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ABSTRACT Essential proteins are critical components of living organisms and indispensable to cellular
life. Identification of essential proteins plays a critical role in the survival and development of life process
and understanding the function of cell machinery. The experimental methods are usually costly and time-
consuming. In order to overcome these limitations, many computational methods have been proposed
to discover essential proteins based on the topological features of PPI networks and other biological
information. In this paper, a new method named NIE is proposed to predict essential proteins based
on second-order neighborhood information and information entropy of protein complex and subcellular
localization. Firstly, a number of studies have shown that the RNA-Seq data is more advantageous than
traditional gene expression data in predicting essential proteins. Meanwhile, the protein essentiality is
closely related to the subcellular localization information, protein complex information and protein GO terms
through data analysis. A weighted PPI network is constructed to reduce the impact of false positives and false
negatives data on the identification of essential proteins, which integrates the GO terms information with
Pearson correlation coefficient of RNA-Seq data. Secondly, the information entropy of protein complexes
and subcellular localization is calculated to represent the biological characteristics of proteins. Furthermore,
an information propagation model is constructed, which combines the biological properties of the proteins
with the second-order neighborhood information in the PPI network to measure the essentiality of the
proteins. In the experiments section, the proposed method is implemented on three common datasets
(DIP, Krogan and MIPS) of Saccharomyces cerevisiae. A comparison study with other commonly used
algorithms, including LAC, NC, PeC,WDC, UC, LIDC and LBCC is performed to evaluate the performance
of NIE. The results show that the new method NIE has a better performance in predicting essential proteins.

INDEX TERMS Essential proteins, information entropy, neighborhood information, protein interaction
networks.

I. INTRODUCTION
Essential proteins are those proteins to result in lethality or
infertility of a cell if one of them has been deleted [1]. Essen-
tial proteins are closely related to the structure, function,
and regulation of biological systems, play a very impor-
tant role in the whole life of the cell. The loss of essential
proteins causes the cells to become inactive, causing the
cells to lose some functions, leading to pathological changes,
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affecting the survival and evolution of the living body [2], [3].
Identifying essential proteins and studying the properties
and mechanisms of essential proteins have great signifi-
cance in biology and pathology. Biological assays such as
RNA interference [4], single gene knockout [5] and condi-
tional gene knockout [6] methods can determine essential
proteins accurately, but the experimental cost is high, and
the experimental period is long. With the rapid develop-
ments of high-throughput technologies and computer tech-
nologies, it is a trend to predict and identify essential proteins
through bioinformatics and computational biology methods.
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Many computational approaches have been proposed for pre-
dicting essential proteins.

Most proteins interact with each other to form a protein-
protein interaction (PPI) network to participate in various
life processes [7], [8], which makes it possible for us to
identify essential proteins from a network level. From this
point of view, many essential protein recognition methods
based on the characteristics of PPI network are proposed.
In the PPI network, nodes represent proteins and edges rep-
resent interactions between proteins, therefore, the six main
indicators for measuring node centrality Degree Centrality
(DC)[9], Betweenness Centrality (BC)[10], Closeness Cen-
trality (CC)[11], Subgraph Centrality (SC)[12], Eigenvector
Centrality (EC)[13], and Information Centrality (IC)[14] are
used to identify essential proteins in the early stages of
research. The node centrality provides a good research idea
for finding essential proteins, but the accuracy is not ideal.
Min et al. developed a new method for weighing protein-
protein interactions based on the combination of logistic
regression-based model and function similarity [15]. Li et al.
proposed a method to determine the essentiality of proteins
based on the local average connectivity (LAC) of nodes and
its neighbors [16]. The above node centrality only consid-
ers the importance of the proteins, without considering the
importance of the interactions between proteins. Wang et al.
proposed a new centrality measure method NC [17] for iden-
tifying essential proteins based on edge clustering coeffi-
cient (ECC). Li et al. developed a new topology measure by
defining and computing the value of each protein’s topology
potential [18].

The above methods analyze the essentiality of a pro-
tein only based on its network topology properties, without
considering biological properties of proteins, and the PPI
data have many false positives and false negatives which
have a great influence on the accuracy of the methods [19].
In order to solve this shortcoming, many researchers began
to integrate the network properties and biological properties
of proteins to analyze the essentiality of proteins. Li et al.
and Tang et al. combined with gene expression profiles to
propose new centrality measure PeC [20] and WDC [21]
based on edge clustering coefficient and Pearson correlation
coefficient (PCC). In addition to the gene expression profiles
of proteins, studies have shown that the protein complex
information, the protein subcellular localization information,
the protein domain information, the protein GO function
annotation information, the protein orthologous information,
and RNA-Seq information all have an impact on the essential-
ity of proteins. Peng et al. designed an iteration method ION
for predicting essential protein by integrating the orthologous
information with PPI networks [19]. Li et al. developed a
united complex centrality (UC) for identification of essen-
tial proteins by integrating the protein complexes with the
topological features of PPI networks [22]. Luo et al. pro-
posed a method LIDC for predicting essential proteins used
local interaction density combined with protein complexes
based on statistical analyses of essential proteins and protein

complexes [23]. Peng et al. proposed an algorithm UDoNC
by integrating the protein domain data with protein-protein
interaction data [24]. Li et al. developed an essential pro-
tein prediction method by integrating the information of
subcellular localization, orthologous proteins and PPI net-
works, named SON [25]. Qin et al. proposed a method
LBCC based on the combination of local density, between-
ness centrality and in-degree centrality of complex [26]. Lei
et al designed a new essential proteins prediction method
RSG based on RNA-Seq, subcellular localization and GO
annotation datasets [27]. These methods all use the net-
work topology properties score and the biological prop-
erties score in PPI network to sort proteins, which can
determine the essentiality of the proteins based on the
score.

It should be pointed out that the construction of PPI net-
works also has a certain impact on the essentiality of proteins
because the available PPI data contains many false positives
and false negatives. Luo and Kuang introduce a new method
named CDLC to predict essential proteins by integrating
dynamic local average connectivity and in-degree of pro-
teins in complexes [28]. Xiao et al. proposed a framework
for identifying essential proteins from active PPI networks
constructed with dynamic gene expression [29]. Li et al.
constructed a refined protein interaction network TS-PIN
by using time-course gene expression data and subcellular
location information [30]. Shang et al. constructed integrated
dynamic PPI networks use RNA-Seq datasets [31]. The iden-
tifying accuracy of these methods is higher than the simple
use of PPI networks.

It must also be mentioned that some novel computational
methods such as machine learning [32], deep learning and
swarm intelligence optimization algorithm have also been
applied to essential protein recognition. Zeng et al. pro-
posed a deep learning framework to automatically learn bio-
logical features without prior knowledge [33]. Lei et al.
designed essential proteins recognition model based on arti-
ficial fish swarm optimization [34] and flower pollination
algorithm [35], respectively.

Although the above methods have made great progress,
there are still many shortcomings and room for advancement
in predicting essential proteins fields. In this paper, we devel-
oped a novel method to predicting essential proteins based
on second-order neighborhood information and information
extropy, named NIE. Proteins do not work alone[20]. Con-
sidering the co-expression and function-related properties of
proteins, we first constructed a weighted PPI network using
RNA-Seq data and GO functional annotation data. Then,
we calculated the information entropy of the protein complex
data and subcellular localization data as the feature space
of the protein. Finally, matrix operations are used to obtain
the second-order neighborhood information of each protein
as the final feature score. To test the performance of the
proposed method NIE, we carry out experiments on three
PPI network of Saccharomyces cerevisiae and compared with
seven other competing methods: LAC, NC, PeC, WDC, UC,
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LIDC and LBCC. The experimental results show that NIE
outperform the seven previously proposed methods.

II. METHODS
A. CONSTRUCTING WEIGHTED PPI NETWORK
The PPI network is usually described as an undirected graph
G(V ,E), the set of nodes V = {v1, v2, . . . , vn} represent the
proteins and the set of edges E = {e(vi, vj)} represents the
interactions between protein vi and vj. Studies have shown
that the available PPI data is incomplete and contains many
false positives and false negatives, which impacts the cor-
rectness of discovering essential proteins. However, there are
other biological properties that can help us analyze the rela-
tionship between proteins. The previous studies have shown
that the essential proteins tend to interact with each other and
functionally related [27].With the rapid development of high-
throughput sequencing technology, RNA-seq datasets have
provided us with a new way to study gene expression pro-
files [31]. The RNA-Seq data has a larger dynamic range and
a better ability to detect and quantify unknown transcripts and
subtypes [36], thus better describing the co-expression char-
acteristics between genes. We use RNA-Seq data to measure
the gene expression intensity and GO functional annotation
data to measure functional similarity between proteins and
construct a weighted PPI network.

The Person correlation coefficient (PCC) was calcu-
lated to evaluate how strong two interacting proteins are
co-expression [37]. The PCC value of a pair of RNA-Seq
x = {x1, x2, . . . , xm} and y = {y1, y2, . . . , ym}, which encode
the corresponding paired protein vi and vj interacting in the
PPI network, is defined as:

PCC(vi, vj)=

∑m
k=1 (xk−µ(x))(yk−µ(y))√∑m

k=1 (xk−µ(x))2
√∑m

k=1 (yk−µ(y))2
(1)

whereµ(x) andµ(y) are the mean RNA-Seq expression value
of proteins vi and vj, respectively. The value of PCC ranges
from -1 to 1, if PCC(vi, vj) is a positive value, there is a
positive correlation between protein vi and vj, if PCC(vi, vj)
is a negative value, there is a negative correlation between
protein vi and vj.
The GO functional annotation data is a biological resource

that describes the functional properties of genes, if two inter-
acted proteins vi and vj have many common GO terms, their
functions are more similar. For protein vi and vj, the GO
similarity between them was computed as follows [27]:

GOsim(vi, vj) =

∣∣GOi ∩ GOj∣∣∣∣GOi ∪ GOj∣∣ (2)

where GOi and GOj represent the GO terms for proteins vi
and vj,

∣∣GOi ∩ GOj∣∣ and ∣∣GOi ∪ GOj∣∣ represent the number
of GO terms in the intersection and union of GOi and GOj.
Based on the PCC and GOsim, we build a weighted PPI
network (WPIN), the weight between protein vi and vj is
defined as follows:

Weight(vi, vj) = PCC(vi, vj)× GOsim(vi, vj) (3)

B. INFORMATION ENTROPY
Proteins have many biological information, such as protein
complex information and subcellular localization informa-
tion, which are related to the essentiality of proteins. Infor-
mation entropy is often used as a quantitative indicator of
the information content of a system [38]. We use informa-
tion extropy to calculate the amount of information about
protein biological characteristics. The measure of informa-
tion entropy associated with each possible data value is the
negative logarithm of the probability mass function for the
value [39]:

H (Z ) = −
∑
z∈Z

p(z) log(p(z)) (4)

where Z represents the event, z represents the possible value
of the event, and the corresponding probability is p(z).
We separately calculated the information entropy of protein
complexes and subcellular localization and used them as
eigenvalues of proteins.

1) INFORMATION ENTROPY OF PROTEIN COMPLEX
Protein often bind together to form complexes to carry out
their biological functions. Mutation or destruction of essen-
tial proteins will cause the organism to lose some function,
so the essential protein is closely related to protein com-
plexes. The set C = {c1, c2, . . . , cnc} is standard protein
complexes, where nc is the number of protein complexes,
cj = {v1, v2, . . . , vp}, j = 1, 2, . . . , nc is the jth protein
complex in C , p is the number of proteins contained in the
protein complex cj, the probability of protein complex cj is
calculated as follows:

p(cj) =

∣∣cj∣∣
|C|

(5)

where
∣∣cj∣∣ is the number of proteins contained in protein

complex cj, |C| is the number of proteins contained in the
standard protein complex C .
For each protein vi ∈ V , we construct an nc-dimensional

vector ComInfi(1 × nc) to represent the protein associated
complex information: ComInfi = [0 1 0 1 . . . 1 0 0 1 0 1]

ComInfi(j) =

{
1, vi ∈ cj
0, vi /∈ cj

(6)

the information entropy of protein complex of protein vi is
defined as follows:

HC(vi) = −
nc∑
j=1

ComInfi(j)p(cj) log(p(cj)) (7)

2) INFORMATION ENTROPY OF SUBCELLULAR
LOCALIZATION
The set S = {s1, s2, . . . , sns} is subcellular localization data,
where ns is the number of subcellular localization, sk =
{v1, v2, . . . , vq}, k = 1, 2, . . . , ns is the kth subcellular local-
ization in S, q is the number of proteins contained in subcellu-
lar localization sk , the probability of subcellular localization
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sk is calculated as follows:

p(sk ) =
|sk |
|S|

(8)

where |sk | is the number of proteins contained in subcellular
localization sk , |S| is the number of proteins contained in the
subcellular localization data S.

For each protein vi ∈ V , we construct an ns-dimensional
vector SubInfi (1 × ns) to represent the protein associated
subcellular localization information:

SubInfi = [1 0 0 1 . . . 1 0 1]

SubInfi(k) =

{
1, vi ∈ sk
0, vi /∈ sk

(9)

the information entropy of subcellular localization of protein
vi is defined as follows:

HS(vi) = −
ns∑
k=1

SubInfi(k)p(sk ) log(p(sk )) (10)

For each protein vi ∈ V , after the information entropy
of protein complexes HC(vi) and the information entropy
of subcellular localization HS(vi) is calculated, we build the
feature matrix F for the set of nodes V = {v1, v2, . . . , vn}:{

f (vi) = [HC(vi) HS(vi)]
F = [f (v1), f (v2), . . . , f (vn)]

(11)

C. PREDICTING ESSENTIAL PROTEINS BASED ON NIE
According to the established weighted PPI network (WPIN),
we established a second-order neighborhood information-
based propagation model to calculate the score matrix Score
of the proteins. A is the adjacency matrix of the WPIN, In is
identity matrix: 

M = A+ In
F1 = M × F
Score = M × F

1

(12)

For each protein vi ∈ V , the final score is calculated as
follows:

score(vi) =
∑

Score(i, :) (13)

In summary, the pseudocode of algorithm NIE is shown
in Table 1.

III. RESULTS AND DISCUSSION
In order to evaluate the accuracy and the efficiency of the
proposed NIE algorithm, we implemented it on three com-
mon datasets DIP, Krogan and MIPS in Matlab R2015b and
executed on a quad-core processor 3.30GHz PC with 8G
RAM. For comparison, we implemented seven classic meth-
ods LAC, NC, PeC, WDC, UC, LIDC and LBCC. Among
these seven methods, LAC and NC rely on the network char-
acteristics of the PPI network, PeC and WDC integrate gene
expression data, and UC, LIDC and LBCC integrate protein
biometric data. There are also six classic network centrality

TABLE 1. The pseudocode of algorithm NIE.

methods DC, IC, EC, SC, BC, CC and the literature has
proven that these methods are not very accurate. Therefore,
in this article, we do not compare these six methods. First, the
results are sorted in descending order. Then, we select the top
ranked proteins as candidate essential proteins respectively.
Finally, comparing the candidate essential proteins with the
standard essential proteins to judge how many candidates are
true essential proteins.

We adopted five types of popular comparison methodolo-
gies to evaluate the algorithm performance: 1) Histogram
comparison methodology. 2) Jackknife curves methodol-
ogy. 3) Precision-recall curves methodology. 4) ROC curves
methodology. 5) Statistical measures.

A. EXPERIMENTAL DATA
All the data used were Saccharomyces cerevisiae. The exper-
imental data used in this paper are as following:
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FIGURE 1. Comparison of the number of essential proteins detected by NIE and other seven methods in DIP dataset (a) Top 100 (b) Top
200 (c) Top 300 (d) Top 400 (e) Top 500 (f) Top 600.

1) PPI network data. Three commonly used protein inter-
action databases DIP [40](version of 20160114), Krogan [41]
and MIPS [42] were employed. After preprocessing, the DIP
database contains 5028 proteins and 22302 interactions, the
network density is 0.0018, the Krogan database contains
2674 proteins and 7075 interactions, the network density
is 0.0020, the MIPS database contains 4546 proteins and
12319 interactions, the network density is 0.0012.

2) RNA-Seq data. The RNA-Seq data is collected from
the NCBI SPA database (SRX362640)[43]. The data contains
7108 genes at 12 time points after removing the unavailable
ones, with 4957 genes involved in theDIP dataset, 2673 genes
involved in the Krogan dataset and 4531 genes involved in the
MIPS dataset.

3) GO annotation data. The GO database is currently one
of most comprehensive ontology databases in bioinformat-
ics. GO-slims are cut-down versions of the GO ontologies
containing a subset of the terms in the whole GO [44]. They
give a broad overview of the ontology content without the
detail of the specific fine-grained terms. Among the 7014 pro-
teins in the GO-slims data, 4939 proteins present in the
DIP dataset,2671 proteins present in the Krogan dataset and
4508 proteins present in the MIPS dataset.

4) Protein complex data. CYC2008[45] is a comprehen-
sive catalogue of manually curated 408 heteromeric protein
complexes in S. Cerevisiae reliably backed by small-scale
experiments from the literature. There are1472, 1152 and
1369 proteins in the DIP, Krogan and MIPS datasets appear
in the CYC2008 dataset, respectively

5) Subcellular localization data. The subcellular localiza-
tion information of proteins was retrieved from knowledge
channel of COMPARTMENTS database (April 6, 2017)[46].
After preprocessing, there are 4908 proteins, which could

be classed into 11 categories: 1) Cytoskeleton, 2) Cytosol,
3) Endoplasmic, 4) Endosome, 5) Extracellular, 6) Golgi, 7)
Mitochondrion, 8) Nucleus, 9) Peroxisome, 10) Plasma and
11) Vacuole. There are 4054, 2350 and 3654 proteins in the
DIP, Krogan and MIPS datasets have subcellular localization
data, respectively

6) Standard essential protein data. The essential proteins
data was selected form SGD [47], DEG [48]. The essential
proteins data includes 1285 essential proteins [25]. Among
the 1285 essential proteins, 1152, 784 and 1016 essential pro-
teins present in DIP, Krogan and MIPS dataset, respectively.

7) Gene expression data. Gene expression data was
retrieved from GEO (Gene Expression Omnibus) with acces-
sion number GSE3431[21]. The data contained 7074 genes
at 36 time points in the 3 cell life cycles after preprocessing,
with 4876, 2644 and 4445 genes involved in the DIP, Krogan
and MIPS datasets, respectively. The GEO data is used to
implement PeC algorithm.

Detailed data intersection information of experimental data
is shown in Table 2.

B. PERFORMANCE COMPARISON WITH HISTOGRAM
METHODOLOGY
The performance of NIE is compared with seven existing
methods LAC, NC, PeC, WDC, UC, LIDC and LBCC.
We select top 100, 200, 300, 400, 500, 600 ranked pro-
teins predicted by LAC, NC, PeC, WDC, UC, LIDC, LBCC
and NIE as candidate essential proteins respectively. Fig. 1,
Fig.2 and Fig. 3 show the results of the comparison in
DIP, Krogan and MIPS dataset respectively. From Fig. 1,
Fig. 2 and Fig. 3, it is easy to see that the NIE outperforms
LAC, NC, PeC, WDC, UC, LIDC and LBCC obviously.
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TABLE 2. The data intersection information of the experimental data.

FIGURE 2. Comparison of the number of essential proteins detected by NIE and other seven methods in Krogan dataset (a) Top 100 (b) Top
200 (c) Top 300 (d) Top 400 (e) Top 500 (f) Top 600.

FIGURE 3. Comparison of the number of essential proteins detected by NIE and other seven methods in MIPS dataset (a) Top 100 (b) Top
200 (c) Top 300 (d) Top 400 (e) Top 500 (f) Top 600.

In the DIP dataset, among the top 100 predicted essential
proteins, the NIE method correctly predicted 90 essential
proteins, LAC and LIDC only correctly predicted 58. The

more the predicted correct number of top ranked proteins,
the more prominent the advantage of NIE. The accuracy of
the NIE method is much higher than the other seven methods.
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FIGURE 4. Jackknife curves of NIE and other seven methods in (a) DIP dataset (b) Krogan dataset and (c) MIPS dataset.

It can also be seen from the Fig. 1, Fig. 2 and Fig. 3 that the
accuracy of the method based on network characteristics such
as LAC and NC are not as good as other methods. Owing to
the edge aggregation coefficient and characteristics of gene
expression are fully combined, the prediction performance
of PeC and WDC algorithms is highly improved. However,
in the DIP and MIPS datasets, the PeC method is better
than WDC, but in the Krogan dataset, WDC performance is
better than PeC. As we all know, the density of Krogan is
greater than DIP and MIPS. Therefore, the performance of
the PeC and WDC methods have a certain relationship with
the structure of the PPI network. The NIE method performs
consistently on three datasets.

C. VALIDATED BY JACKKNIFE METHODOLOGY
In order to further analyze the stability of NIE and other seven
algorithms, we adopt Jackknife methodology developed by
Holman et al. [49]. Jackknife methodology is an evaluation
method for continuously displaying the prediction results of
algorithms. The experimental results validated by Jackknife
methodology in DIP, Krogan and MIPS are shown in Fig. 4.
The horizontal axis represents the number of candidate essen-
tial proteins, and the vertical axis represents the predicted
correct number of candidate essential proteins, which can
reflect the correctness of the methods. In the Histogram
comparison methodology, we only analyzed the top 100, 200,
300, 400, 500 and 600 prediction results, but it does not
explain the stability of the algorithm well. In the comparison
of Jackknife, we compared the top 25% of the algorithm
results. Fig. 4(a) shows the Jackknife curve in DIP dataset, the
horizontal axis represents top ranked proteins range from 0 to
1257. Fig. 4(b) shows the Jackknife curve in Krogan dataset,
the horizontal axis represents top ranked proteins range from
0 to 669. Fig. 4(c) shows the Jackknife curve inMIPS dataset,
the horizontal axis represents top ranked proteins range from
0 to 1137.

As can be seen from Fig. 4, on DIP, Krogan and MIPS
datasets, the correctness of the NIE algorithm is much greater
than other algorithms. This result is consistent with Fig. 1,

Fig. 2 and Fig. 3. The density of DIP is 0.0018, the density
of Krogan is 0.0020, the density of MIPS is 0.0012. In these
three datasets, the correctness of the methods PeC and WDC
are better than LIDC and LBCC before about top 15% of
the results, but the correctness between top 15% and top
25% is lower than LIDC and LBCC. The density of the
three datasets are different, but the method NIE has higher
correctness throughout the whole 25% of the results, which
fully demonstrates that the NIE method has good stability.

D. VALIDATED BY PRECISION-RECALL CURVES
METHODOLOGY
The histogram comparison methodology and the Jackknife
curves methodology can reflect the accuracy and stability of
the methods in a local range, in order to measure the overall
performance of the methods, we have drawn the Precision-
Recall curve (PR-curve) as shown in Fig, 5. The horizontal
and vertical axis represents recall and precision respectively,
defined as follows:

precision =
TP

TP+ FP
(14)

recall =
TP

TP+ FN
(15)

where TP is true positives, refers to essential proteins cor-
rectly predicted as essential, FP is false positives, refers
to nonessential proteins incorrectly predicted as essential,
FN is false negatives, refers to essential proteins incorrectly
predicted as nonessential. Precision indicates the predicted
correct ratio of the predicted essential proteins and recall
indicates the proportion of the standard essential proteins that
are predicted correctly, the greater the precision and recall,
the better the classification performance of the method.

In order to plot the PR curve, firstly, the method results are
sorted in descending order. Secondly, the former k proteins
are treated as essential proteins, and the rest are treated as
non-essential proteins, and the corresponding precision and
recall values are calculated. The value of k ranges from
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FIGURE 5. Precision-recall curves of NIE and other seven methods in (a) DIP dataset (b) Krogan dataset and (c) MIPS dataset.

FIGURE 6. ROC curves of NIE and other seven methods in (a) DIP dataset (b) Krogan dataset and (c) MIPS dataset.

1 to the number of the proteins. Thirdly, draw the PR curve
according to the precision and recall.

Fig. 5(a), Fig. 5(b) and Fig. 5(c) show the PR curve of
NIE and other methods in DIP, Krogan and MIPS dataset
respectively. In the DIP and MIPS datasets, the precision
value of PeC is better than LIDC method, and then lower
than LIDC method, which is consistent with the trend of
the Jackknife curve. Similarly, the performance of the WDC,
UC and LBCC methods differ in different datasets. As can
be seen from Fig. 5, the PR curve of NIE achieves the best
performance among all the methods and in all the three
datasets.

E. VALIDATED BY ROC CURVES METHODOLOGY
To further measure the performance of the methods,
the Receiver Operating Characteristic (ROC) curve has been
used. ROC curve is a good way of visualizing a classifier’s
performance in order to select a suitable operating point,
or decision threshold [50]. The ROC curves demonstrate the
tradeoff between the false positive rate (FPR) and the true
positive rate (TPR).

FPR =
FP

FP+ TN
(16)

TPR =
TP

TP+ FN
(17)

where TN is true negatives, refers to nonessential proteins
correctly predicted as nonessential. FP, TP and FN have
described in the previous section. The area under the ROC
curves (AUC) is used to measure the performance of corre-
sponding algorithms, the bigger the area is, the better predic-
tion performance the algorithm has.

Fig. 6(a), Fig. 6(b) and Fig. 6(c) show the comparison
of ROC curves and AUC values of different methods in
DIP, Krogan and MIPS datasets, respectively. In these three
datasets, the AUC value of the NIE method are all the largest
0.7281, 0.7246, 0.6927, and the AUC value of the PeC
method are all the smallest 0.6491, 0.6292, 0.5837. It demon-
strated that the NIE method is excellent and robust.

F. EVALUATION USING STATISTICAL MEASURES
As can be seen from the histogram and Jackknife curve,
the accuracy of the PeC method is higher than that of LBCC
and LIDC method, but the ROC value is the smallest. There-
fore, we must comprehensively consider the performance of
the methods. We compare the following statistical measures
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TABLE 3. Comparison of the values of SN, SP, PPV, NPV, F-measure and ACC of NIE and other seven methods.

including sensitivity (SN), specificity (SP), positive predic-
tive value (PPV), negative predictive value (NPV), F-measure
and accuracy (ACC), defined as follows:

SN =
TP

TP+ FN
(18)

SP =
TN

TN + FP
(19)

PPV =
TP

TP+ FP
(20)

NPV =
TN

TN + FN
(21)

F − measure =
2 ∗ SN ∗ PPV
SN + PPV

(22)

ACC =
TP+ TN
P+ N

(23)

where P and N are the total number of essential proteins and
nonessential proteins, respectively. FP, TP, TN and FN have
described in the previous section.

The comparison of SN, SP,PPV,NPV,F-measure andACC
of NIE and other methods are shown in Table 3. Because
the essential proteins data includes 1285 essential proteins,

we performed a statistical analysis of top 1285 predicted
essential proteins predicted by NIE and other seven methods.
As shown in Table 3, it is obvious that the SN, SP, PPV, NPV,
F-measure and ACC of NIE are higher than that of any other
methods on three different datasets, which shows that NIE
can identify essential proteins more accurately.

IV. CONCLUSION
Essential proteins help us analyze and understand life activ-
ities, meanwhile, discovering essential proteins are useful
for disease prediction and drug design. However, PPI data
have many false positives and false negatives which have
a great influence on the accuracy of predicting essential
proteins. So firstly we used RNA-seq data to describe the
co-expression properties between proteins, and used GO
annotation data to describe the functional correlation between
proteins, and then combined with the PPI network to con-
struct weighted PPI network to reduce the impact of false pos-
itives and false negatives data on the identification of essential
proteins. Furthermore, proteins have different functions at
different locations, the same protein has different functions
at different locations, and proteins often join together to form
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a complex to perform a function. Therefore, we calculate
the subcellular localization information entropy and pro-
tein complex information entropy of proteins, respectively,
and use them to construct the feature matrix of proteins.
Finally, we established a computational model based on
second-order neighborhood information to identify essential
proteins named NIE. To verify the accuracy, stability, and
effectiveness of the NIE method, we performed experiments
on three datasets: DIP, Krogan and MIPS, and compared
them with seven classical essential protein prediction meth-
ods: LAC, NC, PeC, WDC, UC, LIDC and LBCC. Five
types of popular comparison methodologies used to com-
pare algorithm performance. The experimental results clearly
indicate that NIE can better performance than seven other
methods.

REFERENCES
[1] B. Zhao, J. Wang, X. Li, and F.-X. Wu, ‘‘Essential protein discovery based

on a combination of modularity and conservatism,’’ Methods, vol. 110,
pp. 54–63, Nov. 2016.

[2] E. A. Winzeler, D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson,
B. Andre, and R. Bangham, ‘‘Functional characterization of the S. cere-
visiae genome by gene deletion and parallel analysis,’’ Science, vol. 285,
no. 5429, pp. 901–906, 1999.

[3] L. M. Steinmetz, C. Scharfe, A. M. Deutschbauer, D. Mokranjac,
Z. S. Herman, T. Jones, A. M. Chu, G. Giaever, H. Prokisch, P. J. Oefner,
and R. W. Davis, ‘‘Systematic screen for human disease genes in yeast,’’
Nature Genet., vol. 31, no. 4, pp. 400–404, 2002.

[4] L. M. Cullen and G. M. Arndt, ‘‘Genome-wide screening for gene function
using RNAi in mammalian cells,’’ Immunol. Cell Biol., vol. 83, no. 3,
pp. 217–223, Jun. 2005.

[5] G. Giaever, A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, and
S. Dow, ‘‘Functional profiling of the Saccharomyces cerevisiae genome,’’
Nature, vol. 418, no. 6896, pp. 387–391, 2002.

[6] T. Roemer, B. Jiang, J. Davison, T. Ketela, K. Veillette, A. Breton,
F. Tandia, A. Linteau, S. Sillaots, C. Marta, N. Martel, S. Veronneau,
S. Lemieux, S. Kauffman, J. Becker, R. Storms, C. Boone, H. Bussey,
‘‘Large-scale essential gene identification in Candida albicans and appli-
cations to antifungal drug discovery,’’ Mol. Microbiol., vol. 50, no. 1,
pp. 167–181, Oct. 2003.

[7] A. Sikandar, W. Anwar, U. I. Bajwa, X. Wang, M. Sikandar, L. Yao,
Z. L. Jiang, and Z. Chunkai, ‘‘Decision tree based approaches for detecting
protein complex in protein protein interaction network (PPI) via link and
sequence analysis,’’ IEEE Access, vol. 6, pp. 22108–22120, 2018.

[8] J. Yang, H. Pu, L. Jian, J. Gu, and M. Fan, ‘‘Modeling and analysis
of protein synthesis and DNA mutation using colored Petri nets,’’ IEEE
Access, vol. 6, pp. 22386–22400, 2018.

[9] M. W. Hahn and A. D. Kern, ‘‘Comparative genomics of centrality and
essentiality in three eukaryotic protein-interaction networks,’’ Mol. Biol.
Evol., vol. 22, no. 4, pp. 803–806, 2005.

[10] M. P. Joy, A. Brock, D. E. Ingber, and S. Huang, ‘‘High-betweenness
proteins in the yeast protein interaction network,’’ J. Biomed. Biotechnol.,
vol. 2005, no. 2, pp. 96–103, 2005.

[11] S. Wuchty and P. F. Stadler, ‘‘Centers of complex networks,’’ J. Theor.
Biol., vol. 223, no. 1, pp. 45–53, 2003.

[12] E. Estrada and J. A. Rodríguez-Velázquez, ‘‘Subgraph centrality in com-
plex networks,’’Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 71, May 2005, Art. no. 056103.

[13] P. Bonacich, ‘‘Power and centrality: A family of measures,’’ Amer.
J. Sociol., vol. 92, no. 5, pp. 1170–1182, 1987.

[14] K. Stephenson and M. Zelen, ‘‘Rethinking centrality: Methods and exam-
ples,’’ Soc. Netw., vol. 11, no. 1, pp. 1–37, 1989.

[15] L. Min, J. Wang, H. Wang, and P. Yi, ‘‘Essential proteins discovery from
weighted protein interaction networks,’’ in Proc. Int. Symp. Bioinf. Res.
Appl., 2010, pp. 89–100.

[16] M. Li, J. Wang, X. Chen, H. Wang, and Y. Pan, ‘‘A local average
connectivity-based method for identifying essential proteins from the net-
work level,’’ Comput. Biol. Chem., vol. 35, no. 3, pp. 143–150, Jun. 2011.

[17] J. X. Wang, M. Li, H. Wang, and Y. Pan, ‘‘Identification of essential
proteins based on edge clustering coefficient,’’ IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 9, no. 4, pp. 1070–1080, Jul./Aug. 2012.

[18] M. Li, Y. Lu, J. Wang, F. X. Wu, and Y. Pan, ‘‘A topology potential-based
method for identifying essential proteins from PPI networks,’’ IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 12, no. 2, pp. 372–383, Mar./Apr. 2015.

[19] W. Peng, J. Wang, W. Wang, Q. Liu, F.-X. Wu, and Y. Pan, ‘‘Iteration
method for predicting essential proteins based on orthology and protein-
protein interaction networks,’’ BMC Syst. Biol., vol. 6, no. 1, p. 87,
Jul. 2012.

[20] M. Li, H. Zhang, J.-X. Wang, and Y. Pan, ‘‘A new essential protein
discovery method based on the integration of protein-protein interaction
and gene expression data,’’ BMC Syst. Biol., vol. 6, no. 1, p. 15, 2012.

[21] X. Tang, J. Wang, J. Zhong, and Y. Pan, ‘‘Predicting essential proteins
based on weighted degree centrality,’’ IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 11, no. 2, pp. 407–418, Mar. 2014.

[22] M. Li, Y. Lu, Z. Niu, and F.-X. Wu, ‘‘United complex centrality for
identification of essential proteins from PPI networks,’’ IEEE/ACM Trans.
Comput. Biol. Bioinf., vol. 14, no. 2, pp. 370–380, Mar./Apr. 2017.
doi: 10.1109/TCBB.2015.2394487.

[23] J. Luo, Q. Yi, and C. Peter, ‘‘Identification of essential proteins based on
a new combination of local interaction density and protein complexes,’’
PLoS ONE, vol. 10, no. 6, 2015, Art. no. e0131418.

[24] W. Peng, J. Wang, Y. Cheng, ‘‘UDoNC: An algorithm for identifying
essential proteins based on protein domains and protein-protein interac-
tion networks,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 12, no. 2,
pp. 276–288, Mar./Apr. 2015.

[25] G. Li, M. Li, J. Wang, J. Wu, F.-X. Wu, and Y. Pan, ‘‘Predicting essential
proteins based on subcellular localization, orthology and PPI networks,’’
BMC Bioinf., vol. 17, no. 8, p. 279, 2016.

[26] C. Qin, Y. Sun, and Y. Dong, ‘‘A new method for identifying essential
proteins based on network topology properties and protein complexes,’’
PLoS ONE, vol. 11, no. 8, 2016, Art. no. e0161042.

[27] X. Lei, J. Zhao, H. Fujita, and A. Zhang, ‘‘Predicting essential proteins
based on RNA-Seq, subcellular localization and GO annotation datasets,’’
Knowl.-Based Syst., vol. 151, pp. 136–148, Jul. 2018.

[28] J. Luo and L. Kuang, ‘‘A new method for predicting essential proteins
based on dynamic network topology and complex information,’’ Comput.
Biol. Chem., vol. 52, pp. 34–42, Oct. 2014.

[29] Q. Xiao, J. Wang, X. Peng, F.-X. Wu, and Y. Pan, ‘‘Identifying essential
proteins from active PPI networks constructed with dynamic gene expres-
sion,’’ Bmc Genomics, vol. 16, no. 3, p. S1, 2015.

[30] M. Li, P. Ni, X. Chen, J. Wang, F. Wu, and Y. Pan, ‘‘Construction
of refined protein interaction network for predicting essential proteins,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 4, pp. 1386–1397,
Jul./Aug. 2019.

[31] X. Shang, Y. Wang, and B. Chen, ‘‘Identifying essential proteins based on
dynamic protein-protein interaction networks and RNA-Seq datasets,’’ Sci.
China Inf. Sci., vol. 59, no. 7, Jul. 2016, Art. no. 070106 .

[32] X. Lei, X. Yang, and H. Fujita, ‘‘Random walk based method to
identify essential proteins by integrating network topology and bio-
logical characteristics,’’ Knowl.-Based Syst., vol. 167, pp. 53–67,
Mar. 2019.

[33] M. Zeng, M. Li, Z. Fei, F. Wu, Y. Li, Y. Pan, and J. Wang, ‘‘A deep learning
framework for identifying essential proteins by integrating multiple types
of biological information,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., to be
published.

[34] X. Lei, Y. Xiaoqin, and W. Fangxiang, ‘‘Artificial fish swarm optimization
based method to identify essential proteins,’’ IEEE/ACM Trans. Comput.
Biol. Bioinf., to be published.

[35] X. Lei, M. Fang, F.-X. Wu, and L. Chen, ‘‘Improved flower pollination
algorithm for identifying essential proteins,’’ Bmc Syst. Biol., vol. 12, no. 4,
p. 46, 2018.

[36] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold,
‘‘Mapping and quantifying mammalian transcriptomes by RNA-seq,’’
Nature Methods, vol. 5, no. 7, pp. 621–628, 2008.

[37] X. Lei, Y. Ding, H. Fujita, and A. Zhang, ‘‘Identification of dynamic
protein complexes based on fruit fly optimization algorithm,’’ Knowl.-
Based Syst., vol. 105, pp. 270–277, Aug. 2016.

[38] G.-Y. Wang, H. Yu, and D.-C. Yang, ‘‘Decision table reduction based
on conditional information entropy,’’ Chin. J. Comput., vol. 25, no. 7,
pp. 759–766, 2002.

VOLUME 7, 2019 136021

http://dx.doi.org/10.1109/TCBB.2015.2394487


J. Zhao, X. Lei: Predicting Essential Proteins Based on Second-Order Neighborhood Information and Information Entropy

[39] C. Lee and G. G. Lee, ‘‘Information gain and divergence-based feature
selection for machine learning-based text categorization,’’ Inf. Process.
Manage., vol. 42, no. 1, pp. 155–165, 2006.

[40] I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and
D. Eisenberg, ‘‘DIP, the Database of Interacting Proteins: A research tool
for studying cellular networks of protein interactions,’’ Nucleic Acids Res.,
vol. 30, no. 1, pp. 303–305, 2002.

[41] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, and
J. Li, ‘‘Global landscape of protein complexes in the yeast Saccharomyces
cerevisiae,’’ Nature, vol. 440, no. 7084, pp. 637–643, 2006.

[42] U. Güldener, M. Münsterkötter, M. Oesterheld, P. Pagel, A. Ruepp,
H.-W. Mewes, and V. Stümpflen, ‘‘MPact: The MIPS protein interaction
resource on yeast,’’ Nucleic Acids Res., vol. 34, no.1, pp. D436–D441,
2006.

[43] E. Aslankoohi, B. Zhu, M. N. Rezaei, K. Voordeckers, D. De Maeyer,
K. Marchal, E. Dornez, C. M. Courtin, and K. J. Verstrepen, ‘‘Dynamics
of the Saccharomyces cerevisiae transcriptome during bread dough fer-
mentation,’’ Appl. Environ. Microbiol., vol. 79, no. 23, pp. 7325–7333,
Dec. 2013.

[44] Y. Zhang, H. Lin, Z. Yang, J.Wang, Y. Li, andB.Xu, ‘‘Protein complex pre-
diction in large ontology attributed protein-protein interaction networks,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 10, no. 3, pp. 729–741,
May 2013.

[45] S. Pu, J. Wong, B. Turner, E. Cho, and S. J. Wodak, ‘‘Up-to-date cata-
logues of yeast protein complexes,’’ Nucleic Acids Res., vol. 37, no. 3,
pp. 825–831, 2009.

[46] J. X. Binder, S. Pletscher-Frankild, K. Tsafou, C. Stolte, and
S. I. O’Donoghue, R. Schneider, and L. J. Jensen, ‘‘COMPARTMENTS:
Unification and visualization of protein subcellular localization evidence,’’
Database, vol. 2014, p. bau012, Jan. 2014.

[47] J. M. Cherry, C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E. T. Hester,
and Y. Jia, ‘‘SGD: Saccharomyces genome database,’’ Nucleic Acids Res.,
vol. 26, no. 1, pp. 73–79, 1998.

[48] R. Zhang and Y. Lin, ‘‘DEG 5.0, a database of essential genes in
both prokaryotes and eukaryotes,’’ Nucleic Acids Res., vol. 37, no. 1,
pp. D455–D458, 2009.

[49] A. G. Holman, P. J. Davis, J.M. Foster, C. K. Carlow, and S. Kumar, ‘‘Com-
putational prediction of essential genes in an unculturable endosymbiotic
bacterium, Wolbachia of Brugia malayi,’’ BMC Microbiol., vol. 9, no. 1,
p. 243, 2009.

[50] A. P. Bradley, ‘‘The use of the area under the ROC curve in the evalu-
ation of machine learning algorithms,’’ Pattern Recognit., vol. 30, no. 7,
pp. 1145–1159, 1997.

JIE ZHAO received the B.S. degree in computer
science and technology from Lanzhou University,
Lanzhou, China, in 2009, and the M.S. degree
in computer software and theory from Shaanxi
Normal University, Xi’an, China, in 2015, where
he is currently pursuing the Ph.D. degree with the
School of Computer Science. His current research
interests include bioinformatics, swarm intelligent
optimization, and data mining techniques and their
applications.

XIUJUAN LEI (M’19) received theM.S. and Ph.D.
degrees from Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2001 and 2005, respectively.
She was a Visiting Scholar with the Department of
Computer Science and Engineering, State Univer-
sity of New York at Buffalo, USA, from 2009 to
2010. She is currently a Professor with the School
of Computer Science, Shaanxi Normal University,
Xi’an. Her research interests include bioinformat-
ics, swarm intelligent optimization, data mining,
and big data analysis.

136022 VOLUME 7, 2019


	INTRODUCTION
	METHODS
	CONSTRUCTING WEIGHTED PPI NETWORK
	INFORMATION ENTROPY
	INFORMATION ENTROPY OF PROTEIN COMPLEX
	INFORMATION ENTROPY OF SUBCELLULAR LOCALIZATION

	PREDICTING ESSENTIAL PROTEINS BASED ON NIE

	RESULTS AND DISCUSSION
	EXPERIMENTAL DATA
	PERFORMANCE COMPARISON WITH HISTOGRAM METHODOLOGY
	VALIDATED BY JACKKNIFE METHODOLOGY
	VALIDATED BY PRECISION-RECALL CURVES METHODOLOGY
	VALIDATED BY ROC CURVES METHODOLOGY
	EVALUATION USING STATISTICAL MEASURES

	CONCLUSION
	REFERENCES
	Biographies
	JIE ZHAO
	XIUJUAN LEI


