file systems(cFS) on top of the underlying kernel file system(kFS). A FUSE-based cFS gains
adequate flexibility by developing its specific functions in user space, but brings extra user-kernel mode
switches in the request processing flow owing to forwarding all requests from the FUSE kernel driver to
the user-space daemon, thus degrading the overall performance. We observe that a file data request does not
need to forward to the user-space daemon when its file-to-file mapping between the FUSE-based cFS and
the underlying kFS remains unchanged. Based on the insight, we propose a modified FUSE framework -
DeFUSE that decouples the processing flow of the metadata and data requests. The metadata requests still
follow the original flow to reserve flexibility while the data requests are directly executed in the DeFUSE
kernel driver maintaining the file-to-file mappings in the kernel, effectively eliminating the unnecessary
mode switches. We have implemented the DeFUSE framework and ported three representative FUSE-based
cFSs to DeFUSE. The result shows that for data-centric workloads, the throughput of DeFUSE-based cFSs
increases up to 3.5X for write and 3.8X for read respectively, compared to their corresponding FUSE-based
implementations. DeFUSE is available on Github.

INDEX TERMS FUSE, file system, file mapping, performance optimization.

I. INTRODUCTION
File systems are ubiquitously deployed in a myriad of stor-
age devices and large-scale systems. They provide a com-
mon programmable interface (i.e. POSIX) for applications
to access file data by implementing file operations upon
underlying storage devices. Many traditional file systems are
implemented in the OS kernel, such as Ext4 [1], f2fs [2],
and ZFS [3], to directly maintain file-to-storage layout and
to execute IO processes in OS kernel. The kernel file systems
efficiently make full use of IO characteristics of the storage
media while experiencing complex and lengthy development,
which are error-prone with serious consequence of machine
crash [4], [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Huaqing Li.

Recently, user-space file systems rose in popularity thank
to quick prototyping of new approaches and functionali-
ties. The most popular user-space file system framework
is FUSE (File system in user-space) [6]. For file system
developers, a typical use case of FUSE framework is to build
the customized file system (referred as cFS hereafter in this
paper) stacking on top of mature kernel file system (referred
as kFS hereafter in this paper). Rich user-space libraries
can help extend the feature of the kFS (e.g. compression
and self-defined encoding). Meanwhile, the user-space codes
are more convenient to debug and test than kernel codes.
As a consequence, FUSE has become a popular framework
adopted by many existing file systems such as Ceph client [7]
and Hadoop client [8], the client of cloud storage system
Google Cloud Storage [9]; file system in data migration node
MarFS [10]; a composited file system [11], a tiered optical
storage system ROS [12]. These file systems can support

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 138473

https://orcid.org/0000-0003-4706-9729
https://orcid.org/0000-0001-9124-0533


W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

scalable big-data analysis and machine-learning applications
such as Hadoop [13], TensorFlow [14], and SPARK [15],
using legacy programmable interface (i.e. POSIX). Some of
them have been deployed in production environments.

For the FUSE-based cFSs which are stacking on kFSs,
their specific global namespaces are constructed by design-
ing the specific directory-to-directory and file-to-file map-
ping between the cFSs and kFSs. A cFS generally leaves
the complex and error-prone file-to-storage mapping to
the underlying kFS. For directory-to-directory mapping,
one or more individual namespaces of kFSs can be combined
together or remapped to build the global namespace of cFSs.
For file-to-file mapping, multiple files in a cFS can be aggre-
gated into one file in the kFS [11] or one file in a cFS can be
split into several files in the kFS [12].

Unfortunately, FUSE-based cFSs reap flexibility by sacri-
ficing performance in both latency and throughput. A FUSE-
based cFS only achieves about 37% the performance that
its kFS provides [16]. The root cause of such performance
degradation is that IO routine in the FUSE-based cFS leads to
extra one or more user-kernel-user mode switch compared to
the kFS. Note that the mapping relationship between a FUSE-
based cFS and its kFS is generally defined, processed, and
stored by the FUSE user-space file system daemon. For a
FUSE-based cFS, all requests first trap into the FUSE kernel
driver, and then forward to the FUSE user-space daemon
to be processed with customized logic, leading to the extra
user-kernel-user mode switches. More specifically, we fur-
ther divide the requests of the FUSE-based cFS into three
classes: the directory, file metadata and file data requests. The
directory operation creates, modifies or obtains the directory-
to-directory mapping of a cFS directory; The file meta-
data request defines or modifies the file-to-file mapping of
a cFS file; The file data request accesses the data on the
corresponding one or multiple files in the kFS. The user-
kernel-user mode switches in the directory and file metadata
request are essential because the mapping relationship must
be manipulated in user space to gain the flexibility of FUSE.
However, when merely accessing the file data, the file data
requests actually do not modify its relevant file-to-file map-
ping. Therefore, when the file-to-filemapping is fixed and can
be kept in the kernel, the file data requests do not need to be
forwarded into the FUSE user-space daemon so that the extra
user-kernel-user mode switch in the file data requests can be
eliminated effectively.

This observation inspires us to present a novel framework
- DeFUSE, as shown in Figure 1, to reduce unnecessary
user-kernel-user mode switches during accessing file data by
directly executing data I/Os within the kernel file system.

The main contribution of this paper is summarized as
follows:

• We propose a DeFUSE based on FUSE framework to
decouple the processing flow of the metadata and data
request. The directory and file metadata requests follow
the original flow of FUSE to reserve flexibility. The pro-
cessing flow of the file data requests bypasses the FUSE

FIGURE 1. The architecture of FUSE and DeFUSE framework.

users-space file system daemon and completely executes
in the kernel, avoiding unnecessary mode switches.

• We generalize the file-to-file mapping of FUSE-based
cFSs into three fundamental patterns. We design a file
mapping structure Data_Map to uniformly describe
such three file-to-filemapping patterns. DeFUSE kernel
driver maintains and uses Data_Maps that are delivered
from the user-space daemon as requested.

• We implement the DeFUSE framework by simply mod-
ifying the FUSE user-space daemon and the kernel
driver. We also transplant three representative FUSE-
based cFSs to DeFUSE-based cFSs.

• We evaluate the performance of these DeFUSE-based
cFSs and compare them with their corresponding
FUSE-based implementations. The result shows that for
data-centric workloads, the throughput of these file sys-
tems has significantly improved up to 3.8X for read and
3.5X for write respectively.

The rest of the paper is organized as follows: Section II
describes FUSE framework and the design patterns of
FUSE-based cFS. We present the motivation of this work.
Section III discusses the design and implementation details
of DeFUSE framework. Section IV gives the performance
evaluation of the DeFUSE framework. Section V presents
current researches on the optimization of FUSE and FUSE-
based cFSs. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION
FUSE (File system in User Space) offers a generic file system
framework for developing cFSs stacking atop of kFSs. There
have been more than 100 FUSE-based file system available
on Github [17]. In this section, we first describe the architec-
ture of the FUSE framework and the design pattern of current
FUSE-based cFSs. Then we analyze the mode switches in the
FUSE-based cFSs. Lastly, we present the motivation of this
work.

A. FUSE ARCHITECTURE
The architecture of FUSE framework is shown in Figure 2.
It consists of two modules: FUSE kernel module and User-
space file system daemon.

138474 VOLUME 7, 2019



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

FIGURE 2. The architecture of FUSE framework.

FIGURE 3. The mapping of the directory and file between the cFS and kFS.

FUSE Kernel Driver: The FUSE kernel driver registers a
fuse file system driver in the Linux’s VFS and registers a
block device /dev/fuse. The FUSE kernel driver forwards the
requests to the device file /dev/fuse. The device file /dev/fuse
is the bridge between the FUSE kernel driver and the user-
space daemon. Both the user-space file system daemon and
the FUSE kernel module can read/write data from/to the
device file.
User-Space File System Daemon: The user-space file sys-

tem daemon reads the requests from /dev/fuse, translates the
request, parses the request type and parameters, then calls
the corresponding user-space APIs according to the request
type. File system developers can implement their file system
functions (e.g., compression or de-duplication) in the user-
space APIs. When the corresponding user-space APIs have
finished their functions, the user-space daemon writes back
the result to FUSE kernel driver via /dev/fuse.

B. FUSE-BASED FILE SYSTEMS DESIGN PATTERN
The critical work for a FUSE-based cFS is to consider the
specific namespace construction between the cFS and its
corresponding kFSs as shown in Figure 3.

For the directory mapping in FUSE-based cFSs, there
are two typical ways: One way is to directly map kFS
directories to the FUSE-based cFS based on a pre-
defined rule or algorithms (e.g., adding node id or spe-
cific prefix string to the kFSąŕs directories) [12]; Another

way is to indirectly store the namespace relationship in
database or configuration files [10]. When the FUSE-
based cFS executes the mkdir and readdir requests to a
directory, the directory-to-directory mapping can be cre-
ated and accessed accordingly. Besides of the mapping,
the cFS metadata (e.g., the attribute of the file, such as
the file size, owner and creation time) are conveniently
extended, for example, the file data content abstract, access
rate and attributes about the upper layer logic [10], [12].
These extended metadata can be used for specific processing
and analysis.

For the file mapping in the FUSE-based cFS, the file
data may be split or aggregated on several files in the kFS
[11], [12]. The file-to-file mapping between a cFS file and
its related kFS files also can be defined by a algorithms or a
list stored in a configuration file. When the user-space read
and write APIs are called to access file data, the file-to-file
mapping relationship must be acquired by executing user-
space open or create APIs. The file-to-file mapping remains
unchanged during the file data requests, such as OLFS [12],
PLFS [18].

C. FUSE USER-SPACE APIS
FUSE-based cFS developers can implement their file systems
functions by adding codes in the user-space APIs. The FUSE
framework provides two sets of user-space APIs: high-level
API and low-level API. The developers can choose one set of
the APIs to implement their cFS.
Low-level APIs process the request from /dev/fuse. The

prototype of low-level APIs are as follow:

low_level_fs_operations(struct req*
req,...)

The struct req is the data structure received from the kernel
driver, it contains the request type and data location infor-
mation. While the high-level APIs are on top of the low-
level APIs. After the low-level APIs handle the struct req and
transform the information to path-based, the high-level APIs
can use the file path to deal with the mapping between the
FUSE-based cFS and the kFS. The prototype of high-level
APIs are as follow:

high_level_fs_operations(char * path,...)

The difference between low-level and high-level APIs is
that file system developers are explicitly handling differ-
ent request parameters in the former case. When develop-
ers use the high-level APIs, they merely process the path
string mapping between a FUSE-based cFS and its kFS in
an intuitive way. Therefore, most production FUSE-based
cFSs employhigh-level API mode. So far, there are over one
hundred open source FUSE-based cFSs in Github, and over
90% of them are implemented with high-level APIs [17].
In the rest discussion of the paper, cFSs are implemented with
high-level APIs by default.
Taking high-level APIs for example, a FUSE-based cFS

needs to implement the functions listed in Table 1. We divide

VOLUME 7, 2019 138475



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

FIGURE 4. File access consists of three steps: open, read&write and close. When accessing a file in FUSE-based cFS, the blue arrows shows
that each of these steps induces a user-kernel-user mode switch. When the file is large, the read&write may introduce large amount of
user-kernel mode switches. The red dotted arrow in the read&write part indicates that the file data IO can be completely executed in the
FUSE kernel driver.

TABLE 1. FUSE user-space APIs. We divide the user-space APIs into three
categories: Directory, File Metadata and File Data.

the user-space APIs into three categories: the Directory APIs
which are used to process the directory-to-directorymapping
between cFS and kFS; the File Metadata APIs are used to
deal with the file-to-file mapping between cFS and kFS; the
Data APIs which are used to access the file data on the kFS.

D. MODE SWITCHES IN A FUSE-BASED CFS
As shown in Figure 4, when a user application issues a
request to a file in the FUSE-based cFS, with the system calls
such as sys_open, sys_read, sys_write and sys_close, the file
access process traps into the kernel VFSmodule, and then the
user application sleeps and waits for the result. Afterwards,
VFS calls the registered FUSE kernel driver function and
the FUSE kernel driver writes the request to /dev/fuse; The
user-space daemon reads the request from /dev/fuse. It means
the file access process switches back to user space. The
user-space daemon translates the request, then performs the
corresponding user-space API. Usually, the user-space API
issues a request to the corresponding file(s) in the kFS, for
example, open and close access the configuration file, read
and write access the data file(s). Thus the file access process
re-enters the kernel VFS module to actually access the kFS
files. When the user-space API completes the request and
obtains the result, the user-space daemon writes the result
back to /dev/fuse; FUSE kernel driver receives the result and
wakes up the user application to finish the file access process.

From the comparison shown in Figure 4, it can be seen that
the FUSE-based cFS introduces extra mode switches. And
each call to the user-space API leads to one extra ‘‘round

trip’’ mode switch from user space to kernel and then back
to user space. When the user requests induce multiple file
I/Os (up to 128KB per I/O), the processing flow of the request
has to switch frequently between the user and kernel mode,
thus resulting in severe throughput degradation. For example,
when reading or writing a 1MB file with the IO size 4KB,
there are 258 switches (one for the open, one for the close, and
256 for the read/write) user-kernel-user switches in a kFS.
However, for a FUSE-based cFS, the count of the user-kernel-
user switches is 516, doubled compared to the kFS. Current
FUSE framework supports an IO size up to 128KB. Under
128KB IO size the user-kernel mode switches count are 10 in
the kFS and 20 in the cFS respectively. The user-kernel-user
switch count in the cFS is reduced but still doubled compared
to the kFS. The experimental result shows that in a FUSE-
based cFS, the kernel/user mode switches can cause 63%
throughput degradation compared to its underlying Ext4 [16].

E. MOTIVATION
All request-processing flows of a FUSE-based cFS follow
the user-kernel-user routine. However, for file data requests,
we found that the file-to-file mapping generally remains
unchanged after it is initially determined by the open or create
API. If themapping can be obtained in the kernel, the process-
ing flows of the subsequent read andwrite are not essential to
be forwarded to the user-space daemon, actual data IOs can
be completed in the kernel as the red dotted arrow in Figure 4.
Therefore, for file data accessing, which is a common case,
especially for large files, a large amount of mode switches
originally caused by file data IOs can be eliminated effec-
tively. Based on this insight, we present DeFUSE framework
to improve file data IO performance. In the next section,
we will give details of DeFUSE framework.

III. DEFUSE DESIGN AND IMPLEMENTATION
In this section, we first present the design of DeFUSE
framework. Then we give the implementation details of the

138476 VOLUME 7, 2019



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

DeFUSE framework. At last, we apply the DeFUSE frame-
work to three representative cFSs.

A. DEFUSE OVERVIEW
To achieve the design goal of the DeFUSE framework,
the details efforts we made are listed below:

(1)

1) We modify the FUSE kernel driver and /dev/fuse to
handle the metadata and data requests according to
different processing routines;

2) We define a generalized data structure Data_Map,
to describe the file-to-filemapping of each file between
cFS and kFS;

3) We design Data_Map delivery mechanism between
the user-space daemon and DeFUSE kernel driver at
runtime to support concurrent and parallel access;

B. DECOUPLING PROCESSING FLOW
DeFUSE framework inherits the overall architecture from
FUSE but modifies its kernel module. To distinguish meta-
data and data processing, we first category all requests into
four types: directory requests as mkdir and readdir ; file
metadata requests as open, create, and close; file data requests
as read andwrite; the other requests in FUSE. In the DeFUSE
framework, the directory, filemetadata, and the other requests
obey the original user-kernel-user processing flow. The file
metadata requests as open, create, and close, process the file-
to-file mapping in user space. However, the data requests
as read and write, are not forwarded longer to the user-
space daemon. In contrast, they are completely handled in
the kernel. DeFUSE first identifies the request type as file
accessing requests and other metadata requests.

To decouple processing flow of the file metadata and data
request, we first identify the corresponding functions in the
FUSE kernel driver handling the open, create, read, write
and close requests. Then, we modify their respective pro-
cessing logic. The create and open requests generate the file-
to-file mapping structure of the requested file as Data_Map
in user-space. And then, the Data_Map is delivered into to
the DeFUSE kernel driver. Afterwards, the file data requests
can be transformed into file data I/Os executed by the kFSs.
Separately processing and storing the metadata and data on
Metadata and Storage servers respectively is a common idea
in distributed file systems [13], [19], Chen Youxu et.al [20]
present a metadata prefetch technique for distributed file
system to reduce the amount of requests to the metadata node.
However, DeFUSE does not reduce the amount of metadata
and data requests, but reduces the user-kernel mode switches
within data accessing.

C. FILE-TO-FILE DATA STRUCTURE
When directly accessing a file data in the kernel, the key point
is to design a kernel data structure, Data_Map that records
the file-to-file mapping of the requested cFS file. Data_Map
should is defined by the user-space daemon and used in

FIGURE 5. Three basic file mapping patterns between FUSE-based file
system and underlying file system: 1-to-1, M-to-1 and 1-to-M. The upper
files in the FUSE-based file system actually are stored in its one or more
corresponding physical files in the underlying file system.

TABLE 2. The file data mapping pattern of FUSE-based file systems. PLFS
and OLFS have 1-to-1 and 1-to-M pattern according to the configuration
files.

the kernel. Furthermore, emphData_Map does not affect the
original concurrency and parallelism of FUSE framework.

Each cFS file has its ownData_Map that uniquely identify
this file within both the user-space daemon and the kernel.
There are two kinds of file identifiers to represent a kFS file
in the kernel: the file descriptor fd and the file path string
filename. For file descriptor, each user-space process has its
own file descriptor table while the OS kernel also maintains a
global file descriptor table. Therefore, the fd of a file in user
space and kernel space is not unique. However, the absolute
file path of the kFS file is unique no matter in user space or in
kernel space, so we choose the file path string filename as the
unique identifier of a file in kFS.

Generally, file-to-file mapping combination between the
cFS and kFS can be categorized into three basic types: 1-to-
1 where a cFS file is completely stored in a single kFS file;
1-to-M where a cFS file is split and stored in multiple kFS
files; M-to-1 where multiple cFS files are compacted into a
single kFS file. The three kinds of file mapping are shown
in Figure 5. We have made a brief classification for existing
FUSE-based file systems, as shown in Table 2.

To abstract these three types of typical FUSE-based cFSs,
the mapping structure Data_Map contains the kFS file path
string filename, the offset in the kFS file and the size of file
data in the kFS file. The offset parameter is for the M-to-
1 mapping, when many cFS files are compacted to a single

VOLUME 7, 2019 138477



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

FIGURE 6. The Data_Map is added as a member of the structure fuse_file,
inheriting the access control of the FUSE framework.

large kFS file, as shown in Figure 5, the location of the small
file data requires the internal offset in the large file. When
the file mapping is 1-to-1, the offset is set to zero. When the
mapping pattern are 1-to-M, one cFS file is partitioned into
multiple small kFS files so that there are multiple pairs of
filename, offset and size. Hence the Data_Map is a structure
array. DeFUSE supportsMAX file partition number up to 16,
which is enough for current practical FUSE-based cFSs.

D. DATA_MAP DELIVERY
When the file metadata request passing in the user space
daemon is completed, the callback function in the DeFUSE
kernel driver can bring back a parameter structure of the user
space. Therefore, we leverage a built-in tunnel in the callback
function to effectively and efficiently deliver the Data_Map
to the DeFUSE kernel driver.

When a Data_Map of a cFS file has been kept in the
FUSE kernel driver, a write request could modify size and
offset in the Data_Map. In this case, another application
might be reading this file. Therefore, concurrent access to the
Data_Map should be supported. Current FUSE framework
supports the concurrent file access from multiple threads
by managing the file structure fuse_file with a mutex_lock
fuse_mutex. The design principle of DeFUSE is to make
as least modification as possible to the FUSE framework.
Therefore, instead of creating a new mutex_lock, we add the
Data_Map as a member in the structure fuse_file, inheriting
the existing concurrent access control in the FUSE frame-
work, as shown in Figure 6.

A cFS fileData_Map lifecycle begins with the open/create
request and ends with the close request. Therefore the map-
ping delivery between user-space and kernel may not signif-
icantly affect the throughput of DeFUSE-based cFSs when
accessing large file, because the Data_Map only needs to
be delivered twice in open/create and close requests. But
when the user requests are small-file-dominated, the perfor-
mance of the DeFUSE-based cFSs would degrade because of
the frequent Data_Map delivery in the metadata processing.
To accelerate the small files workload, we add a M-Cache
queue to cache the used Data_Map in the kernel driver. The
M-Cache queue is a hash table, the hash keys are the VFS
inode-ids. Before the open request to a file is sent to user
space, we check the file inode-id to find out whether the
Data_Map is cached. If it has been cached, the open request
does not need to be sent to the user space daemon. Other-
wise, the open request follows the original processing flow,

and the Data_Map will be added to the M-Cache queue.
The M-Cache queue has a maximal length of 1024 with
an LRU replacement approach. The performance impact
of the Data_map delivery process is further evaluated in
Section IV-D.

E. FILE REQUESTS HANDLING
In this section, we combine the processing flow of the meta-
data and data requests together, give a detailed description of
how the file requests are served in a DeFUSE-based cFS. The
processing flows of writing a new file and reading an existing
file are respectively shown in Algorithm 1 and Algorithm 2.

Algorithm 1 Processing File Write Request
Require:

File request parameters, FPath;
File request parameters, FData;
The pre-defined mapping pattern, Mp;

Ensure:
The data file, Df ;
The metadata file, Mf ;

1: In open or create API, according to Mp, the filename
in Data_Map are initiated with FPath, size and offset
are set to zero, then the Data_Map is delivered to the
DeFUSE kernel driver;

2: In DeFUSE kernel driver,FData are written to the speci-
fied file Df with the filename, then size and
offset are updated;

3: In user-space release API, the Data_Map is deliv-
ered back, then create the metadata file Mf and write
Data_Map to Mf ;

4: return Df, Mf ;

Algorithm 2 Processing File Read Request
Require:

The data file, Df ;
The metadata file, Mf ;
File request parameters, FPath;
File request parameters, FSize,FOffset;

Ensure:
File request parameters, FData;

1: In openAPI, according toMp, theData_Map are initiated
by reading from the metadata file and
delivered to DeFUSE kernel driver;

2: In DeFUSE kernel module, FData are read fromDf with
the parameters filename, size and offset;

3: In user-space releaseAPI, nothing needs to be done since
Data_Map is not modified;

4: return FData;

As a result of Step 3, when writing a new file in a DeFUSE
cFS, the other threads to access this file have to wait until the
user-space release operation is finished until theData_Map is
written back to its corresponding metadata file, thus leading

138478 VOLUME 7, 2019



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

TABLE 3. We present the code changes required to implement DeFUSE
framework and port OLFS, fuse-dfs and PLFS.

Listing 1. Part of the kernel read function.

to long access latency. The result of multiple threads to access
files in the DeFUSE file system is illustrated in Section IV-C.

F. IMPLEMENTATION
The DeFUSE framework is implemented based on FUSE
3.0.0 in Linux 4.8.5. Table 3 shows the lines of code modi-
fication as we implement DeFUSE and port the FUSE-based
cFSs. The detailed modification is listed below:
Libfuse: The common parameter transferred between

DeFUSE kernel driver and the user-space daemon - struct
fuse_file_info is defined in the header file fuse.h. Therefore,
we add the mapping structure Data_Map as a member of the
structure fuse_file_info.
FUSE Kernel Driver: In order to complete file data access

in the DeFUSE kernel driver,, there are two methods: the
VFS-level and the Address Space method. The VFS-level
method is to replace the function generic_read_iter to VFS-
level function vfs_read ; The Address Space method is to
replace the address space operation fuse_readpages with
the ext4_readpages. Such two methods can serve the read
request. The Address Space method is the typical implemen-
tation method of the kFS, it requires careful modification for
the kFSmodule in code-level to export its static address space
functions. However, when the kFS changes, this modified
method will not work anymore. In contrast, the VFS-level
method uses VFS-level function which is generic for all
kinds of kFSs. Therefore, we modify the VFS-level function
vfs_read and vfs_write to execute the file data access in the
FUSE kernel driver as shown in Listing 1.
User-Space APIs: Because the file data operations are

performed in the DeFUSE kernel driver, the user-space read
and write APIs are bypassed. The user-space open and create
APIs need to acquire the file-to-file mapping from the cor-
responding metadata file, database, or algorithms, then to

Listing 2. User space open function.

generate theData_Mapwith the items of filename, offset and
size, finally to assign the Data_Map to the member in the
structure fuse_file_info. And the release function writes the
Data_Map back to themetadata file or database. The contents
of the Data_Map actually change according to the cFSąŕs
functionality.

G. APPLICABILITY
To build a DeFUSE-based cFSs, it is needed to pre-define its
featured file-to-file mapping. Similarly, for existing FUSE-
based cFSs, in order to port them to DeFUSE, the key
point is also to figure out the file-to-file mapping between
their cFSs and kFSs, which is generally defined in open
API or in the configuration files. To manifest applicability
of DeFUSE, we choose three representative FUSE-based
cFSs: OLFS [12], fuse-dfs [13] and PLFS [18], and port their
implementations to DeFUSE framework. Note that these file
systems have other rich features besides of their specific file-
to-file mappings, but in this paper, we only focus on the file-
to-file mapping part of these file systems. The following is
the brief introduction of their functions and how we extract
the file-to-file mappings of these file systems.
OLFS: OLFS is a file system on rack-based optical disc

library, it provides a universal namespace for hard disks
and thousands of optical discs. From function olfs_open in
olfs.c in OLFS code, we can know that the underlying files
are stored in the pre-allocated optical disc images, so the
filename in Data_Map is the disc-image-dir plus the path in
the olfs_open API.
Fuse-dfs: Fuse-dfs is a client file system ofHDFS. It allows

HDFS to be mounted as a common file system. Once fuse-
dfs is mounted on the client side, the user can access files
on the remote data nodes with POSIX file system APIs. The
user’s file data first is stored in the local temporary files, then
the temporary files are transferred to the remote data nodes
according to the file distribution rules from HDFS namenode
in the background. The directory of the temporary files is con-
figured in the configuration file core-site.xml, so the filename
inData_Map is the tmp-dir plus the path in the dfs_openAPI.
PLFS: PLFS is short for Parallel Log-structured File Sys-

tem. Parallel applications write their checkpoint data into a
single shared file, leading to small and not aligned writes to
the shared file, thus the performance is poor. PLFS remaps the

VOLUME 7, 2019 138479



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

small writes into log structured writes to multiple shared files,
greatly improving the performance for check-pointing. PLFS
supports multiple work patterns: one shared checkpoint file
for all applications or one checkpoint file for each application.
We set the working pattern to the latter one and configure the
data file directory to data-dir in the configuration file .plfsrc.
The filename inData_Map is the data-dir plus the path in the
plfs_open API.

After we determine the file-to-file mapping of these cFSs,
the Data_Map of these file systems can be acquired in the
metadata request and sent to the DeFUSE kernel driver. Then
the data request can be directly executed in the kernel, thus
reducing the user-kernel mode switches. As shown in Table 3,
the file system porting can be done with minor code changes.

IV. EVALUATION
In this section we validate correctness of porting DeFUSE-
based cFSs, and then analyze the performance of the DeFUSE
framework.

A. EVALUATION METHODOLOGY
To understand the applicability of the DeFUSE framework,
we have ported three typical FUSE-based file systems to
DeFUSE framework as mentioned in Section III-G. Then
we give detailed discussion on how the DeFUSE framework
can achieve performance improvement and how the extra
Data_Map delivery affects the access latency of file system.
Below are our evaluation metrics, workloads, and experiment
environment.
DeFUSE Applicability Test: We choose three common

FUSE-based cFSs: OLFS, fuse-dfs and PLFS and then
transplant them to DeFUSE framework and mark them as:
De-OLFS, De-fuse-dfs and De-PLFS. We run the ‘‘single-
stream-IO’’ workload in Filebench [26], [27] to validate
the applicability of the DeFUSE-based file system and the
performance improvements compared to FUSE-based cFSs.
The ‘‘single-stream-IO’’ workload reads or writes one 60 GB
file with one thread, and the IO size is set to 1MB. The results
report the file system throughput and access latency under the
file system configurations.
DeFUSE Framework Analysis:After we validate the appli-

cability of DeFUSE-based cFSs, in order to accurately ana-
lyze the impact of the mapping delivery process in DeFUSE,
we implemented the passthrough file systems based on the
FUSE and DeFUSE framework respectively, which simply
pass all the cFS requests to the kFS with no extra processing
in user-space APIs. These two file system configurations are
marked as FUSE FS and DeFUSE FS. We further run the
following data-centric workload and metadata-centric work-
load in Table 4 to understand how different workloads affect
the performance of the DeFUSE-based cFS. The data-centric
workloads work in both single thread mode and multiple
thread mode. All workloads have four IO sizes of 4KB, 32KB,
128KB, 1MB. The File-server workload is metadata-centric,
the workload concurrently accesses 200,000 files with multi-
ple threads.

TABLE 4. The data-centric and metadata-centric workloads.

TABLE 5. The experiment setup of the server.

Experimental Setup: The performance of user-space file
system depends on the underlying storage media and kernel
file system. The hardware configurations of the server are
shown in Table 5. The SSD arrays are configured as RAID-0
to get the full throughput of the storage media. The kFS
we choose is Ext4 [1], for its stable performance, mature
optimization, and prevalent deployment. The performance
of Ext4 works as the baseline. Each time before we run a
workload, we clear the file system cache and remount the
file system, to eliminate the effect of cache generated by the
previous workload. All the workloads were running for more
than 10 times to get the stable results. The final throughput
and latency we reported in this section are the average values
of 10 stable experiments results. The standard deviations of
all these results range from 1.8% to 6.8%, considering that the
standard deviation of SSD performance is around 6% [28],
the experiment results can be considered as stable and and
consistent.

B. DEFUSE APPLICABILITY
The throughputs under file system configurations are shown
in Figure 7(a). And the amount of user-kernel mode switches
are shown in Figure 8.

From the throughput result, we can see that the through-
put of De-OLFS, De-fuse-dfs and De-PLFS respectively
increased by 1.8X, 3.8X and 3.5X in read, as well as by 2.4X,
3.5X and 3.0X in write. These results show that the DeFUSE-
based cFSs far outperform the FUSE-based file systems. The
reason of the performance improvement is the reduced user-
kernel mode switches as shown in Figure 8. The DeFUSE

138480 VOLUME 7, 2019



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

FIGURE 7. The performance metrics of FUSE-based cFSs and
DeFUSE-based cFSs. The results reported here are the average value of
the repetitive experiments and the standard deviations of the results here
range from 1.8% to 3.7%.

FIGURE 8. The amount of user-kernel mode switches of FUSE-based cFSs
and DeFUSE-based cFSs. The amount of Ext4 works as the baseline.

cFSs only adds 10 extra user-kernel mode switches compared
to Ext4 because the getattr, open, release requests inmetadata
processing. Compared to the FUSE cFSs, DeFUSE cFSs
reduce about 50% of the extra user-kernel mode switches
compared, that’s the main cause of the performance improve-
ment. From the perspective of the storage system, DeFUSE
reduces the user-kernel mode switches in the file system
layer. Therefore, emerging non-volatile memory with low I/O
latency can potentially benefit from this software optimiza-
tion.

While the DeFUSE framework improves the throughput,
the Data_Map delivery process in the file metadata requests
may cause longer latency. Therefore, we present the latency
comparison under the file system configurations, as shown
in Figure 7(b). When accessing large files with single thread,
the latencies of DeFUSE-based cFSs are less than the FUSE-
based cFSs. The reason is that even if the access to one
file only brings two Data_Map deliveries, the reduced user-
kernel mode switches in data requests decrease the latency.
In fact, the extra latency brought by the mapping delivery
process in the metadata requests can be amortized bymultiple
data IOs so that the overall file system latency is decreased.
We can get the conclusion that DeFUSE-based cFS is suitable
for large file access workloads.

C. DATA-CENTRIC WORKLOAD ANALYSIS
Figure 9 shows the throughput result of the data-centric work-
loads. Below are the detailed observations and analysis.
Sequential Read 1 File With 1 Thread: The throughput of

the single thread read workload is shown in Figure 9(a), when

FIGURE 9. The throughput of the data-centric workloads running on
Ext4,FUSE FS and DeFUSE FS. Within each figure, from left to right, the IO
size of the workload are 4kB, 32KB, 128KB and 1MB. The results reported
here are the average value of the repetitive experiments and the standard
deviations of the results here range from 5.2% to 5.8%.

the IO size is no less than 32KB, the throughput of DeFUSE
FS is only 2.4% lower than Ext4. When the IO size is 4KB,
the throughput of DeFUSE FS is 15.0% lower than Ext4.
We can see thatDeFUSE FS provides the throughput close to
Ext4, the main reason is that DeFUSE FS benefits from the
prefetch read mechanism of FUSE [16]. While the reduced
user-kernel mode switches contribute more to the perfor-
mance improvement when the IO size is less than 32KB.
Sequential Read 32 Files With 32 Threads:When reading

32 files in 32 threads, the throughput is shown in Figure 9(b),
we can see that the throughput of DeFUSE FS and FUSE FS
both are larger than Ext4 when the IO size is no less than
32KB.When the IO size is 128KB,DeFUSE FS outperforms

VOLUME 7, 2019 138481



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

Ext4 up to 7.6%. The reason for the throughput of FUSE
FS outperforms Ext4 is that the underlying storage media
is SSD array, so FUSE framework can simultaneously pre-
fetch files among different devices, that’s why the pre-fetch
mechanism works better in multi-threads workload. And the
reduced user-kernel mode switches further leads to through-
put increment in DeFUSE FS.
Sequential Write 1 File With 1 Thread: As shown in

Figure 9(c), the throughput of DeFUSE FS is 8.9% - 20.0%
lower than Ext4. Compared to single thread read, the data
have to be written to the storage media directly. We can see
that DeFUSE FS outperforms FUSE FS by 2.4X to 6.6X due
to the reduced user-kernel mode switches.
Sequential Write 32 Files With 32 Threads: As shown

in Figure 9(d), we can see that the throughput of DeFUSE
FS and FUSE FS are larger than Ext4 when the IO size is no
less than 128KB. When the IO size is 128KB, the DeFUSE
FS outperforms Ext4 up to 5.8%. The multi-thread writes
also benefit from the underlying SSD array since the writes
to multiple storage device can be processed in parallel. The
reduced user-kernel mode switches further contribute to the
throughput improvements of DeFUSE FS.
Random Read 1 File With 1 Thread: As shown in

Figure 9(e), when random reading files, the read ahead mech-
anism of FUSE is not working. So when the IO size is 1MB,
compared to the throughput of Ext4, the throughput of FUSE
FS causes 49.9% of performance degradation, however the
DeFUSE FS achieves 90.7% of the Ext4 throughput. When
the IO size drops from 1MB to 4KB, the throughput of these
three configurations all decrease from 93.3% to 95.0%. This
is because in the random access pattern, with bigger IO size,
the read cache can reduce performance degradation.
Random Read 1 File With 32 Threads: When reading one

pre-allocated file with 32 threads, DeFUSE FS outperforms
Ext4 by 19.3% with 1MB IO size. The performance improve-
ments also benefit from the multiple storage devices and
when accessing one file, even in the random access pattern,
there are still many read cache hits. However, FUSE FS only
utilize 43.3% 82.4% of the throughput of Ext4.
RandomWrite 1 File With 1 Thread:Obviously, the under-

lying SSD array has good performance to the random write
workload. Performance degradation caused by DeFUSE FS
is 14.5% to 26.7%. However, the performance of DeFUSE
FS outperforms FUSE FS by 3.2X to 8.4X. The reduced
kernel/user mode switches contribute to the performance
improvements of DeFUSE FS compared to FUSE FS.
Random Write 1 File With 32 Threads: The performance

is similar to the workload rnd-rd-32th-1f. The same analysis
applies here.
Overall Findings: We can see that the write through-

put of DeFUSE FS and FUSE FS reaches peak when the
IO size is 128KB, which is exactly the default big_writes
size in the FUSE framework. The FUSE kernel does not
need to split or compact the data when the IO size is
128KB. And when the IO size is 4KB, the throughput of
DeFUSE FS are far larger than FUSE FS, which means that

FIGURE 10. The throughput and latency of the metadata-centric
workloads running on FUSE FS, DeFUSE FS and the DeFUSE FS with the
M-Cache enabled. The result reported here are the average value of the
repetitive experiments and the standard deviations of the results range
from 2.3% to 6.8%.

DeFUSE framework performs well even when the IO size is
small. When the workload are single thread access of files,
theDeFUSE FS are little lower than Ext4, when the workload
are multi-thread access of files, DeFUSE FS outperforms
Ext4.

D. METADATA-CENTRIC WORKLOAD ANALYSIS
The throughput and the latency of the metadata-centric
workloads are shown in Figure 10. We can see from Fig-
ure 10(a), when there is only 1 thread inFile-server workload,
the throughput of DeFUSE FS is 35.4% of FUSE FS. This
is because the small file access causes frequent access to its
metadata in user space, thus amplifying the impact of the
Data_Map delivery process in the metadata request. As the
number of threads increases, the throughput of FUSE FS
increases and reaches a stable throughput at 17,000 ops/s.
The throughput of DeFUSE FS decreases because multi-
thread access brings longer wait time in the DeFUSE meta-
data request. The operation latency is shown in Figure 10(b).
When there is only 1 thread, the latency of FUSE FS and
DeFUSEFS are 0.8ms and 2.6ms respectively. As the number
of thread increases, the latency of FUSE FS is stable at
about 1.8ms, while the latency of DeFUSE FS increases
up to 405ms. The throughput and latency of DeFUSE FS
are acceptable in single-thread metadata-centric workload.
However, when the number of threads goes up, the latency
of DeFUSE FS increases up to hundreds millisecond level
and the throughput is also greatly decreased.

With the M-Cache enabled in the DeFUSE framework,
the throughput of DeFUSE FS with M-Cache increases by
1.2X - 2.4X compared to DeFUSE FS. The throughput
improvement comes from the reduced number of Data_Map
delivery. Compared to the FUSE FS, the throughput incre-
ment is not obvious because theM-Cache only caches 1024 of
the recently used Data_Map, the total amount of the small
files are 200,000. The latency of the DeFUSE FS with
M-Cache is reduced by 47.0% - 75.5% compared toDeFUSE
FS, the M-Cache significantly reduces the access latency of
DeFUSE FS. But the latency stills increases up to 118ms
when the number of threads increase to 50. We can further
increase the maximal count of the M-Cache to reduce the
impact on the throughput and latency.

138482 VOLUME 7, 2019



W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

V. RELATED WORK
Performance of the FUSE framework has drawn much atten-
tion from the academic research field. Vasily Tarasov et al.
discuss that the user-kernel mode switches are the main per-
formance overhead in the FUSE framework [29]. Bharath
Kumar Reddy Vangoor et.al further give detailed analysis of
the FUSE framework and evaluate FUSE-based file system
performance degradation brought by the user-kernel mode
switches [16].
Optimization From FUSE Framework Developers: Devel-

opers of the FUSE framework have present two optimization
method to reduce the kernel/user mode switch overhead:
(1) FUSE uses the splicing functionality in the Linux kernel
[30] to reduce memory copy between the user and kernel
space; (2) FUSE provide asynchronous write policy and
increase the default write chunk from 4KB to 128KB [17],
which reduces kernel/user mode switch in write operation;
(3) FUSE uses the file system prefetch read mechanism [31]
to cache the data to reduce mode switches in read operations.
Liu Xin et.al [32] uses the former two optimization methods
in their ONFS implementation and achieves performance
improvements. DeFUSE can leverage these optimizations to
achieve performance improvement.
Optimization From FUSE-Based cFS Developers:

Researchers who use FUSE to build prototype file sys-
tems have also made optimization to their own customized
FUSE-based cFSs. Zhang et.al [11] composite the small
files together to improve the file system performance under
metadata-centric workload. Shun Ishiguro et al. [33] opti-
mized local file accesses for FUSE-based distributed storage.
Yan et al. [12] reduce the kernel/user mode switches in the
optical library file system. All of their methods are specific
for their own file systems, and can not be extended to
general FUSE-based file systems. Besides, their methods are
implemented on FUSE version 2.9.X or before, and cannot
be applied to the current FUSE framework. Ashish Bijlani
et.al [34] present Extfuse, an extension framework for FUSE,
and Extfuse focuses more on optimizing the performance
of metadata operations, and uses in-kernel metadata caching
strategy to reduce user-kernel mode switches in the metadata
operations.

VI. CONCLUSION
In this paper, we proposed a novel optimization scheme:
DeFUSE, which divides the requests in FUSE-based cFS into
two types: the metadata and data request, then process these
two kinds of requests with different flow. With the carefully
designed structure Data_Map being delivered to DeFUSE
kernel driver in the metadata requests, the file data requests
can be completed within the kernel so that the unnecessary
user-kernel mode switches in the data requests are removed,
thus greatly improving the throughput. We implement the
DeFUSE framework and port three FUSE-based cFSs to
DeFUSE-based cFSs with minor modification of their code.
The experiment result shows that for data-centric workloads,

the bandwidth of DeFUSE-based cFSs outperform the corre-
sponding FUSE-based implementations by 1.8X to 3.8X.

REFERENCES
[1] (2018). Ext4 Wiki. [Online]. Available: https://ext4.wiki.kernel.org/index.

php
[2] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, ‘‘F2fs: A new file system for

flash storage,’’ in Proc. FAST, 2015, pp. 273–286.
[3] Z. Wiki. (2017). Zf. [Online]. Available: https://wiki.ubuntu.com/ZFS
[4] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and

N. Zeldovich, ‘‘Using Crash Hoare logic for certifying the FSCQ file
system,’’ in Proc. 25th Symp. Operating Syst. Princ., Oct. 2015, pp. 18–37.

[5] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, ‘‘All file systems
are not created equal: On the complexity of crafting crash-consistent
applications,’’ in Proc. 11th Symp. Operating Syst. Design Implement.
(OSDI), 2014, pp. 433–448.

[6] M. Szeredi. (2010). Fuse: Filesystem in Userspace. [Online]. Available:
https://lwn.net/Articles/118574/

[7] (2018). Ceph Client. [Online]. Available: https://github.com/ceph/ceph
[8] (2014). Mounting HDFS With Fuse. [Online]. Available: https://wiki.

apache.org/hadoop/MountableHDFS
[9] (2018). A User-Space File System for Interacting With Google Cloud

Storage. [Online]. Available: https://github.com/GoogleCloudPlatform/
gcsfuse/

[10] P. Braam and D. Bonnie, ‘‘Campaign storage,’’ in Proc. Int. Conf. Massive
Storage Syst. Technol., 2017, pp. 1–8.

[11] S. Zhang, H. Catanese, and A.-I. A. Wang, ‘‘The composite-file file sys-
tem: Decoupling the one-to-one mapping of files and metadata for better
performance,’’ in Proc. FAST, 2016, pp. 15–22.

[12] W. Yan, J. Yao, Q. Cao, C. Xie, and H. Jiang, ‘‘ROS: A rack-based optical
storage system with inline accessibility for long-term data preservation,’’
ACM Trans. Storage, vol. 14, no. 3, Nov. 2018, Art. no. 28.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ inProc. IEEE 26th Symp.Mass storage Syst. Technol.
(MSST), May 2010, pp. 1–10.

[14] M. Abadi et al., ‘‘Tensorflow: A system for large-scale machine learning,’’
in Proc. 12th Symp. Operating Syst. Design Implement. (OSDI), 2016,
pp. 265–283.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computing with working sets,’’ HotCloud, vol. 10,
nos. 10–10, p. 95, Jun. 2010.

[16] B. K. R. Vangoor, V. Tarasov, and E. Zadok, ‘‘To fuse or not to fuse:
Performance of user-space file systems,’’ in Proc. FAST, 2017, pp. 59–72.

[17] (2016). Fuse Big_Writes. [Online]. Available: https://github.
com/libfuse/libfuse/releases

[18] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, ‘‘PLFS: A checkpoint filesys-
tem for parallel applications,’’ in Proc. Conf. High Perform. Comput.
Netw., Storage Anal., New York, NY, USA, Nov. 2009, Art. no. 21.
doi: 10.1145/1654059.1654081.

[19] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, ‘‘Locofs: A loosely-coupled metadata
service for distributed file systems,’’ in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Nov. 2017, Art. no. 4.

[20] Y. Chen, C. Li, M. Lv, X. Shao, Y. Li, and Y. Xu, ‘‘Explicit data
correlations-directed metadata prefetching method in distributed file sys-
tems,’’ IEEE Trans. Parallel Distrib. Syst., to be published.

[21] R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni, P. Felber,
H. Mercier, and R. Oliveira, ‘‘SafeFS: A modular architecture for secure
user-space file systems: One FUSE to rule them all,’’ in Proc. 10th ACM
Int. Syst. Storage Conf., May 2017, Art. no. 9.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
‘‘Ceph: A scalable, high-performance distributed file system,’’ in Proc. 7th
Symp. Operating Syst. Design Implement., Nov. 2006, pp. 307–320.

[23] M. E. Hoskins, ‘‘SSHFS: Super easy file access over SSH,’’ Linux
J., vol. 2006, no. 146, p. 4, Jun. 2006.

[24] (2018).NTFS-3G. [Online]. Available: https://github.com/osxfuse/osxfuse
[25] (2018). S3fs-Fuse. [Online]. Available: https://github.com/s3fs-fuse/s3fs-

fuse
[26] V. T. G. Amvrosiadis. (2018). Filebench. [Online]. Available: https://

github.com/filebench/filebench/wiki

VOLUME 7, 2019 138483

http://dx.doi.org/10.1145/1654059.1654081


W. Yan et al.: Defuse: Decoupling Metadata and Data Processing in FUSE Framework for Performance Improvement

[27] V. Tarasov, E. Zadok, and S. Shepler, ‘‘Filebench: A flexible framework for
file system benchmarking,’’ Login, USENIX Mag., vol. 41, no. 1, pp. 6–12,
Mar. 2016.

[28] (2011). SSD Quality and Performance Comparison [EB/OL].
[Online]. Available: http://www.technical-direct.com/en/ssd-quality-
and-performance-comparis% on-a-testing-and-evaluation-report-for-ssds-
in-the-market-today-2-2/

[29] V. Tarasov, A. Gupta, K. Sourav, S. Trehan, and E. Zadok, ‘‘Terra incognita:
On the practicality of user-space file systems,’’ in Proc. HotStorage, 2015,
pp. 1–5.

[30] L. Torvalds. (2017). Linux splice. [Online]. Available: http://man7.
org/linux/man-pages/man2/splice.2.html

[31] R. A. J. Griffioen, ‘‘Reducing file system latency using a predictive
approach,’’ in Proc. USENIX Conf. File Storage Technol., Jun. 1994,
pp. 197–207.

[32] X. Liu, Y.-T. Lu, J. Yu, P.-F. Wang, J.-T. Wu, and Y. Lu, ‘‘ONFS:
A hierarchical hybrid file system based on memory, SSD, and HDD
for high performance computers,’’ Frontiers Inf. Technol. Electron. Eng.,
vol. 18, no. 12, pp. 1940–1971, Dec. 2017. doi: 10.1631/FITEE.1700626.

[33] S. Ishiguro, J. Murakami, Y. Oyama, and O. Tatebe, ‘‘Optimizing local
file accesses for FUSE-based distributed storage,’’ in Proc. SC Com-
panion, High-Perform. Comput., Netw., Storage Anal. (SCC), Nov. 2012,
pp. 760–765.

[34] A. Bijlani and U. Ramachandran, ‘‘Extension framework for file systems
in user space,’’ in Proc. Annu. Tech. Conf. (ATC), Renton, WA, USA, 2019,
pp. 121–134. [Online]. Available: https://www.usenix.org/conference/
atc19/presentation/bijlani

WENRUI YAN received the B.S. degree in com-
puter science major from the Huazhong Uni-
versity of Science and Technology (HUST),
China, in 2013. He is currently pursuing the
Ph.D. degree in computer architecture with the
Wuhan National Laboratory for Optoelectronics
(WNLO). His research interests include optical
library storage systems, and file system design and
implementation.

JIE YAO received the B.S. degree in computer
science major and the M.S. and Ph.D. degrees in
computer architecture from the Huazhong Univer-
sity of Science and Technology (HUST), China,
in 2001, 2004, and 2009, respectively, where he
has been a Lecturer of computer architecture, since
2010. His research interest includes the method-
ology and implementation of computer architec-
ture, especially on the long-term data preservation
systems.

QIANG CAO received the B.S. degree in applied
physics from Nanjing University, in 1997, and
the M.S. degree in computer technology and the
Ph.D. degree in computer architecture from the
Huazhong University of Science and Technology,
in 2000 and 2003, respectively. He is currently
a Full Professor with the Wuhan National Labo-
ratory for Optoelectronics, Huazhong University
of Science and Technology. His research interests
include computer architecture, large scale storage

systems, and performance evaluation. He is a Senior Member of the China
Computer Federation (CCF), IEEE, and ACM.

138484 VOLUME 7, 2019

http://dx.doi.org/10.1631/FITEE.1700626

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	FUSE ARCHITECTURE
	FUSE-BASED FILE SYSTEMS DESIGN PATTERN
	FUSE USER-SPACE APIS
	MODE SWITCHES IN A FUSE-BASED CFS
	MOTIVATION

	DEFUSE DESIGN AND IMPLEMENTATION
	DEFUSE OVERVIEW
	DECOUPLING PROCESSING FLOW
	FILE-TO-FILE DATA STRUCTURE
	DATA_MAP DELIVERY
	FILE REQUESTS HANDLING
	IMPLEMENTATION
	APPLICABILITY

	EVALUATION
	EVALUATION METHODOLOGY
	DEFUSE APPLICABILITY
	DATA-CENTRIC WORKLOAD ANALYSIS
	METADATA-CENTRIC WORKLOAD ANALYSIS

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	WENRUI YAN
	JIE YAO
	QIANG CAO


