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ABSTRACT Traffic flow exhibits different magnitudes of temporal patterns, such as short-term (daily
and weekly) and long-term (monthly and yearly). Existing research into road traffic flow prediction has
focused on short-term patterns; little research has been done to determine the effect of different long-term
patterns on road traffic flow prediction. Providing more temporal contextual information through the use
of different temporal data segments could improve prediction results. In this paper, we have investigated
different magnitudes of temporal patterns, such as short-term and long-term, through the use of different
temporal data segments to understand how contextual temporal data can improve prediction. Furthermore,
to learn temporal patterns dynamically, we have proposed a novel online dynamic temporal context neural
network framework. The framework uses different temporal data segments as input features, and during
online learning, the updating scheme dynamically determines how useful a temporal data segment (short
and long-term temporal patterns) is for prediction, and weights it accordingly for use in the regression
model. Therefore, the framework can include short-term and relevant long-term patterns in the regression
model leading to improved prediction results. We have conducted a thorough experimental evaluation with
a real dataset containing daily, weekly, monthly and yearly data segments. The experiment results show that
both short and long-term temporal patterns improved prediction accuracy. In addition, the proposed online
dynamical framework improved predication results by 10.8% when compared with a deep gated recurrent
unit model.

INDEX TERMS Deep neural networks (DNN), intelligent transport systems (ITS), online incremental
learning, traffic congestion prediction.

I. INTRODUCTION
With rapid urbanisation of cities and towns, traffic congestion
has become a critical issue for all metropolitan areas. Due
to space being a scarce commodity in most urbanised areas,
the only viable solution is better management of existing road
infrastructures. Research in the last 20 years has concentrated
on building Intelligent Transport System (ITS) through algo-
rithm development based onmachine learning approaches [1]
with a recent focus on deep neural networks (DNNs). DNNs
are favoured over shallow learners due to their ability to
efficiently extract complex latent patterns embedded within
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the data [2] , however, DNNs still present some challenges
for time-series prediction.

Existing work into road traffic prediction has focused on
using small training datasets, ranging from a few days to a
few weeks [3], [4]. However, a prediction model can only
be as good as its input data [5]. The temporal magnitude of
the training data will determine and restrict what temporal
cycles and patterns can be learnt. Despite this weakness, past
research has neglected to investigate what temporal patterns
are important and should be included within the training
dataset. Most assume only short-term patterns, such as hourly
and daily, are needed based on no prior investigations [3], [4].
Research by Williams and Hoel [6] has shown that traf-
fic flow in urbanised areas does exhibit weekly patterns
linked to the working week, however, other temporal patterns

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 153533

https://orcid.org/0000-0001-9519-0043
https://orcid.org/0000-0003-2491-7473
https://orcid.org/0000-0002-3268-1790
https://orcid.org/0000-0003-2379-9700
https://orcid.org/0000-0003-1013-4507


Z. Bartlett et al.: Novel Online DTC Neural Network Framework for the Prediction of Road Traffic Flow

are important. Traffic flow in urbanised areas also exhibits
long-term patterns, such as monthly and even yearly. These
patterns include, but not limited to, less traffic during sum-
mer months and increased traffic in December and Jan-
uary. Therefore, the inclusion of short-term and long-term
patterns within the training data could improve prediction
results.

Furthermore, DNNs, especially in the traffic flow pre-
diction field, are traditionally statically (not incremen-
tally or online) trained [7]–[10]. Therefore, the learning
capacity of these models is restricted to patterns and events
that occurred during the training dataset, such as recurring
traffic congestion. This is impractical for real-life applica-
tions; road traffic flow data is complex and stochastic [11]
therefore, their prediction models must be able to adapt to
previously unseen events, such as non-recurring road traffic
congestion or a road traffic incident. One way to overcome
this problem is to use online learning. Online learning is
a type of machine learning approach that uses the most
recent sequential data point or points to update the model’s
weights and biases as soon as the data is available; this can
improve the prediction accuracy of complex and stochastic
sequential data, such as road traffic flow. However, online
learning does have its limitations. The main disadvantage of
online learning is the eventual loss of the long-term temporal
patterns embedded within the training data. By continually
updating the DNN’s weights and biases based on the most
recent data point or points, themodel will eventually converge
to the short-term temporal patterns, forgetting previously
learnt long-term temporal patterns. This is known as catas-
trophic forgetting. Therefore, research into DNN’s architec-
tures that can learn and retain short and long-term tempo-
ral patterns during online learning need to be investigated
further.

The contributions and novelty of this work include:
1) we have investigated different magnitudes of tempo-

ral patterns (long and short-term), through the use of
different temporal data segments to understand how
contextual temporal data can improve prediction; and

2) we have developed a novel online dynamic tempo-
ral context neural network framework. The framework
uses different temporal data segments as input features,
and during online learning, the updating scheme is able
to dynamically determine how useful different tempo-
ral data segments are, and weight them accordingly for
use in the regression model. Therefore, the model is
able to include relevant long-term temporal patterns in
the regression model leading to improved prediction
results.

The rest of this paper is organised as follows: Section II
presents the State-of-the-art in Deep Neural Networks for
Road Traffic Flow Prediction Models; Section III describes
the Methodology used for the experimentation; Section IV
details the Experimental Evaluation; and Section V discusses
the Conclusion and Future Work.

II. STATE-OF-THE-ART IN DEEP NEURAL NETWORKS
FOR ROAD TRAFFIC FLOW PREDICTION MODELS
In this section, we will review and assess DNNs architectures
for time-series prediction with regards to road traffic flow.

Traditionally, DNNs are used for static tasks such as image
classification, however, thanks to algorithm development
by Hinton et al. [12] and advances in computing power,
they can now be explored further for time-series predic-
tion. DNNs have been proven to provide better prediction
results for complex noisy data; their long computational chain
of layers can to extract complex latent patterns embedded
within the data [13]. The first publication, to the best of our
knowledge, using DNNs for road traffic flow prediction was
Lv et al. [14]. Lv et al. stated that shallow prediction mod-
els learned an inadequate compressed representation of the
relationship between the input and the output data. Therefore,
a DNN is needed to ascertain the stochastic and complex non-
linear properties of road traffic data. Despite this most ANNs
designed for road traffic flow prediction are predominately
shallow learners with only one hidden layer [14]. Therefore,
one area of DNNs which has not yet been fully explored is
time-series prediction for road traffic flow.More research into
developing deep architectures to improve prediction accuracy
for road traffic flow is now possible and needed. Research
by Bartlett et al. [13] determined that the most suitable deep
regression models for road traffic flow prediction were GRU
and LSTM neural network models. Basic RNNs are unable
to capture long-term dependencies within the temporal data;
their learning capacity is limited to between five and ten-time
lags. This severely restricts their temporal context and thus,
their prediction accuracy. LSTM and GRU models, how-
ever, can to identify latent patterns over numerous time lags,
leading to improved prediction results. Therefore, the long-
term temporal patterns embedded within the training data
are crucial for road traffic flow prediction [13]. However,
these models do have constraints, they are limited by their
training dataset. The magnitude of the training data will
determine what temporal patterns can be learnt. Therefore,
deep LSTM and GRU neural network models will be the
focus of this review, with attention to temporal data size and
pre-processing, along with online/incremental learning.

The LSTM model [15] is an adaptation of a basic RNN
model. By the addition of an internal memory (known as
a cell) and a constant error carousel, the model is able to
preserve the error during training and overcome the van-
ishing gradient problem suffered by basic RNN models.
Zhao et al. [3] used an LSTM model to predict road traffic
flow. The input data, 500 observation points over 19 days
with a time-step of five minutes, was preprocessed using
an origin-destination cost (ODC) matrix to find the tempo-
ral and spatial correlations. This was done to simplify the
dependencies between the spatial and temporal data points,
to help the model find a relationship between the input and
output data. The ODC matrix was then fed into an LSTM
model. The prediction results were compared to five other

153534 VOLUME 7, 2019



Z. Bartlett et al.: Novel Online DTC Neural Network Framework for the Prediction of Road Traffic Flow

statistical and machine learning models, including a basic
RNN. Zhao et al. determined that the LSTM was the most
accurate. Furthermore, preprocessing the input data in an
ODC matrix did improve prediction accuracy. However,
the predictions were not compared to a GRU model and no
justification why 19 days of traffic flow data were given.
Furthermore, no incremental learningwas used. Shi et al. [16]
used an LSTMmodel to predict household energy loads. The
input data, 48 hours of 929 household’s energy loads (divided
into pools of ten) with a time-step of 30 minutes, was prepro-
cessed using a pooling layer. The pooling layer added nine
other neighbouring houses’ energy loads as an input feature
for the LSTM model. This was done to prevent over-fitting
and to compensate for the small training dataset. The predic-
tions were compared to three other machine learning models
and it was determined that the LSTM was the most accurate.
However, a convolutional neural network (CNN) may have
been more suitable for pooling neighbouring household loads
which was not considered. Furthermore, no justification was
given to why a small training dataset was used, nor was any
incremental learning implemented.

Therefore, researchers are still using small training datasets
with no justification. Small training datasets do not take
advantage of the model’s ability to link cause and affect
over many time lags. This may be due to the big data issue.
The LSTM cell has a complex structure which results in a
high computational cost. Therefore, using a large volume of
training data with the LSTMmodel would result in lengthily,
perhaps unfeasible, training times. One way to speed up
training time would be to use a less computationally heavy
model.

Cho et al. [17] put forward another adaptation of the RNN
to solve the vanishing gradient problem, the GRU neural net-
work. Similar to the LSTM, the GRU can be trained to retain
information over many time lags through the use of gates.
GRU models are still in their infancy, therefore, there is lim-
ited research regarding them, with most papers performing
comparative studies. Bartlett et al. [13] compared different
DNNs for the prediction of road traffic flow, including a deep
LSTM and a deep GRU model, and determined that the deep
GRU model was the most successful in terms of accuracy
and computational speed. However, state-of-the-art research
in other prediction domains, such as text and speech, are using
hybrid GRU models to preprocess the data before using a
regression layer for prediction. The use of a preprocessing
layer may improve prediction accuracy. Therefore, hybrid
models which include other ANN structures, such as CNNs,
should be explored further.

A CNN [18] is a feed-forward neural network that uses
the geographical proximity of its input data points to add a
geospatial dimension to the prediction function being learnt.
Consequently, CNNs are traditionally used when the input
data can be expressed in terms of a map, such as image anal-
ysis. Nevertheless, many other data sources possess similar
characteristics. CNNs combined with RNNs have been used
in image/text analysis experiments such as Peris et al. [19],

Wang et al. [20], and Lopez-Martin in 2017 [21]. This
research has paved the way for CNNs to be used for road traf-
fic flow prediction. Road traffic flow data not only exhibits
temporal patterns but also has strong spatial dependencies;
it can also be influenced by the number of vehicles up and
downstream from the point of prediction. Therefore, CNNs
can be explored further for road traffic flow prediction.
Wu et al. [8] built upon the research by Wang et al. and
developed a hybrid model to predict road traffic flow. Two
GRU layers were used to detect temporal features while
three CNN layers were used to detect spatial features. Their
outputs were combined into a single regression layer to make
a prediction . Additionally, in order to detect patterns across
different time lags, three different segments of historical input
data (all 105minutes in length) were used. The segments were
from: 1) immediately preceding the prediction, 2) exactly one
day before the prediction, and 3) exactly one week before
the prediction. The input segments were also preprocessed in
an attention model before entering the RNN or CNN layers.
Three months of data from 33 sensors were used to train
and test the model to predict multiple time horizons of five
minutes. Its results were compared to five state-of-the-art
time-series prediction models, and Wu et al. determined that
the GRU and CNN hybrid was the most accurate. However,
assumptions aremade over the temporal segments. It has been
assumed that only the daily and weekly temporal patterns are
significant; no consideration was given to monthly or yearly
patterns. Furthermore, the model was only trained statically,
it has assumed that the relationship between the temporal data
segments is constant. Once the model has learnt the temporal
and spatial relationships contained within the training data
it has no opportunity to update these relationships based on
the current data. Therefore, it does not lend itself to real-life
applications such as road traffic incidents. A model which
includes online learning would be more appropriate.

In conclusion, CNNs are still in their infancy in terms
of application. Many papers exploring architecture hybrids
within image analysis and text/speech analysis have started
to cross over into time-series prediction, however, one major
hurdle that needs to be overcome for CNNs to make a
significant impact on time-series prediction is its ability to
detect short and long-term patterns embedded within the data.
Furthermore, another issue highlighted by the literature
review is the lack of consensus over what magnitude of tem-
poral data that should be used, or, if providing historical tem-
poral data from distant time lags ago can provide context and
improve prediction accuracy. Most research fails to address
the temporal element of input data. The limited research that
does address the temporal element does not compare their
model with and without the addition of the temporal data
to assess its impact on the model’s accuracy [16]. Further-
more, the additional temporal data is often chosen through
expanding the current temporal dataset [22], which may be
irrelevant, or with no justification [8]. Banko and Brill [5]
identified that that input data used was the most impor-
tant element of a successful machine learning model.
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FIGURE 1. The proposed framework.

Therefore, further research into input data for DNNs and its
temporal magnitude is vital.

III. METHODOLOGY
A. THE PROPOSED FRAMEWORK
We have developed a novel online dynamic temporal context
neural network (DTC) framework, as shown in Fig. 1. The
framework uses different temporal data segments as input
features, and, during online learning, the updating scheme can
dynamically determine how useful different temporal data
segments are for prediction accuracy. The different temporal
data segments are then weighted according to their usefulness
for the regression model and added the current observations.
Therefore, the framework can include short and relevant long-
term temporal patterns in the regression model leading to
improved prediction results.

The framework can be divided into three distinct compo-
nents: 1) an input layer, 2) the model layer, and 3) the update
scheme layer, as seen in Fig. 1. Each layer will now be defined
in more detail.

1) THE INPUT DATA LAYER
Unlike traditional regression neural networks, the proposed
framework has two sources of input data. The sources of
input data are: 1) the current observations (D1), and 2) the
corresponding different temporal data segments (D2).
The current observations (D1) are the traffic flow observed

immediately before the prediction point (t + 1). The current
observations dataset is a 7d array, as shown in Equation 1,
containing the total traffic flow and its breakdown into six
different vehicle classes, as shown in Table 1. Vehicle classes
are used as input features (f ) for both the DTC model and
regressionmodel based on prior researchwhich demonstrated
that vehicle classes can improve prediction results [1].

D1 =


f1,t f2,t . . . fn,t
f1,t−1 f2,t−1 . . . fn,t−1
f1,t−2 f2,t−2 . . . fn,t−2
. . . . . . . . . . . .

f1,t−n f2,t−n . . . fn,t−n

 (1)

The different temporal data segments (D2) are the corre-
sponding observed traffic flow data that is one day, one week,
one month, and one year before the prediction point (t + 1).

TABLE 1. An extract from the current (t) traffic flow observations (D1).

Each temporal data segment is a 7d array containing seven
different features (fi ⇒ i ∈ Z : 1 ≤ i ≥ 7). This includes the
total traffic flow and its breakdown into six different vehicle
classes matching the current observations’ shape and struc-
ture, as shown in Equation 1. In total, the different temporal
data segments dataset is a 28d array, as shown in Equation 2,
where d denotes daily, w denotes weekly,m denotes monthly,
and y denotes yearly data segment.

D2=


f[d1,dn],t f[w1,wn],t f[m1,mn],t f[y1,yn],t
f[d1,dn],t−1 f[w1,wn],t−1 f[m1,mn],t−1 f[y1,yn],t−1
f[d1,dn],t−2 f[w1,wn],t−2 f[m1,mn],t−2 f[y1,yn],t−2

. . . . . . . . . . . .

f[d1,dn],t−n f[w1,wn],t−n f[m1,mn],t−n f[y1,yn],t−n

 (2)

Both sources of input data, current observations and differ-
ent data segments (D1 and D2), are passed to the model layer
for processing.

2) THE MODEL LAYER
The model layer contains two models with different architec-
tures: 1) the DTC model architecture, and 2) the regression
(GRU) model architecture.

The proposed DTC model has a CNN structure. Tradition-
ally, CNN structures are used for static tasks where input
data can be expressed in terms of a map, such as image
analysis or classification. In addition, cutting edge research
into time-series prediction has used CNN to find geospatial
relationships between different geographical locations to help
improve prediction accuracy. Our proposed model is different
from previous time-series prediction models using CNNs as
we seek to find relationships between different magnitudes of
temporal data segments. The model uses the different tempo-
ral data segments (D2) to dynamically determine how useful
it is for the regression model (GRU) to produce an accurate
prediction. It does this by weighting the input segments.
What differentiates the proposedmodel from traditional CNN
architectures is; 1) we have used temporal data as an input
features (fi), therefore, in the proposed model the kernel
scrolls ‘across’ the temporal data segments (D2) and not down
the temporal data like traditional arrangements of CNNs,
2) the kernel (k) used to detect temporal patterns is rectan-
gular and not square as traditionally used in CNNs, so the
kernel (k) only convolves across one line of input data at once,
3) the model uses downsampling to obtain the most relevant
temporal data, therefore, no padding function is used unlike
in traditional CNN structures to maintain the dimensions of
the input data, and 4) the stride (s) used for the kernel (k)
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FIGURE 2. The proposed dynamic temporal context framework.

is equal to width of the kernel (k = s) to ensure that each
data point is only convolved over once by the kernel (k) per
layer (`). This enables the DTC to reduce the dimensionality
of the input data while ensuring no replications are passed on
to the regression model. The DTCmodel will now be defined
in more detail. The proposed DTC model’s input is the 28d
array of different temporal data segments (D2); its structure
is a CNN, as shown in Equation 2. In the convolutional layer
a convolution kernel (k), also known as a filter or feature
detector, convolves (slides) over the different temporal data
segments (D2) input features (fi) until every input feature has
been passed over, moving left to right. Therefore, temporal
data is used as an input feature in the array columns and rows,
contrary to traditional CNN structures. The convolutional
operation (k[x, y]), where x and y define the current position
of the kernel (k) in the dataset D2, can be defined as

kD2 = k ⊗ fi : fi ∈ D2[x, y] (3)

In the proposed model the magnitude of the movement made
to the right is known as a stride (s) and is defined the same
length as the convolutional kernel (k), therefore, s = k , and
is a rectangle, unlike traditional CNN kernels. This constraint
has been set to ensure each feature (fi) is passed over only
once in each layer (`) per kernel (k) to ensure that the output
contains no duplication. At each stride (s) the weights (wi)
in the kernel (k) are multiplied by the corresponding indices
(d ∈ D2) position (x and y) underneath in the temporal
segments data (k ⊗ d) to create the convolution. The calcu-
lated values are used to create one output value, as shown
in Equation 3, and used to construct the feature map (M ),
as shown in Fig. 2. What is considered an important temporal
pattern by the proposed model is learned during the training
process. Multiple kernels (k) can be used to detect multiple
important temporal patterns in the temporal data segments.
Every hidden layer (`h) has at least one kernel (k), and the
depth of the feature map (M ) is determined by the number of
kernels in the hidden layer (`h). The number of kernels (k) and

hidden layers (`h) the DTC contained was optimised through
grid search.

It should be noted that although the literature refers to the
above process as a convolution, technically the implementa-
tion in the proposed model, and most other implementations
of CNNs, used a correlation operation. Both operations are
closely related, with both being a neighbourhood operation.
The only significant difference between the two operations
is during the calculation of a convolution the kernel (k) is
rotated 180 degrees; the kernel (k) does not rotate during
the correlation calculation. Therefore, for clarification, in the
paper when referring to the convolution operation of our
proposed model, we are referring to a correlation operation.

The convolutional operation is linear, therefore, an acti-
vation layer (`a) follows the convolutional layer to account
for the non-linear relationship between the data points.
In the proposed model a rectified linear unit (ReLU), as seen
in Equation 4, activation function was used.

r(m) = MAX (0,m) : m ∈ M (4)

An ReLU was used to normalise the output of the DTC
between the range of 0−x, to ensure the none of the temporal
data segments would be negatively weighted. The feature
map (M ) is then fed the activation layer (`a); a ReLU function
(r) was applied to each data point (m) in the feature map (M )
matrix to transform the data into the set range. The output
of the activation layer (`a), the activation map (A), contains
the same dimensions as its input, the feature map (M ). The
activation map (A) is then fed into the pooling layer (`p).
The pooling layer (`p) is used to condense the temporal data
segments while preserving the important temporal patterns
(features (f )). A sliding window is used to move across the
activation map (A), and one value is chosen per stride (s),
as shown in Fig. 2. Again, the stride is equal to the size
of the window (s = k) to ensure no duplication in the
output. Therefore, the activationmap (A) is downsampled and
reduced in width, to a width of qp, as shown in Equation 5,
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where qa is the width of the activation layers (`a) input.
The value chosen in the sliding window is the largest value
(max pooling).

qp =
qa − k
s
+ 1 (5)

Traditionally, the output of the pooling layer (`p) is
calculated as

o =
q− K + 2P

s
+ 1 (6)

where p represents a padding function added to increase the
dimensions of the output data back to its original magnitude.
However, as downsampling was the aim of the proposed
model, no padding function (p) was used in the proposed
model.

Different from the existing time-series models using CNN
where the prediction models are based on static data, our
proposed DTC model is dynamic and seeks to find a rela-
tionship between different magnitudes of temporal data seg-
ments promptly. In the proposed DTC model, the output is
the most relevant temporal features (S) for prediction. The
selected temporal features (S) are then added to the current
observations (D1) to create the current dataset (C) and passed
through to the regression model (GRU), as shown in Fig. 2.
Based on previous research [13] the regression layer used
was a deep a GRU model. A GRU model works through
the use of gates; each gate is a neural network. The gates
included in a standard GRU cell are an update gate and a
forget gate, as shown in Fig. 2. The current input (ct ∈ C) and
the previous hidden state (ht−1) is added together and passes
through the update gate, as shown in Equation 7. The update
gate decides what data should be forgotten and what should
be added. A Sigmoid activation function is used to squash the
values of the input between zero and one, where b is the bias.

u = σ (wcuct + whuht−1 + bu) (7)

Next, the same input (ct and ht−1) is passed through the
reset gate with a Sigmoid activation function (as shown in
Equation 8). The reset gate is used to decides how much of
the past information should be forgotten, as shown in Fig. 2.

r = σ (wcrct + whrht−1 + br ) (8)

The hidden state (h) is then updated using the reset gate and
the current input (ct ) (as shown in Equation 9), where the
product of the reset gate (rt ) and theweighted previous hidden
state (whhht−1) is the Hadamard product.

ht = tanh(wchct + (1− rt ) ◦ whhht−1 + bh) (9)

Finally, the hidden state is updated using the update gate to
determine what information from the current memory should
be stored, as shown in Equation 10.

ht = zt ◦ ht−1 + (1− zt ) ◦ ht (10)

The output then predicts the number of vehicle (yt ) at the next
time point (t + 1), as shown in Fig. 2. Once the regression

model, GRU, has made its first prediction (yt ) using the test
data, the prediction (yt ) and the actual value (at+1) are then
passed to the Update Scheme layer, as shown in Fig. 1.

3) THE UPDATE SCHEME LAYER
The primary objectives of the Update Scheme layer are:
1) to update the weights and biases in the DTC model to
dynamically and timely adjust the most relevant temporal
features from the temporal data segments dataset (D2) for use
in the regression model, and 2) to update the weights and
biases in the GRU model to allow the model to adjust and
adapt to changing temporal trends within the time-series data.
This was done through online learning. Once a prediction (yt )
has been made, the actual value (at ) is added as a new line
of observations to the current observations dataset (D1) and
its corresponding temporal data segments are added to D2,
as shown in Fig. 2. The prediction (yt ) and actual observation
(at ) are then compared, and its error, ε (yt − at ), is computed
and passed back to the DTC model. This is done to update
the model’s weight (wi) and biases (bi) contained within the
kernels (ki) to allow the model to dynamically adjust the
most relevant temporal data segments for regression based
on the most recent time-series data. This is achieved through
the use of a stochastic gradient descent method [23] and a
small window of the most recent data segments in datasetD2.
During backpropagation, using a small window of the most
recent data in D2, the gradient of the error (ε) is found with
respect to the DTCmodel’s weights (wi) and biases (bi) using
differentiation, as seen in Equation 11.

δε

δwi
and

δε

δbi
(11)

The error’s (ε) gradient is then backpropagated through the
model, from the output layer (`o) to the input layer (`i), to find
the global minima. In each layer (`) the gradient is scaled by
a learning rate (l) as shown in Equation 12.

wi,t = wi,t−1 − l
δε

δwi
and bi,t = bi,t−1 − l

δε

δbi
(12)

The weights (wi) and biases (bi) in the kernel (ki) within the
DTC model are then updated accordingly to minimise the
error (ε). Once the DTC model is updated, the new temporal
features are selected (s1,t+1−sn,t+1) and added to new current
observations (D1) to create an updated current dataset (C),
as shown in Fig. 2. A window of the new current dataset (C),
is then fed to the regression model (GRU) to update the
weights (wi) and biases (bi) in the GRU layers. The regression
model is updated to improve the prediction accuracy of the
overall model by adapting to temporal trends within the time-
series data.

The regression model is also updated using stochastic gra-
dient descent method [23]. The current input (ct+1 ∈ C) and
the previous hidden state (ht ) is added together and passed
through the update gate, as shown in Equation 7. The GRU
cell processes the input as described in Equation 7 to 10,
and the gradient of the error (ε) is found with respect to the
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regression model’s weights (wi) and biases (bi) using differ-
entiation, as seen in Equation 11. The error’s (ε) gradient is,
again, backpropagated through the regression model, from
the output layer (`o) to the input layer (`i), to find the global
minima. In each layer (`) the gradient is scaled by a learning
rate (l) as shown in Equation 12. The weights (wi) and biases
(bi) within the regression model are then updated accordingly
to minimise the error (ε). Once the Updating Scheme has
updated the regressionmodel, a new prediction is made (yt+1)
and the cycle continues.

IV. EXPERIMENTAL EVALUATION
In this section, we have focused on two research questions:
1) how do different temporal data segments affect prediction
accuracy? 2) can a dynamic temporal context framework that
can include both short-term and relevant long-term temporal
patterns improve prediction accuracy?

A. DATA DESCRIPTION
Both the proposed dynamic temporal context and the deep
gated recurrent unit model were applied to an existing real
dataset collected from a typical busy urbanised arterial road
between Manchester and Liverpool, UK. The dataset con-
sisted of three months of data collected between 1st January
to 31st March 2016, with a time horizon of five minutes
(26,195 data point). Historic datasets, referred to as temporal
data segments, were added as input features to give the data
temporal context. The temporal data segments added to the
original dataset were the previous day, week, month, and year,
as shown in Table 2.

TABLE 2. Temporal datasets.

TABLE 3. Classes of vehicle type.

All temporal data segments were three months in length,
with a time horizon of five minutes, and 26,195 data points,
to correspond with the original dataset. The input data also
included input features of different vehicle classes, as shown
in Table 3, as different vehicle classes have been shown to
improve prediction accuracy [1].

Therefore, the total dataset contains 26,195 data points
35 different input features. Two months of the dataset was

used to train and validate the framework and one month was
used for validating and testing. No data points were missing,
therefore, no pre-cleaning of the data was necessary.

B. MODEL ARCHITECTURES AND HYPERPARAMETERS
There is currently no standard procedure or analytical cal-
culation to determine the optimal structure or setup for any
neural network, therefore, the architecture and hyperparam-
eters of all neural networks used during experimentation
were optimised using prior knowledge from the literature
review or heuristics through grid search.

The setup of all weights and biases were randomly
initialised based on work by Zhao et al. [3]. The
dropout rates were optimised at 50% based on work by
Srivastava et al. [24]. The optimiser used during training and
online learning was a stochastic gradient descent method,
AdaMax, designed by Kingma and Ba in 2014 [23]; this
optimiser was chosen as it is an adaptive gradient method
which keeps an exponentially decaying average of the past
gradients, therefore, suitable for online learning.

All other hyperparameters and architectural structures,
such as the number of layers, nodes, learning rate, update
window size, were found using a random grid-search. The
grid-search searched through different architectural struc-
tures ranging from two to six layers (excluding any input
and output layers) with different hyperparameters to find the
optimal setup for all models.

C. PERFORMANCE METRICS
In order to evaluate and compare the accuracy of all the
models, a performance metric was used. The Root Mean
Squared Error (RMSE), as shown in Equation 13, was used
to measure the average deviation between the predicted value
and the actual value of the road traffic flow, where yt is the
predicted value at time t , a is the actual value at time t , and
n is the number of time steps predicted.

RMSE =

√∑n
t=1(yt − at )2

n
(13)

D. THE EVALUATION OF DIFFERENT TEMPORAL DATA
SEGMENTS AND THE PROPOSED DYNAMIC
TEMPORAL CONTEXT FRAMEWORK
To examine how different temporal data segments affect pre-
diction accuracy, we have applied a deep gated recurrent unit
model to six different datasets, as shown in Table 2). For each
dataset, the model was run multiple times to optimise the
parameters and to ensure significance. In total 3,600 models
were trained.

Table 4 shows that the inclusion of the weekly temporal
data segment provided the most improvement to the predic-
tion accuracy, with an RMSE of 13.575%,more than the daily
temporal data segment, which had an RMSE of 13.95%. This
will be due to the weekday and weekend split linked to the
working week, which traffic flow in most urbanised areas
exhibits.
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TABLE 4. The prediction accuracy of different temporal datasets using a
deep gated recurrent unit model for road traffic flow.

Interestingly, Table 4 also shows that the addition of any
temporal data segment, even long-term, improved the predic-
tion accuracy of the model. Therefore, long-term temporal
patterns, such as monthly and yearly patterns, embedded
within the data, have aided the prediction model. Further-
more, including all temporal data segments improved the
prediction accuracy further, with an RMSE of 13.574%. This
shows that both short and long-term temporal patterns embed-
ded within traffic flow data are important for the prediction
and can improve prediction results.

To evaluate the effectiveness of the proposed dynamic
temporal context framework, we have used the sixth dataset,
as shown in Table 2, and compared its prediction results with
a deep gated recurrent unit model. The results are shown
in Table 4.

The proposed framework was more successful than the
deep gated recurrent unit model at predicting road traffic flow
using the same existing real dataset (dataset six from Table 2),
with an RMSE of 12.244% and 13.574% respectively. This
not only demonstrates the importance of temporal context
for accurate road traffic flow prediction but also shows that
the temporal context must be relevant. Using the proposed
dynamic temporal context layer has enabled the framework
to provide only relevant temporal data segments to the regres-
sion model (deep gated recurrent unit model) dynamically
in real-time. This had lead to a 10.8% improvement in the
prediction accuracy.

V. CONCLUSION AND FUTURE WORK
Accurate prediction of road traffic flow is crucial for Intelli-
gent Transport System management. Previous research into
road traffic flow prediction has focused on short-term pat-
terns, such as hourly, daily, and weekly. Little research has
investigated the effect of different long-term patterns, such as
monthly and yearly on traffic flow prediction accuracy.

In this work, we have investigated different magnitudes of
temporal patterns (short and long-term) by using different
temporal data segments to assess how contextual temporal
data effects prediction accuracy. Also, we have proposed a
dynamic temporal contextual framework, which, unlike other
prediction models, can dynamically incorporate both short
and relevant long-term temporal patterns. This is achieved by
using different temporal data segments as input features and,
through online learning, the model can dynamically deter-
mine which is relevant for regression to provide an accurate

prediction in real-time. The different temporal data segments
and proposed framework were evaluated using an existing
real dataset and compared against a comparable prediction
model (a deep gated recurrent unit model). The experimental
results show that the inclusion of any short or long-term tem-
poral pattern does improve prediction accuracy. Furthermore,
the proposed framework improved prediction accuracy by
10.8%when compared to the deep gated recurrent unit model,
with an RMSE of 12.244% and 13.574% respectively.

For future research, the CNN structure of the DTC model
should be explored further to provide more contextual infor-
mation for the regression model to improve prediction accu-
racy further. In this paper we have restricted the input data
to one geographical point, however, it would be interesting
to explore on a network level and analysis what, where, and
when temporal patterns aremore relevant. This analysis could
help construct future prediction models and aid in long-term
planning of incidents such as roadworks and sporting events.
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